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TAnLE VI. Dipole sums 8(y,k,k') for the sincblende structure where e(y,k,k') =C(y,k,k')/)sass /el=4syy/I yl' —s()(y&k,k').

0.0 {r) 4.189
0.2 4.006
0.4 3.517
0.6 2.893
0.8 2.370
1.0 (X) 2.166

4.189 0.0
3.979 3.123
3.374 6.022
2.444 8.424
1.281 10.046
0.0 10.624

Along A (y,y,y), C(y,k,k'} has the forms:

0 A A 0 8+iC 8+iC
k=k', A 0 A; krak', 8+iC 0 8+iC

A A 0 8+iC 8+iC 0

0.0 (r) 4.189
0.1 4.131
0.2 3.986
0.3 3.812
0.4 3.668
0.5 (I.} 3.615

4.189 0.0
4.266 —1.547
4.471 —2.920
4.706 —4.011
4.928 —4.657
4.948 —4.948

Along 5 (y,0,0), C(y, k,k') has the forms:

2A 0 0 28 0 0
k=k', 0 —A 0 krak' 0 —8 —iC

0 0 —A 0 —iC —8

2ya A 8 C

Along Z {y,y,0), p(y, k,k') has the forms:

A 8 0 l C D iE
EA 0 ~;krak', ~D C iE
0 0 —2A j (iE iE —2Cj

2ya A 8 C D E

0.0 (r) 2.095 6.283 2.095 6.283 0.0
0.1 2.048
0.25 1.780 5.874 1.770 6.769 —3.668
0.4 1.224
0.5 0.669 4.262 1.018 8.117 —5.694
0.6 —0.015
0.75 (E) —1.132 1.546 0.173 9.683 —4.524

Along Z {1/2a,y,y), |'(y,k,k') has the forms:

—2A 0 0 /2ic E E—)—
0 A a; krak',

~

—E —sC —sD~
0 8 A ( E iD ——iC�-

j2� A 8 C D E

0.25 (E'} —1.132 1.546 0.1?3 9.683 —4.524
0.125 -1.878 0.430 0.078 10.389 —2.544
0.0 (X) —2.167 0.0 0.0 10.624 0.0

Along Z (1/2a, y,0), C(y,k,k'} has the forms:

A 0 0 0 C 0
k=k', 0 —A —8 0 krak', C 0 —iD

0 0 8 0 —iD 0

2ya A 8 C D

0.0 (X) 4.333 —2.166 0.0 10.624
0.25 3.224 —1.355 4.808 10.138
0.5 (W} 0.788 0.788 8.364 8.364

Ke 6nd that our numbers are accurate to about +0.002 near y=0. The accuracy improves by a factor of ten
as we approach the zone boundary.
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The problem of the prediction of the effective electric or thermal conductivity of a polycrystal in terms
of the conductivities of the constituting single crystals is treated by a variational method. It is assumed that
the crystals are all of the same kind and randomly oriented. Consequently, the polycrystal is assumed to be
homogeneous and isotropic in the large. However, no assumptions about the shape of the crystals have to be
introduced.

Lower and upper bounds for the effective conductivity are derived on the basis of a new variational
formulation of the conductivity problem in anisotropic and nonhomogeneous media. For reasons of mathe-
matical analogy the results are also valid for the effective dielectric constant and magnetic permeability of
polycrystals. The bounds obtained are close when the anisotropy of the single crystals is not too large.

I. INTRODUCTION

'HE present paper is concerned with the problem
of the determination of the gross isotropic con-

ductivity cr of a polycrystal in terms of the principal
*Qn leave of absence from the Weizmann Institute of Science,

Rehovoth, IsraeL

conductivities o.r &0 2 (o.3, of the constituting anisotropic
crystals. ' This problem may be considered as one of the
determination of effective properties of a heterogeneous

' For reference to previous work on this subject, see J.K.Alstad,
R. V. Colvin, and S.Legvold, Phys. Rev. 123, 418 (1961).Volume
and page in reference 2 should read A138, 348 (1932}.
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material, since a polycrystal can be regarded as a
material that consists of an infinite number of ani-
sotropic phases.

A widely studied problem in heterogeneous material
behavior is that of the conductivity of two-phase ma-
terials. ' This has been treated by the authors by a,

variational method which has proved to be quite
powerful. 3 The present problem will be analyzed by an
extension of this method. For this purpose, the previous
variational theorems, which have been formulated' for
isotropic materials only, have to be extended to cover
anisotropic materials as well. This will be done in
Part II. In Part III, upper and lower bounds for o, in
terms of 0~, 0-2, and 0.3, will be derived using the varia-
tional principles given in II. The results will be dis-
cussed in Part IV.

