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(1) We have shown in various examples the existence
of multiple poles in the scattering amplitude, the pos-
sibility of which has frequently been ignored.

(2) It has been suggested that the singularities of
n (v) which occur off the positive real axis might be
absent in a true Geld theory because of their connection
with the fall into the center. ' However, the scalar
coupling theory considered here has displayed such
singularities in spite of the fact that it has no possibility
of collapse for physical l. The occurrence of these addi-
tional branch cuts in a complete theory cannot be ex-
cluded, and it would be almost remarkable if the con-
sideration of recoil could completely eliminate them.

(3) We have noted that the trajectories associated
with the models considered in this paper display marked
differences in their qualitative behavior and analytic
properties. All of these display analytic properties in
conQict with those which have been expected to occur
in a real held theory. Xt might well be anticipated, there-
fore, that the problem of analytic continuation in the
complex angular momentum plane is not independent
of the nature of the coupling.
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The singularity introduced artificially into the equations of the new strip approximation, in order to
bridge the gap between low and high energies, is investigated in detail. By explicit construction, it is shown
that a necessary and sutlicient condition for a (unique) solution of the pi/D equations to exist is that the
unitarity constraint on the cross section just above the strip boundary should be obeyed. The only singu-
larities of the solution in the right-half angular momentum plane (ReJ &0) are Regge poles.

I. INTRODUCTION

A SET of approximate dynamical equations based
on the strip concept has recently been proposed

for determining the self-consistent strong-interaction
5 matrix with Regge asymptotic behavior. ' This paper
is concerned with the singularity at the strip boundary
introduced as a consequence of the approximation
procedure. We propose to show that in spite of its
arti6cial character this singularity plays a useful
physical role and does not prevent a numerical solution
of the equations. Xt also does not affect analyticity
properties in angular momentum. The reader is assumed
to be familiar with reference 1, whose notation is
maintained here.

The integral equation in question is (III.11) of
reference 1:

function Bg~(s) has a logarithmic branch point:

1
Bg~(s) .- —ImBgp(sg) ln(s, —s). (I 2)

Let us split off the singular part of the integral in (I.1):

Eg(s) =BgP(s)+ ds' Eg(s,s')Sg(s')
Sp

ds' k(s, s')1Vg(s'), (I.3)
8p

where
ln (sg —s') —ln (sg—s)

h (s,s') =
$ —S

Eg(s) =Bgg (s)
)tg ——pg (sg) ImBg~(sg), (I.5)

1 81

+
Sp

and where Eg(s,s') is the residual part of the kernel
obtained by comparison of Eqs. (I.1) and (I.3). In the

II dangerous region, s~ s~, s ~ s~,

The singularity arises in the kernel because at s=s& the

*Work done under auspices of U. S. Atomic Energy Com-
mission.' G. F. Chew, Phys. Rev. 129, 2363 (1963).

(sg —s ) ln(sg —s )—(sg —s) ln(sg —s)
It, (s,s') ~ (I.6)

S —S

a behavior that causes no trouble. Equation (I.3) may
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s two coupled equations,be written as foi'm

d ) . ~ ~ (s dmt)

(I.7) ( —s )"'Ng'(s) =Bt~(s)+
SO

ds' Kt(s,s')Nt(s'),

g
—— ' —— ds' k(s,s')Nt(s ),s, ' ' I.8)Nt(s) =Nto(s) — s

licitlya
' . II that (I.8) can be explici yand wes a sh ll show in Sec. II that

solved to give
S1

S1 l)t (s') —l)t (sp)-
cats

s —sSO

s ofsitions of the (real) zeros o

() pyi s
it follows t alimit as s —+si, i

Nt(s) = ds' Ot (s,s') Nto (s'), (I 9)
S0

tor depending only on X&.known ope ator epwhere Ot(s, s ls a
Equation (I.7) then become
for Nto(s):

Sg

g s — ' exp ——pt(st) —~t soDg(s) ~ ($—sl ' exp —— s —()t sp
S~SI

5—( )
—

[ [ g(t18) l +0) gt(~—o)]l~+~t) (II )$—Sy

Ngo(s) =BP(s)+

sa ' ' ale uations a linear integr q

t that t)t(sp)=tmtgr,or,
' t the convention aor, if we adoptds'Et' s,s' Nto s', I.10)

with
(II.S')

Et'(s, s') = 11 1ds" 1(.t(s,s")Ot(s",s . e 1 that elasticex lained i
db do B()fors &s&sianrit uts an upper o

is a
b ultoI 8 s . , e u

that Nt(s) shoul ave
Dg(s), i.e.,

i, ' 'll be shown tha I.10)Finally, it wi e
Fredholm equation.

