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Dispersion Relation for the Regge Parameters
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The Regge parameters n(s) and P(s) of trajectories which cross one another at some point so are proved
to form diGerent branches of an analytic function with the branch point at s0. A new set of Regge parameters
are found which are regular in the neighborhood of s0. Dispersion relations written for these parameters thus
take a simple form and should be the ones to use for the dynamical determination of the Regge parameters.

In the example of nonrelativistic scattering by a superposition of Yukawa potentials, crossing of trajec-
tories is shown to happen for an infinite number of Regge trajectories. We also give a method to obtain the
asymptotic series of n(s) and P(s) for large s, in the nonrelativistic case, and from this we show that in the
potential

o(t ') ~A
2 r

all u(s) and P(s)e '~ &'& are real analytic functions of s.

L CROSSING OF TRAJECTORIES

'HERE has been the hope' that dispersion relations
satisfied by the Regge parameters u(s) and p(s)

together with the unitarity conditions, may help to
determine these parameters in a dynamical way. This
approach faces, however, the difhculty that when Regge
trajectories accidentally cross, extra branch cuts for
u(s) and P(s) may arise. Since there is no way to deter-
mine where the crossings occur without actually know-

ing all u(s) themselves, the feasibility of this method
was controversial.

It is the purpose of this paper to point out that a new
set of Regge parameters, all of them algebraic functions
of u(s) and p(s), can be introduced which do not have
branch cuts arising from crossing of trajectories. Dis-
persion relations satisfied by these parameters shouM
therefore be used for dynamical calculation, instead of
those satisfied by u(s) and P(s), which can be used only
when the eBect of crossing is neglected.

We first note that the u(s) are the roots of the analytic
function I/A(l, s), where A(l, s) is the partial wave
amplitude with s the c.m. energy squared in the rela-
tivistic case, and the laboratory energy in the nonrela-
tivistic case. Writing D(l,s) = I/A (l,s), we find

if 4t=0 and cWO, then we have from (2)

thus, there are two Regge trajectories which cross at so
and both of them have so as a branch point. It should be
noticed that if b=O, u(s) need not have a branch point
at so. Crossing of trajectories does not always give rise
to a branch point for the Regge parameters u(s) and P(s).

Consider now two trajectories ui(s) and us(s) crossing
at se, which is a branch point for the functions ui(s) and
us(s). Then we can write

ui(s) = (s—se) ' 'fi(s)+ fs(s),

us(s) = —(s—ssi"'ft(s)+fs(s),

where, fi(s) and fs(s) are both regular in the neighbor-
hood of ss. Thus, both of the functions ut(s)+us(s) and
ut(s)us(s) are regular in the neighborhood of ss. Dis-
persion relations written for these two functions do not
have to take account of the branch cut arising from
crossing of Regge trajectories. One may also note that
in the complex plane 44, I= (s—so)"', ui(N) and us(N)
are both regular in the neighborhood of the origin, and
satisfy the relation

D(u(s), s) =0.
ut(tt) =us( —I). (6)

If D(l,s) is regular in the neighborhood of (ue, ss), and
D(up, ss) =0 then we can expand (I) in a Taylor series in
this neighborhood, obtaining

ttLu(s) up)+ b(s—ss)+cpu(s) —uo]'

+d(s —ss)s+e(s —ss)[u(s) —ue]+ =0, (2)

where a= rlD(l, s)/rll, b =8D(l,s)/Bs, evaluated at (up, so).
If aQO, we have from (2)

(s) = —(&/tt)(s —so)+ '