II. VARIATIONAL PRINCIPLES

(2.7)

(2.8)

Then the volume integral is

where

(k,,C C; 2C;—E,o C;E—)d V, (2.9a)

Oo+ og ody (2.9b)

subject to the subsidiary condition

Op dlvK +dlvC=0,

and the boundary condition

(2.10)

E'= E—Eo,

and the second rank tensor k;; by

k,,((r„—(rp5„)= f'(;,

Let J and E denote' the current density and electric
field intensity vectors, respectively, obeying is stationary' for

(2.11)

div J=O (2.1a) C;= (0;, (rp8;, )E—, (2.12)

curlE =0,

where the last equation may also be written as

(2 lb) It should be noted that because of (2.5), (2.12) is

equivalent to

E= —grad&. (2.1c)

Consider a homogeneous body of volume V and surface
5, of isotropic material of conductivity 0.o. Let the cur-
rent density and electric field vectors in this body, for
prescribed surface potential

4 =P(5'), (2.2)

be denoted by J' and E', respectively. These vectors
must satisfy relations (2.1a) and (2.1b) and also
Ohm's law,

Jo g. Fo

oo «oi, (2.13a)

and an absolute minimum when

which is the relation between the current density and
electric field intensity vectors for the anisotropic and
nonhomogeneous medium, and is thus a result of the
variational principle. Thus, the variational principle is
equivalent to a formulation of the conduction boundary
value problem, with prescribed surface potential, for
such media.

The stationary value V z' of Uz is an absolute maxi-
mum when

Equation (2.3) may also be written in indicial notation
as follows:

&o+ &3. (2.13b)

J;o= cr p8;,E,o. (2.4)

Define also
C= J—aoK. (2.5)

(2.6)

2 See, for example, G. A. Reynolds and G. M. Hough, Proc.
Phys. Soc. (I.ondon) 870, 769 (1957).

3 Z. Hashin and S. Shtrikrnan, J. Franklin Inst. 271, 423 (1961).'In the following, vector notation will be used wherever
possible. In other cases, indicial notation will be used.

Here the range of the subscripts is 1, 2, 3; a repeated
subscript denotes summation and 8;; is the Kronecker
delta.

Let the body now be changed to a material of ani-
sotropic and space variable conductivity 0;, without,
however, changing the surface potential P(5).

Let the current polarization vector C be defined by

and v.hen (2.13b) holds,

Uc& Uc'. (2.13d)

To prove these theorems the variation hU~ of Ug with
respect to a variation bC of C is computed. The variation
of U~ is composedof only first-and second-order terms in
C, which will be treated separately in the following, i.e.,

~U, =~U,+~&U,. (2.14)

'Here Uc is computed using any C and E' satisfying (2.10)
and (2.11) but not (2.12).

Here 0 i and 03 are the smallest and the largest principal
values, respectively, of the a;;. It follows that when

(2.13a,) holds, then, in general,

(2.13c)
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From (2.9) one finds ing result, which can be proved, using (2.17) and (2.23),
will be needed:

L2( k,,C—,+E;o+E,')bC,
(bC bC)dv=—Ei bCi+bEi Cited V. (2.15) &yi (V)

(iroobE' bE'+bT bT)dV. (2.25)

The expression in the parentheses multiplying bC, Using (2.25) in (2.22) it is found that
vanishes when (2.12) holds, as can be seen from sub-
stitution of (2.7) and (2.8) into (2.15). Expression
(2.15). then reduces to

+ao 'bTbT~]dV, (2.26)

( EbC—;+bE C;)dV. (2 16) so that

b Uc)0 for —(k;,+irp 'b, ,) positive definite. (2.27)
Putting

( EbT,+—T;bE )dV.

Taking account of (2.10) in (2.17) it is found that

T= rpK'+ C, (2.17) Transforming k;, to its diagonal form, using (2.8) and
remembering that bUc= 0, (2.14b) is obtained as mini-

and substituting for C and bC into (2.16) from (2.17),
the following result is obtained: The variational principles formulated above apply in

the case when the surface potential is prescribed. Two

6Ug —— (2 18) analogous principles hold for a prescribed normal com-
ponent J (5) of J on the surface of the body.

To formulate these, define the electric field polariza-
tion F by

div T=0.

Using the divergence theorem and (2.19), (2.18) reduces
to

where

Also define

F= K—ppJ

po= 1l&o.

(P'b T—Tbf')dS, (2.20)
fik(pki pobkj) bij)

ps' I ~
=~i~.which vanishes because of (2.11). This proves the

Then the integral
extremum condition.

