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High-Frequency Conductivity of Quantum Plasma in a Magnetic Field
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The problem of the electromagnetic absorption coeKcient in a quantum plasma in the presence of a uni-
form magnetic field is investigated by a kinetic description. The finite duration of encounters is taken into
account in a self-consistent fashion which includes collective sects properly. This treatment is the quantum
extension of an earlier classical study. The application of this theory to heavily doped semiconductors is
suggested.

I. INTRODUCTION nomena (just as the classical analog of the present
treatment is not restricted by the Bogoliubov as-
sumption' of the existence of two time scales).

We obtain a simple statement of the conductivity
which reduces in the classical limit to that of reference 6.
The results, however, are not valid in the vicinity of the
gyrofrequency for the same reasons as those in the
classical case. It is likely that our result could find
application in the study of the impurity contributions to
the absorption of electromagnetic waves (opttcal prop-
erties) in heavily doped semiconductors. '

~ 'HE absorption of long-wavelength electromagnetic
waves in classical plasmas, which properly takes

into account collective eRects, has been treated in an
elementary model by Dawson and Oberman. '' The
results of this model are in accord with those of Ober-
man, Ron, and Dawson, ' who have given a complete
classical treatment, using the Bogoliubov, Born, Green,
Kirkwood, and Yvon (BBKGY) hierarchy in the
plasma limit. Both the extension of the elementary
model of Dawson and Oberman' to a quantum plasma
and generalization of reference 3 via Green's function
techniques has been given by Ron and Tzoar. 4' The
eRect of the presence of a constant magnetic field on the
complete classical treatment of reference 3 has been
studied by Oberman and Shure. '

The purpose of the present work is to adapt the
elementary model to include the eRect of a uniform
magnetic field in the quantum situation. The frequency
(high) and wavelength (long) restrictions, as well as the
meaning of the plasma expansion parameter, are dis-
cussed in the previous papers.

It is to be pointed out that the present treatment does
not carry the usual time-scale restrictions inherent in
the trattsition probability approach' to transport phe-
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II. PLASMA MODEL AND CONDUCTIVITY

The most complete analog to the classical case as
given by Dawson and Oberman' is found by using the
Wigner distribution function —mixed representation for
the density matrix —in coordinate-momentum phase
space.""We describe the electron dynamics by the
self-consistent set of equations for the distribution
function, regarding the ions as a set of randomly distrib-
uted Axed scatterers. Thus, the electrons are treated
quantum mechanically as an electron gas. In addition to
the self-consistent field there is present'a prevailing
spatially uniform electric field E oscillating in time at
the frequency co, and a static magnetic field B. We
restrict ourselves to frequencies much greater than the
collision frequency 27r/r, where r is the mean free time
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(To verify that this expansion leads to correct results
for all k of interest, see reference 1, Appendix A.) With
this linearization we can decompose the solutions of
Eqs. (17) and (18) into two parts corresponding to the
two-source terms on the right-hand-side of Eq. (19),
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We proceed by choosing a cylindrical coordinate
system, with polar axis along B, in terms of which the
rectangular components of k, q, and s are

k= (ki cosn, k, sina, kt t),
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e= (e, cosa, p, sing, p„),

and for the dynamic part
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where D(k,cp), the dielectric function in a magnetic field,
is

where the angles are measured from some direction, the
x axis, in a plane perpendicular to B.We now introduce
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Following Oberman and Dawson' we obtain the aver-
age field on the ions due to the electrons
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where a= q&c/eB, and t—he j„are llessel functions of
the first kind. If we apply this transformation to Eqs.
(13) and (14) we obtain
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where ( ) stands for the ensemble average over ion
positions. Under the assumption that the impurity ions
are randomly distributed (see reference 2 for an ele-
mentary treatment in case the correlation between im-

purity ions is significant), the ensemble average over ion
positions is just unity.

From the equation of motion for the electrons, now in
the ion rest frame, we And

and
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Since the conductivity is defined by the limit s —+ 0,
we shall expand the second term on the right-hand side
of Eq. (18)

Q;exp[tk (r~+(e '"')]=+-t,'k"(1+ik (e '"') (19)

j+(~)=~+(~)&+

jtt(tt&)= trtt(ttt)Et
(26)

where j is the average current density, and where we
have employed the fact that the force on the ions due to
the electrons is the negative of the force on the electrons
due to the ions, and that this force is invariant under the
frame transformation. H we utilize right- and left-
polarized components of EJ B we find, with j+——j,
~i j„,etc. ,
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the dominant reactive conductivity of the free electrons,
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Equations (27) and (28) constitute our general result
for the conductivity tensor of the system in the presence
of a uniform magnetic field. The absorption coefficients
of the electromagnetic waves in the system is simply
related to this tensor (see Dawson and Oberman' for
discussion of this point). It is easy to show tha, t Eqs.

the plasma frequency. The functions Ir((o) and Is((o) are
defined by

(27) and (28) reduce to the results of reference 6 in the
classical limit and to the results of references 4 and 5 in
the case 8=0.

III. CONCLUSIONS

By means of an elementary model we have computed
the high-frequency" conductivity (and hence the ab-
sorption coefficient of electromagnetic waves) of a
quantum plasma embedded in a uniform magnetic field.
Our treatment which stems from a proper time-de-
pendent kinetic description does not have the time-scale
restriction of the usual transition-probability approach,
and does give a proper description of the time-dependent
collective response (e.g. , dynamic shielding of the ions,
etc.). The present theory is not valid in the immediate
vicinity of the gyrofrequency, but other more usual
kinetic-type approaches are then applicable. The sepa-
rate treatment of this frequency region, as well as
numerical plots, are the subject of a future com-
munication. For a critical discussion of the physical
ingredients of this model, the reader is urged to read
Sec. VI of Dawson and Oberman. '
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'k Pote added irk proof The result. s for the conductivity perpen-
dicular to the 6eld are actually valid for low frequencies, —+0, since
high-frequency means with respect to the motion in the rest frame
of the electrons.