The fermion Regge trajectories can also be discussed
from this view point. ~

Assuming that u, (s) and us(s) are real analytic func-
tions of s, which we shall shortly see to be true for all
trajectories in nonrelativistic scattering by a super-
position of Yukawa potentials, then if ui(s) and us(s)
cross at ss they also cross at so*. In analogy to (5) we
can again write in the neighborhood of so*,

u, (s) = (s so*)' f,(s)+—f,(s),

(s)= (s so*)"'f(s)+f-(s)-

and u(s) is analytic in the neighborhood. of ss. However, where fs(s) and f4(s) are both regular in the neighbor-
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hood of sp~. From (7) we get

f ()=lL ()+ ())=f (),
nl(S) n2($) ( S—Sp )f ($) = =

I I f (s).
2(s—sp*)"' is—sp*j

This result can also be obtained by arguing that since
A (l,s) does not have a branch cut there, the two sets of
Regge poles on the two sides of this branch cut are the

(8) same. Similarly
b, (s+P) =b2($—P),

b, (s+P) =E)1(s—P).

If so/sp*, combining (6), (7), and (8) gives

(s)= ((s—$o)($—$o*)"'g($)+f ( ),
(9)

n2(s) =
I (s so)($ $o—) )"'g(s)+f2($)

where g(s) and f2(s) are both regular in the neighbor-
hoods of sp and sp*. The crossing of nl(s) and n2(s) at sp

and so* thus produces a branch cut from so to so*, if so is
complex, and from so to oo if sp is real, for both nl(s) and
n2(s) Th.e function Lnl(s) —n2(s))/L(s —sp)(s —sp*))'/' is
also regular in the neighborhood of both so and so*. If
nl(s) and n2(s) do not cross with other trajectories and
if so is known, dispersion relations written for this
function also take a simple form.

Let us write

A(l, s) =El(l,s)/D —nl(s)))l —n2(s)), (10)

then Nl(l, s) is regular in the neighborhood of (no, sp) and
(np*,sp*). We have, as before,

bl(s) =E,(nl(s), s)
= $(s—s )(s—so*))'/'h, (s)+h (s), (11)

b2(s) =Zi(np(s), s)
=—$(s—so)(s—sp*))' 'hl(s)+h2(s),

with |21(s) and h2(s) both regular in the neighborhood of
Sp and so . The functions bl(s)+b2(s) and bl(s)b2(s) are
thus regular in the neighborhoods of so and so*. The
residue of A(l, s) at nl(s) which we shall call rl(s), can
be obtained from (9), (10), and (11) as

h2(s) 1 hl(s)
Ty s +—,(12)

2E(s—»)($—»*))"' C(s) 2 g($)

and, similarly,

If three Regge trajectories n, (s), n2(s), and np(s) cross
at so, several possibilities arise. (i) All three functions
are regular at sp, (ii) One of the functions is regular at
so, and the other two have sp as a branch point (this case
is the same as the one already treated). (iii) All three
functions have so as a branch point. In the last case, we
shall have

cl] s & =cx2$ E~

n2(s+ p) =n, (s p), —
A3 S 6 =(X' S

(16)

When S iS at the branCh Cut. ThuS, nl(S), n2(S), np(S)
form three branches of an analytic function with the
branch point at so. In general, if e Regge trajectories
cross at so and so~, and form e branches of an analytic
function, it can be shown that we may write

()=F ()+( —o)""( —o*)'" "'"F()+".
+(S S ) (n—1)/n($ S 4) 1/nP (S)

n (s) =F (s)+e'n'/"(s —so)'/"(s —s *)("—')/"F (s)+
+ «( —)/ ( )( —»/ ( @) /np„( )

~ ~ ~

n (S)=F (S)+e2ni/n(n 1)($ So)
1/n—

X($ $ 8)(n 1)/nP (S—)+.. .
+e2«[(n »/n](n ——l)($ S )(n—1)/n($ S 4)llnP (S)

(17)

In (17) the functions Fl(s), F2(s), ~ ~ F„(s) are regular
in the neighborhoods of sp and sp*. We see from (17)
that a branch out from so and so* exists for each of the
functions n, (s), n, (s), .n„(s).