Consider now the second-order term 8'Ut.- in hU~,

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

O'Ue= ( k;,bC,bC, +bC—,bE,')dV. (2.21)

(poJioJio f;;F,F+'2F;—Jio+Fg )dV, (2.33)

subject to the subsidiary condition

Using (2.17), (2.21) assumes the form pp curl J+curlF=O

and the boundary condition

(2.34)

( k;,bCbC, irpbE—bE,')dV —(2.22).
Here use was made of the relation

is stationary for
J„'(5)=0,

F*= (pv p&v)J~—
(2.35)

(2.36)

bT bK'dV=O,
Because of (2.28), (2.36) is equivalent to

2.23
~'= pvj~

the proof of which is analogous to that of the vanishing
of (2.18).

Since o p is positive, it follows from (2.22) that

b'Uc (0 for k,, positive definite. (2.24)

Transforming the k;, to diagonal form, using (2.8), and
remembering that b Up= 0, (2.13a) is obtained as maxi-
mum condition.

To prove the minimum condition (2.13b), the follow-

which is the relation between electric field intensity and
current density for the nonhomogeneous and anisotropic
medium. (Compare with analogous result for the pre-
vious variational formulation, above).

Also

Uy is an absolute maximum for pp(pk, (2.37a)

U& is an absolute minimum for po) pp, (2.37b)

where inequalities analogous to (2.13c) and (2.13d)
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follow. The proof of the last two principles is analogous
to that of the first two.

Lastly, it should be noted that the stationary value
of U~ is equal to the total power dissipated in V.

To show this, (2.12) is introduced into (2.9), taking
into account (2.5), (2.7), and (2.8), to obtain

by 0, only. As a result of this choice, the integration
with respect to V can be replaced, in the first three terms
of (2.9) by integration with respect to Q, i.e.,

[ooE;oE,o—k;,C;(Q)C;(Q)+2C;(Q)E;ojdQ

(Ko.J E .Jo)d V (2.38)

1
+— C,E dV. (3.3)

The relation Here and in the following it is assumed that 0 is nor-
malized so that

E'. Jod V= K' Jdv=o (2.39) dQ= 1. (3.4)

is easily derived [compare proof that (2.18) vanishes]. U'sing a technique due to NeeP to calculate magneto-
Introducing (2.7) and (2.39) into (2.38), one obtains static energies in porous media, which has been de-

scribed in detail elsewhere, "the last term in (3.3) can

Ug' —— E JdV. be transformed into

1

By an analogous procedure it is found that the same
(~)

holds for Up'.

III. THE EFFECTIVE CONDUCTIVITY
OF A POLYCRYSTAL

1
C. E d V= —— C'(Q)dQ

30'o (g)

1+-
3fTo- (n)

C(Q)dQ . (3.5)

Consider a polycrystalline body of volume V and
surface S. The polycrystal is assumed to be quasi-
homogeneous and quasi-isotropic. This is a valid
assumption when the crystal sizes are very small com-
pared to the body and the directions of the crystallo-
graphic axes in the different crystals are completely
uncorrelated. Also, it is assumed that there are no size
eGects and that grain boundaries have no surface
resistance.

The eGective conductivity 0 of the polycrystal is now
de6ned as follows. Apply a potential P(S), which is
associated with a homogeneous field K', to the surface
of the polycrystalline body, and calculate the power U
dissipated. Then 0. is given by'

C, (Q)dQ. (3.7)

Solving for C; in (3.6) and integrating with respect to
0, one finds

C,= (3ooE;o+C,)Q;, (3.8)

In order to approach the actual value of U as closely
as possible, with the present choice of the polarization
6eld, (3.3) subject to (3.5) is maximized, with respect
to C(Q), when (2.13a) applies, and minimized with re-
spect to C(Q), when (2.13b) applies, yielding

C;(3o pk,~+8;,) =3ooEP+C, .

Here C; is the average of C;, i.e.,

o = U/VK". (3.1) Here

To calculate 0 accurately one would have to solve
(2.1) subject to the boundary conditions on P for

(3.2) I „(3oy„+S„)=S;,,

(3 9a)

(3.9b)
where the 0.;,, referred to a coordinate system common
to all the crystals, change erratically in space. This is
certainly not easy to carry out, if at all possible.

A simpler approach, which will be followed here, con-
sists of the establishment of bounds for a. This can be
done by aid of the variational theorems given in Part II.
For this purpose, a trial polarization C has to be intro-
duced into (2.9). The C chosen here will be a function
of the orientation of the crystal, denoted symbolically

' Note that, as follows from reference 7, this is also equivalent
to deGning cr as the ratio of the average current density to the
average Geld intensity.

from which it follows that

(3.10)

Equating the traces of (3.9) and (3.10) it is found that

Q(oo)=s 2
tTs+2&o

(3.11)

' L. Noel, J. Phys. Radium 9, 184 (1948}.
Z. Hashin and S. Shtrikman, J. Mech. Phys. Solids (to be

published). For treatment of the problem of elastic behavior of
polycrystals, see: J. Mech. Phys. Solids, 10, 335, 343 (1962).

