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The internal effective magnetic field (H, ir) and the electric Geld gradient acting on europium nuclei in

europium iron garnet has been calculated. The nondiagonal matrix elements connected with the admixture
of states produced by the exchange interaction give the main contribution to these fields. The temperature
dependence of these Gelds is compared with the dependence of the magnetic moment of the ion as caclulated

by Wolf and Van Vleck. The effective magnetic Geld at O'K turns out to be 7X10'Oe, whereas, the elec-
tric 6eld gradient at 0 K is eg/h = —555 Mc/sec per b. In an Appendix the paramagnetic correction for the
internal magnetic Geld acting on the nucleus of Eu in the presence of an external magnetic field is also cal-
culated as a function of temperature. At room temperature H; t=1.54 Ho.

INTRODUCTION

N some recent researches, ' ' using the Mossbauer
~ - effect and y-y angular correlations in rare-earth
iron garnets, effective magnetic fields, acting on the
rare-earth nuclei, have been observed. This effective
field is to be associated with the hyperfine interaction
which is orientated as a consequence of the exchange
interaction existing between the iron and the rare-earth
sublattices in the garnet, below the Curie temperature.
This exchange interaction also gives rise to the spon-
taneous magnetization of the rare-earth sublattice in
the iron garnet. ' Neglecting the eGect of crystalline
fields, i.e., assuming "free" rare-earth ions which are
acted on only by the exchange field and taking into
account the ionic ground state alone, the magnetization
and the effective magnetic field (H, tt) should be
similarly dependent on temperature, since both depend
in the same way on the Boltzmann average of J, (where
J, is the projection of J in the direction of the exchange
field). Recent measurement' seems to confirm the
proportionality between the magnetization and H, ff

for Dy in dysprosium iron garnet (DIG), justifying in
this case, at least, the free-ion approximation.

As was pointed out by Wolf and Van Vleck' the
situation in the case of EuIG is quite different. The
ionic ground state for Eu'+ is VFO, which is diamagnetic.
On the other hand, there is an appreciable exchange
interaction acting on the spin of this ion in the garnet.
Moreover, there exist excited ionic levels, namely, 'P j
and ~F2, at energies which are relatively low and,
therefore, are introduced as admixtures in the ground
state, when taking into account the exchange inter-
action. This perturbed ground state gives rise to a
nonzero spontaneous magnetization, as well as to a
nonzero effective magnetic field. In addition, there is a

direct contribution of these excited levels (especially
rFi) owing to its thermal population as a function of
temperature. Wolf and Van Vleck, ' using this approach,
gave a satisfactory explanation to the spontaneous
magnetization of KuIG as a function of temperature.
They pointed out that the free-ion approach is justifiable
for the case of EuIG since the point symmetry at the
Eu'+ site is almost cubic, and a cubic field cannot
remove the degeneracy for J&2.

We use, essentially, the same idea in this work in
order to calculate the internal effective magnetic field

acting on the Eu nucleus in EuIG as a function of
temperature. A similar procedure for calculating H, ff

when inQuenced by an excited ionic level has been used

by Caspari, Frankel, and Wood' in the case of Sm'+ in
samarium iron garnet, where the energy of the excited
state is again relatively low. This approach, however,
has not been successful in calculating the spontaneous
magnetization in' SmIG and as yet there is no satis-
factory explanation of the behavior of the magnetization
as a function of temperature.

In addition, we have also used the free-ion approach
in order to calculate the electric field gradient produced

by the orbitals of the 4f electron shell which, in general,
will be partially aligned under the inhuence of the
exchange interaction and therefore correlated with the
magnetization, as was pointed out by Bauminger et al.'
This electric field gradient is perhaps the most signifi-

cant one in the case of Ku'+ in KuIG.
There is some interest in calculating these two

quantities since recently it has been shown that one
can carry out Mossbauer experiments in EuIG, using
the isotope Eu'" which has a first excited state of
22 keV and gives large recoil-free eGects. v Since one
can achieve an emission line of almost natural line-

width ' and there is a possibility to perform the
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3 (s,"r,)r,)/V=+ I;—s,+
r~s j (2)

The internal effective field is proportional to the
average component of the hyperfine interaction operator
along the direction of the exchange interaction, which
we denote by the Z axis. We 6rst express the matrix
elements of E in the perturbed scheme and then
perform its thermal average with respect to the ionic

experiment in a large range of temperatures, one should
be able to study experimentally the behavior of the
effective magnetic field and perhaps also the electric
field gradient acting on the nucleus as a function of
temperature.