The functions Fl(s), F2(s), F (s) can be easily
expressed in terms of the 0. functions. We have

Pl($) —(S Sp) (1 »/n($ S +—
)

—(n 1+1)/n— —

r2(s) =— h2(s) hl(s)
+ (13)

2L($—$o)($—$o*))"' g( ) a(s)

A similar expression holds for P(s), which is equal to
—2rL2n(s)+1)r(s). We note from (12) and (13) that
both rl(s) and r2(s) are infinite at sp and sp*, and for this
reason it is more convenient to discuss the quantities
bl(s) and b2(s). It should be remembered that in (9),
(11), (12), and (13), the factor L(s—sp)(s —sp*))"' is
replaced by (s—sp)'/' if sp is real.

We also see from (9) that on the two sides of the
branch cut from so to so*

n, (s+ p) =n2(s —p),

n2(S+ p) =nl($ E).

n

F (t) =- 2 ($).

Similar expressions for the P function can be obtained in
the same way and will be omitted.

The prescription for finding a set of Regge parameters
which are real analytic functions of s without irregular
branch cuts can now be stated. Suppose there are alto-
gether 2/2 Regge poles in the amplitude A(t, t), and for
simplicity of argument we assume 2/2 6nite (in practice
we are only able to take care of a finite number of
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The Regge pole trajectories are determined by the
vanishing of the denominator in (27). Thus,

D(~,s) =1+
2 cosnm

-
~
—iam ( +2~

d~' (~') 2 Q-I 1+—
I

k & 2s)

" cos(2m+1) 22dp

(ip2+S COS2p)I/2
=0. (28)

For very large k, the second term in (28) is small com-
pared to 1 unless 0. is near —1, —2, , —n, where

Q haS a pOle. LAt n=(22+22), althOugh COSnir=0,

ze' ( p)
Q-l 1+—I+

2si

" cos(2n+1) q d p

2 (—ii2+S COS2y) ~2

also turns out to vanish. $ Thus, the Regge poles approach—1, —2, ~ ~ —n st large s. After some algebra we find

g2 g4

n„(s)= n 1——+——in'+
2g 4q'

g X g g
p„(s)= 222+ 2+ -(2—g+ 1)—1ng+

2g'- 2n

where

(29)

6(y2)dp2 and q= ik—

The first two terms of n„(s) and the first term of P„(s)
agree with the behavior of n„(s) and p„(s) in a Coulomb
potential, as was concluded earlier. ' Higher order terms
for n(s) and P(s) at high energy can be obtained by
taking into account the second and even higher order
Born approximation.

3 H. Cheng, Phys. Rev. 127, 647 (1962).

Several interesting properties of Regge poles can now
be obtained. First, since there is an infinite number of
Regge poles approaching the point /= ——, in complex-
conjugate pairs, at negative energy, 4 each pair would
remain complex-conjugate to each other at all negative
energies, until they cross. Therefore, if this pair of
trajectories does not cross, they would both ap-
proach the point —n at high, negative energy in
complex-conjugate pairs. However, it can be seen that

aD(n, s)/Bnx0

at large s, hence there is only one pole approaching each
—n. Thus each member of the complex-conjugate pairs
of trajectories cross its complex-conjugate partner at
some negative energy. The Regge poles in the left-hand
plane thus behave in the following way: each of them
comes out from a point —n at infinite energy, and stays
on the real axis, as can be seen from (29), until it crosses
with another trajectory. Then both of them may leave
the real axis and become complex-conjugate pairs at
negative energy. Alla(s) and P(s)e ' i*i are, therefore,
real analytic functions of s.

Finally, we mention that in the nonrelativistic case,
the Regge trajectories do not cross in the right-hand
plane Rel& —

~ when the energy is negative. To see this
we observe that if two Regge poles cross at (n2, s2), s2(0,
then both P and BP/81 vanish exponentially for larger r
at this point. Differentiating (24) with respect to l,
multiplying it by f and integrating from 0 to ~ will

give us the desired result.
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