II. THE 0OPERATOR Ol (s,s')

E . (I.8), we make thei attention first to Kq.Directing our a e
change of variables

(II.6)N() - (- )-"("",
S~Si

and second that
sin'8l (sl)x= 1nL(st —so)i (st—s lim ImBt(s) =

Pt (sl)

= ImBt (sl),

S~SQ
which leads to

(II.7)dx' )gl (x'), (II.2)e'"——1
Nt(x) =ego(x)+

(II.8)gt(+) (p)—
(2~ o

(II.9)ag( )(&)=
nd is hnite e pn6nity an e

. Feshbach, 3Eethods of[.Morse and H. es, ~ o ~~m7'
-Hill Book Company, n ., or(McGra~-HI

p. 990.
(II.10)ag'(&) =

sin 5t(st)=At.

ust lie betweenII.7) that Xt mustIt follows from
-Hopf fol'

0
h Foa use the standar app

ks before attackingr final remar s e o
the asymptotic be avi

is immediate y
the analysis is t e a

2 diverging moreq (

nch of formu a

there are n
l

the rst-qut- uadrant branc

e the alue of a is related

1
dx e'"*nt(x),

reference 1 the partial-wave amp i u

(II.3)

si is ic except for the cut between

dx e'" egg(x),

s) is real analytic excep etween

ld

dx e'"*go '(x)
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with the convention that e& (x)=0 for x&0. If N&(x)
0- exp (a~x) as x~ +~, then g~

&+& (k) is well defined and
holomorphic for Imk) a~, while from Eq. (II.2) we see
that g~& & (k) is holomorphic for Imk &1.An examination
of the definition of mP(x) shows that gP(k) is holo-
morphic for Imk)0 (remember that a&&1). We may
then take the Fourier tra, nsform of Eq. (II.2) anywhere
in a strip such that 0(Imk(1, Imk&u~, to obtain

for Imk&0 and a piece analytic for Imk(Imk2~.

gg'(k) 1 "+" dk' g&0(k')

p2( (k) 2vri „~;,k' ky—2( (k')

1 ~"' " dk' gP(k')
(II.19)

2mi „+p2&;, k' —k pgg(k')

where

g(&+&(k)L1—X)R(k)]+g)& &(k) =gP(k), (II.11)

00

R(k) =-
oo

2

The former we identify with the first term on the left-
hand side of Eq. (II.18), and the latter with the second
term Lremembering that if e~(x) is finite except at ~
then g~&+&(k) and g~& &(k) separately vanish as

~
k~ —+~

within the appropriate half-planes], giving

QU(k) "+" dk' gp(k')
g (+&(k)—

2mi „+;,k' k&2&(k')—

= 1/sin'(7rik). (II.12)
(II.20)

The function R (k) is holomorphic in the strip 0 & Imk & 1
and the function 1—X&R(k) is similarly holomorphic but
with a pair of zeros when sin'(~ik) =X~, that is, at

y2&(k) +ka&— dk g&0(k )
g, ~

—
& (k) = — . (II.21)

2~i „pg„;,k' —k &2)(k')
(II.13)k&( ——(i/vr) 8((sg),

k2) ——(i/m) t m
—

hg (sg)].
and Inspection of these formulas shows that our objective

has been achieved. The function g~'+' (k) is meromorphic
for Imk) 0 with a simple pole at k = k&q, while g~& ' (k) is
holomorphic for Imk - 1.

The operator 0~(x,x'), such that

(II.14)

As ) ~
—& 0 the positions of these zeros approach 0 and i,

respectively, while as X& ~ 1 they converge on the mid-

point of the strip at i/2. Since we want a solution such
that a~=8~(s&)/m. , it is permissible and desirable for
g~&+& (k) to have a, pole at k=kU but not at k=k2~. The
problem is to construct a function g~&+&(k) consistent
with Eq. (II.11) and with its uppermost singularity at
k=k~).

To achieve this end we write

e, (x) =
~&0

dx' 8( (x,x')~P (x'),

is given by

ask'z' i km
@ (k—)

(II.22)
k' —k $2( (k')

8g(x, x') =
(2m)'i

Xg y2g(k)

sin'(n-ik) yU (k)
where'

where the horizontal contour C passes above ku while C'(II.15

passes below C and also below k&&. The asymptotic
behavior of 0&(x,x') may then be inferred to be

y&((k) = $1'(—ik+ag)I'( —ik —ag)]/r'( —ik) (II.16)

is holomorphic and free from zeros for Imk &Imk~~, while

P„(k)=I'(1+ik)/I'(1+ik —a,)I'(1+ik+a, ) (II.17)

is holomorphic and free from zeros for Imk(Imk2~.
Evidently, P&t(k) has a simple zero at k=k&&, while

g&~(k) has a simple pole at k=k&~, the remaining zeros
and poles of @&& and @2& lying outside the strip
0&Imk&1. Both Pq~(k) and $2&(k) approach constants
as