9 Z. Hashin and S. Shtrikman, J. Appl. Phys. 33, 3125 (1962).
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The average polarization can now be determined from
(3.8), (3.10), and (3.11), and is found to be

TABLE I. Calculated and measured resistivities (in 10 0 cm)
of yttrium, at 300'K, arith residual subtracted.

Q(«)
C;(«)=3o3 Q.O

(«)
(3.12)

60.0 59.5 59.6 59.3 54.5; 55.5 52.8 55.2

Sample Sample Sample
Y-I Y-II Y-III Eq. (4.1) Eq. (3.16) Eq. (42) Eq. (3}'

It follows from (2.13), (2.40), and (3.1) that 1r can be
estimated from

a) U,/VE33 for o o &1r1,

0 &U /VE" for 03)a3.
(3.13)

Substituting (3.3) in (3.13), using (3.5), (3.6), and

(3.12), and integrating, one finds

1+2Q(«)
0 )Of) for 00(01,

1— (op)

1+2Q(np)
0' 40'0 fOr pro& 0 3.

1— (03)

(3.14)

To obtain the best bounds for ~ from (3.14), note that
the right-hand side of (3.14) is a monotonously in-

creasing function of 0.0. Therefore, the best bounds for
0. are obtained by substituting 01 and 0 3 for 0 0 obtaining

1+2Q(a 3) 1+2Q(0 1)
0'3 P 0'Q 0'1

1—Q(~3) 1—Q(~1)

which can also, by use of (3.11), be written in the form

40'3 +80 30'2+ 80'10'3+ 70'20'1

&60S'+5~302+5~1~3+02~1

4&1 +g&1«+g&1&3+7«&3
6O'P 0'1 (3.16)

~~01 +5&102+501&3+&203

Here 03&0-2&cT1 are the principal conductivities of the
crystal considered.

IV. DISCUSSION

The most widely used formulas for the conductivity
of polycrystals are the average expressions

0'= 3 (&11+tl3+03), '

1/(r = x3 (1/0 1+1/11,+1/(r3).

Substituting o 3——0 and 03——~ in (3.14) one finds"

(4.1)

(4 2)

&0&
1/0 1+1/0 3+1/0 3

0 1+02+0 3

(4 3)

"It is interesting to note here, that in the special cases 00-+ 0
and cr0 —+ ~, the variational theorems given in Part IX also simplify
considerably. See also references 8 and 9.

a See reference 1.

which shows that (4.1) and (4.2) are actually upper and
lower bounds for 0. Since the right-hand side of (3.14)
increases monotonously with 0.0, the bounds given by
(3.16) are more restrictive and, therefore, superior to
those given by (4.3). This also shows that (4.1) and

(4.2) cannot be correct.
A question that arises is the following: Is the effective

conductivity uniquely determined for the model of the
polycrystal described above' In the case of a two-phase
material it was shown' "that the effective conductivity
is not uniquely determined in terms of volume fractions
and phase conductivities. Whether or not a similar
situation arises here is not known at present. The
present treatment avoids the problem of the existence
of a unique solution by establishing bounds for the
effective conductivity of the polycrystal. In the deriva-
tion of the various formulas given in reference 1, the
problem is not mentioned. Unique results are found by
introducing additional arbitrary restrictions which are
not consistent with the actual conditions in the poly-
crystal. Thus, for example, (4.1) and (4.2) are derived
assuming that E and J, respectively, are uniform in the
material, which certainly is not true. It is, on the other
hand, assumed in Bruggeman's" approach that the
crystals can be considered as spheres in an isotropic
environment. This is certainly a good approximation,
but not an exact treatment.

It is of interest to compare the present and previously
found theoretical results with experimental values.
However, here one encounters the difhculty that in most
crystals 01 o2~~3 for which case all the different
formulas give practically indistinguishable results. The
case of yttrium is, as shown in Table I, somewhat
different.

In this example, the resistivity is significantly larger
than the upper limit derived here. Further experimental
studies will be needed in order to 6nd the cause of this
discrepancy.

Lastly, it should be pointed out that the problem of
the conductivity of polycrystals which has been studied
here is mathematically analogous to the problem of the
dielectric constant, heat conductivity, and magnetic
permeability of polycrystals.

The results found here thus apply directly to these
cases.

"%.F. Brown, Jr., J. Chem. Phys. 23, 1514 (1955).~ D. A. Bruggeman, Ann. Physik 25, 645 (1936).