In an Appendix the paramagnetic correction for the
internal magnetic field acting on the nucleus of Eu in
the presence of an external magnetic field is also
calculated.

THEORY

As was mentioned above, we make use here of the
free ion approximation. We start with the Hamiltonian'

%=A (L' S)+2pp(H g' S), (1)

where we do not introduce an external 6eld. Using
first-order perturbation theory we calculate the admixed
eigenstates for J=O; 1; 2; 3. The energies for the
excited ionic levels 'F~, F2, and Fa are taken to be'
480'K, 1330 K, and 2600'K. The effective field acting
on the nucleus is calculated using the hyperfine inter-
action operator"

levels concerned. This is represented by (1V,)r, then
H, ff is given by

H.„=2p, (r-')(X.), . (3)

H, //=2Ps'(r ')H. .k(T)(113e s /" +Se s'/kr) '

2640 2
+e e»k'] —-+

3Ei 3Er Es Er —3kTj
—40

33226 32
+e '""'I — —+ — (4)

Es Er 9(—Es—Es) 9kT

Since we are interested in comparing the temperature
dependence of H, fg with the magnetization of the Eu
sublattice in the EuIG, we have extended the calcu-
lation carried out by Wolf and Van Vleck up to the
same order as that of H, fg. We obtain for the average
magnetic moment

P sH (T) (1+3e E»/kT+Se E—k/kT)—

-16 16 30 3
X —+e ""' ——+ +

Ei Ei Eg—Eg kT

40 1S q-
+e—zo/kT + + i

(S)
Es Er Es Es A—Tj—

The operator equivalents of lV in the (JLS) scheme are
calculated from the work of Elliott and Stevens. " In
our calculation we take into account also the contri-
butions from the thermal population of the ionic levels
'Ft and 'Ps (the energies of which are denoted by Ek
and Es, respectively). We then obtain for H, rt

The temperature dependence of both curves is shown
in Fig. 1 (assuming (1/r') is 57X10" cm')" The
temperature dependence for H,„,h is derived in the
same way as was done in reference 5 using the value of
poH. ,k ts'/k =24'K.

In the case of the electric 6eld gradient, the operator
under consideration is given by

q, =e(r-')P, (3 cos'8;—1). (6)

100 200 300 400

TEMPERATURE

500 oK

Fxc. 1. The temperature dependence of the effective magnetic
field and the electric Geld gradient acting on the nucleus of Eu
in EuIG. For comparison the temperature dependence of the
magnetic moment of the europium ion in EuIG is given.

'H. Gobrecht, Ann. Physik 28, 673 (1937); and also J. H.
Van Vleck, Ann. Inst. Henri Poincare 10, 80 {1947).' A. Abragam and M. H. L. Pryce, Proc. Phys. Soc. (London)
A205, 135 (1951).

The electric field gradient is, essentially, calculated
in the same manner, but here we have to consider a
second-order admixture in the ionic eigenstates, since
the first-order perturbation is zero. Elliott" has calcu-
lated in a similar way the quadrupole interaction for
europium nuclei in axially symmetric crystalline fields

arising from the admixture of F~ into Fo produced by
the crystalline 6eld interactions. For the thermal
average of the matrix elements it is sufhcient to consider
the contribution of the first two states only.

The matrix elements of this operator in the (JLS)

"R. J. Elliott and K. W. H. Stevens, Proc. Roy. Soc. (London)
218, 553 (1953)."B.Bleaney, Proc. Phys. Soc. (London) A68, 937 (1955)."R. J. Elliott, Proc, Phys. Soc. (London) $70, 119 (1957).
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scheme are, apart from their sign, those of a single
electron, since we have here a "hole" in a half-filled 4f
shell. We use here Eq. (44) of Racah'4 for the evaluation
of the matrix element of the tensor Cp.'