~

k ~~~ within the appropriate half-planes of
analyticity. Let us divide Eq. (II.11)by &2&(k) to obtain

eg(x&x') ~ e ' '"=e"*,
x' fixed

~+ik2 )z ~ (a I—1)z'
g ~ 00

x fixed

so that
Oi(s, s') = eg(x(s), x(s'))/(s& —s'),

Og(s, s') ~ (sg—s)
—",

S ~SI
s' fixed

Changing variables back to s, s', one has

g~
"&(k) e' '(k) gP(k)

~ (k) e (k) ~ (k)
(II.18)

(sg —s')—'&.
S ~SI
s fixed

(II.23)

and then split the right-hand side into a piece analytic

3 I am indebted to J. R. Taylor for these expressions.

111. THE FREDHOLM EQUATION

It remains to be established that Eq. (I.10) is of the
Fredholm type, or speci6cally that
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0 0

dsds'i Et'(s, s') i'( ~.

The upper limit is the dangerous point, but as long as
at (s we see from Eq. (II.23) that there is no trouble.
The Fredholm form has indeed been restored.

Perhaps the most immediate subsequent question is
whether our new kernel Et'(s, s') is holomorphic in l over
the same domain as Bt~(s). This is equivalent to the
corresponding question about Ot (s,s'), which then leads
us to an examination of (II.22). Evidently, as long as
0()~(1, so that Imk2~) Imkl~, we are dealing with an
analyi. ic function of / wherever )«as given by (1.5) is
analytic. Now it will certainly happen that, for some
choices of s~ or some guesses about Regge trajectories
and residues for the crossed channels, we shall And from
the formulas of reference i that ) ~&1 or ) ~(0 for some
Re/&0. When this catastrophe occurs, however, it is a
sign either that we have made a bad guess or that the
aforementioned formulas are insufhciently accurate,
because in an exact calculation unitarity requires
0 ~&) & &~ 1.Thus, if physically reasonable solutions of the

strip equations can be found they will have the property
that the only singularities in the right half / plane are
Regge poles, arising from the zeros of Dt(s). It is
expected that BP(s) and, therefore, Xt has fixed
singularities in the left half l plane. By analogy with
potential scattering one might expect Regge trajectories
to terminate at these points, but the continuation based
on our approximate equations must fail somewhat
sooner, when ) & exceeds the unitarity bounds.

It follows, incidentally, from the manner in which our
E/D equations have been constructed that both
ReBt(s) and ImBt(s) are continuous through the point
s1. In a one-channel approximation this means that the
inelastic cross section vanishes at s= sl and rises
gradually to the correct Regge limit. If a generalization
of the equations in this paper to several two-body
channels can be made, a more realistic inelastic thresh-
old can be achieved.
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The present paper contains an extension and generalization of results in a previous paper on the basis of
the master equation for the approach to equilibrium of a system of interest. The concept of quasi-equilibrium
of the system of interest associated with a time-dependent temperature is introduced and is then applied to a
description of the processes of longitudinal and transverse relaxation in magnetic resonance and to a dis-
cussion of the law of entropy variation. Systems of interest of "size" comparable to their surroundings are
consistently included in the treatment.

L INTRODUCTION

N a previous paper' the "master" or Boltzmann "gain-
& - loss" equation was derived from the Schrodinger
equation for an isolated "supersystem" [LA+Bj com-
posed of a "system of interest" LA j in relatively weak

~ Some of this work was done while the author was a National
Science Foundation Postdoctoral Fellow at C.E.N. de Saclay,
1960-1961.

l' Part of this work was done while the authors were members of
the Physics Division of the Aspen Institute of Humanistic Studies.

$ The work of this author is supported in part by the National
Science Foundation.

s A. Sher and H. Primakoff, Phys. Rev. 119, I'F8 (1960).This
paper will be referred to as I in the present work.

interaction with a larger system called the "surround-
ings" LB).The random phase assumption was required
for the state of the supersystem (A+Bj at the irtitial
time only. The Hamiltonian K of such a supersystem is

BC—BC[+] +i%[BI +Vp

where K[&l [e& contains only PA) system dynamical vari-
ables, K[&l ['& only LB1 dynamical system variables, and
V dynamical variables of both systems. A master equa-
tion for the occupation probabilities of the system of
interest was then derived in I under the assumption that
the surroundings $Bj have a large internal energy com-