We obtain for the thermal average of q,

(q,)r ——e(r-')P 'H,„,h'(T) (1+3e

32 (2Ei+Es 1
X +s EklkT—

5Eg'E2 —5k'T'

1
t

12 64 96 ~-——+ +
/

. (7)
5(E2 El) EkT El Es El Es E1J—

22

The temperature dependence of (q, )& is also shown
in Fig. 1.The expression for the quadrupole interaction
energy is

calculations. For the ground state of Eu'" the magnetic
moment is 3.6 nm and the magnetic Zeeman splitting
gp H if/)s will be of the order of 700 Mc/sec. Another
contribution to H, gq which is generally neglected is the
core polarization which was estimated roughly by
Freeman and Watson" to be —9&(10'S Qe, where S is
the spin. In the case of Eu'+, where the effective
magnetic Geld is relatively small the contribution of
core polarization must be considered. This contribution
is negative and therefore diminishes the total effective
magnetic Geld.

It is seen from Fig. 1 that these calculations predict
that the .temperature dependence of H, ~g and the
magnetization of the europium sublattice should be
somewhat different. The decrease of H, gf with increasing
temperatures is much less than that to be expected for
other (and as found for' DIG and" TmIG) rare-earth
garnets.

Eo=e(q.)rQE3Is' I(I+1)—7/4I (2I—1); (8)

for Q (Eu'") =0.95 b,"a value of eqQ/)'s =—530 Mc/sec
at O'K is obtained neglecting shielding sects."

In addition to this, one should consider two other
contributions to the quadrupole interactions: (a) that
produced by the ionic Stark levels of Eu'+ in the
presence of the crystalline 6eld, and (b) that produced
by the external distribution of ionic charges in the
lattice which is magnified by a large antishielding factor
y„=—70, according to recent calculations by Wikner
and Burns. ~~

The case of europium ethylsulfate, the symmetry of
which is lower than cubic, was extensively investigated,
theoretically and experimentally. Contribution (a) was
calculated by Elliott" and is about eqQ/h +60
Mc/sec. Contribution (b) was calculated from optical
data'r and is eqQ/h —35 Mc/sec. An experimental
result of eqQ/)'s —140 Mc/sec was obtained by Judd
et u/. " It seems reasonable that these contributions
t'(a) and (b)7 in EuIG are at most of the same magni-
tude as in europium ethylsulfate. Some support for
this assumption is supplied by a calculation" for
ytterbium gallium garnet, where the departure from
cubic symmetry is estimated, and the relevant expres-
sion for calculating the ionic electric field gradient'~ is
derived A2'=50 cm ', which is less than that for the
case of europium ethyl sulfate A2'=120 cm—'. All this
suggests that for EuIG, the exchange interaction
contribution to the quadrupole interaction is dominant.

H ff at O'K is about 7.10' Oe, according to the above

"G. Racah, Phys. Rev. 62, 438 (1942)."K. Krebs and R. Winkler, Naturwiss. 47, 490 (1960).
'P R. M. Sternheikner, Phys. Rev. 95, 736 (1954).
'7 E. G. Wikner, G. Burns, Phys. Letters 2, 225 (1962).' S. R. Judd, C. A. Lovejoy, and D. A. Shirley, Phys. Rev.

128, 1733 (1962).' J.Thomas, Ph.D. thesis, University of Grenoble, France, 1962.
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APPENDIX

It was pointed out by Goldring and Sharenberg"
that when measuring nuclear gyromagnetic ratio using
an external magnetic 6eld Hp acting on a system of
paramagnetic ions, the held at the nucleus H;„&is equal
to Hp(1+p), where p is an important correction which
must be taken into account. The origin of this correction
is the magnetic hyperflne interaction partially aligned
under the inhuence of the applied 6eld. Manning and
Rogers" have calculated this correction for all rare-earth
ions, but neglected the admixture of the excited ionic
states in the ground state in the case of Sm'+ and Eu'+. '4

Kanamori and Sugimoto" have calculated the
temperature dependence of this correction for Sm'+ by
taking into account this contribution. In the case of
Eu'+, where the ground state is Fp, this correction can
be calculated in a very similar way to that of H, ff in
ferrimagnetic europium iron garnet. The only difference
is that the perturbing Hamiltonian in the present case
is Pp(L+2S) ' Hp, where Hp is the external 6eld, instead
of 2pp(S'H s) in the ferrimagnetic case, since for the
latter the exchange 6eld (H, ,h) acts only on the spin.

'OA. J. Freeman and R. E. watson, Phys. Rev. 127, 2058
(&962).

s' I. Nowik and S. Ofer, Phys. Letters 3, 192 (1963).
~~ G. Goldring and R. P. Scharenberg, Phys. Rev. 110, 701.

(1958).
s' G. Manning and J. Rogers, Nuel. Phys. 15, 166 (1960).
'4 J. H. Van Vleck, Electric and Magnetic SuscePtibilities

(Oxford University Press, New York, 1932)."J.Kanamori and K. Sugimoto, J. Phys. Soc. (Japan) 13,
754 (1958).
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Calculation of p as a function of temperatures gives

P PS2(r-3) (]+3e Er/—kT+5e Es/—kT) 1—
—40 40 26 2

X +, E/-/r +,
~a—E» kT

26 332 32
+e E»'r—

~

— + (A1)
Es Et —9 (Es—Es) 3kT

where all the related parameters are deined above in
this article.

At 300'K for instance, P= 0.54 (giving H; r,
= 1.54Hp)

instead of a value of P =0, when the excited ionic levels
are ignored. This relatively large correction mould be
important for the determination of nuclear gyromag-
netic ratios of excited states of europium isotopes using
angular correlation technique.

Note uddedi, e proof Rec.ent Mossbauer measurements
carried out by I. Nowik and S. Ofer in this laboratory,
and to be submitted for publication shortly, show that
at 80'K H,« is about 750 koe, in very good agreement
with the present calculations.
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The Feynman description of the polaron is used to write down a polaron Boltzmann equation. This
equation is then used to discuss the drift mobility problem. In the limit of low temperatures, the Boltzmann
equation is rearranged to exhibit elastic resonance scattering and it is solved exactly. The evaluation of the
drift mobility thus obtained is compared with the results of other calculations. Other applications of the
polaron Boltzmann equation are briefly discussed.

INTRODUCTION
' N this paper, we calculate the drift mobility of an
& - electron in a polar crystal (a polaron) by making use
of a model due to Feynman. ' ' Our procedure will be to
use the Feynman model to derive a Boltzmann equation
which may then be solved to find the mobility. Exten-
sive study' r has already been devoted to this mobility
problem. The primary novel feature of the present work
is the use of a Boltzmann equation in conjunction with
the Feynman model.

We begin from the Frohlich Hamiltonian for an elec-
tron in a polar crystal. We take all the optical phonons
to have the same frequency and the electron-phonon
matrix element to be proportional to the inverse of the
magnitude of the phonon wave vector. In units in which

5, the phonon frequency, and the electron band mass are
all equal to unity the Frohlich Hamiltonian is'

H=p, '/2+ U(r„1)+Pa,ta,
q

4s.n )"'
+Z (e, e~q r +rr te—/s r,) (1)

v2 Vq'I
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Here, p, and r, are electron momentum and position
operators; aq~ and aq are operators which create and
destroy a phonon with wave vector q; V is the volume
of the system; o. is a dimensionless coupling constant
which measures the strength of the electron-phonon
interaction. U(r, t) is a scalar potential for a force
externally applied to the system. At the space-time
point r, t, this force is, of course, —7'U(r, 1).We shall use
this force to set the polaron in motion so that we may
measure its mobility.

In the weak coupling limit, 0.((i, we can apply a
perturbation expansion in the electron-phonon inter-
action. We can take the basic electronic states to be
plane wave states and write a Boltzmann equation to
describe how phonon emission and absorption processes
change the population of these states. 4 However, when
o. is comparable with or greater than unity this descrip-
tion of the electronic states breaks down. Every electron
now travels with a cloud of phonons about it and this
cloud substantially modi6es all the electronic properties.

However, there exists a relatively simple description
of the polaron which works quite well even when o. is
fairly large. Feynman' pointed out that the motion of
the electron in its associated cloud of phonons was quite
similar to the motion that an electron would go through
if it were coupled to another particle with a'.harmonic
oscillator coupling. If this ficticious other particle has
mass 3E and the spring constant is k, then the Hamil-
tonian for this analog system is


