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Regge Poles in Relativistic Wave Equations
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Solutions of the relativistic wave equation for three different coupling schemes to an external source are
examined. The Regge trajectories are observed to exhibit a high degree of model dependence and to possess
singularities which are often assumed absent in a fully relativistic theory. It is shown that these arise from
multiple poles in the scattering amplitude and can occur in theories for which no collapse into the center is
possible for physical values of the angular momentum.

I. INTRODUCTION

ECENT work of Regge and others' concerning the
analytic properties of the radial Schrodinger

equation has resulted in many attempts to determine
general properties of the so-called Regge trajectories.
In particular, it has been shown for the class of
potentials

that the Regge poles and their residues are analytic
functions in the E plane cut along the positive real axis
(if there exist no multiple poles in the scattering ampli-
tude) .Although attempts have been made at the fully rel-
ativistic problem using the Mandelstam representation
and unitarity, ' ' as of yet no rigorous correspondence to
the nonrelativistic case has been established. In view of
the limited success of the latter program, it is natural to
investigate a domain of intermediate complexity as
represented by the relativistic wave equation. In this
connection Oehme4 and Singh' have found in the
Coulomb problem that in addition to the expected right-
hand cut, there exist complex branch points which are
the result of the well-known modification of the centrif-
ugal term of the radial wave equation. While this par-
ticular case is of limited applicability in the context of
strong interactions, Oehme has observed that these com-
plex singularities arise solely as a consequence of the
behavior of the potential near the origin and are, there-
fore, expected to persist for the class of potentials (1.1)
in a relativistic wave equation. He has thus suggested
that these results might have an analog in the static
limit of a vector meson theory.

In this paper we consider three possible schemes for
the coupling of a relativistic particle to a 1/r type source.
It will be shown that for each of these, the functions
a„(v) which prescribe the location of the Regge poles

have singularities on the physical vP—= (E'—m')/m'j
sheet in addition to the expected right-hand cut. Oehme
has suggested that these branch cuts could arise from
the possibility of a "collapse into the center" and might,
therefore, be absent in a fully relativistic theory. We
demonstrate that in a scalar coupling model such branch
lines occur despite the fact that there is no collapse. ~

Their existence is seen to derive from the frequently
overlooked possibility of multiple poles in the scattering
amplitude.

II. A SCALAR COUPLING MODEL

The vector coupling model has enjoyed considerable
popularity as a consequence of its application to electro-
dynamics. Another coupling scheme which is even
simpler in structure, however, is the scalar model which
also admits a solution for the 1/r type source. It is
described by the Lagrangian

dx (P"*8„$ ,'Pm+—ex-(x) jsPQ*

+l4"*4 + ), (~ 1)

where we have used the metric (1, 1, 1, —1). In the
fixed source limit y= —e/r. The Lagrangian (2.1) leads
to the wave equation

L
—8 '+ (m —e'/r)']y(x) = 0

which is equivalent to the radial equation

m' p„' —l(l+1)+e' e'
4 (*)= + ,

—4 (*) (2 3)
28$ 2m 2'' r

Note that the Lagrangian for a classical point particle
in interaction with a scalar 6eld is

[m+ ex (x)) ( dx&dx„)'—I',
*National Science Foundation Cooperative Fellow.
'T. Regge, Nuovo Cimento 14, 951 (1959); 18, 947 (1960);

A. Bottino, A. M. Longoni, and T. Regge, ibid. 23, 954 (1962).' A. O. Barut and D. E. Zwanziger, Phys. Rev. 127, 974 (1962
s K. Bardakci, Phys. Rev. 127, 1832 (1962).
4 R. Oehme, Nuovo Cimento 25, 183 (1962).' V. Singh, Phys. Rev. 127, 632 (1962).

s R. Oehme, Phys. Rev. Letters 9, 358 (1962).
). 7 It should be emphasized at this point that throughout this

paper the term "collapse into the center" will refer to the failure
of a given Hamiltonian to possess a lower bound for physical
values of the energy and angular momentum.
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and that the corresponding Hamiltonian

H'= p'+ (m —e'/r)' (2.4)

and the corresponding S matrix, '

I'Pl+1 ie'(rrt—/2E)'ts)
8(/, E)=

rLI+1+Ses (rrt/2E)1/s]

yields for the scalar theory

I'(C (Ey sr)'+e'j'"+ rs —se'Prrt/(E' —18')'t'j}
S(/, E)=

I'(((I+-,')'+e4$ "+-'+se'frN/(E' —ttt')'"1}

/exp(ssr(/+s r—p($+r)s+e j t )}
where the physical sheet is de6ned by the condition
ImL(E' —m )'t j)0. Since I'(s+1) is meromorphic in
the finite s plane with poles at s= rt (rt=—1, 2, ~ ),
the singularities of the 5 matrix are trivially found to
occur at

gives rise to (2.2) by the usual canonical substitutions.
This shows that the replacement of m in the free Lagran-
gian by rrt+ex is indeed the simplest and most natural
definition of a scalar coupling. It is to be noted that the
Hamiltonian (2.4) is positive definite in contrast to the
corresponding expression (3.3) for the case of a vector
coupling and is, therefore, a more reasonable model of
a fully relativistic theory.

Comparison of the wave equation (2.3) with the usual
Schrodinger equation for the Coulomb Geld,

p,' l(3+1) e'
E4(*)= +,——4(~),

25$2nzr2 r

sponding to the vanishing of a„(E)+~s, real branch
points at

o = —e'/(tt —-', a e')'. (2.7)

v=+ 00~J
I 2 4-'v(n--) -g
2

-n'+—
2

fm(f+ 2)

Q2(8

a b l/=-E.

Re(f+~)

{a)

&e4-(n- ~)2
2

In contrast to the vector coupling model, the eigen-
values defined by (2.5) remain real for arbitrarily large
values of e' as a consequence of the positivity of H'.
It is therefore of interest to examine the analytic
properties of Eq. (2.6) for all real values of e. It is clear
from Eq. (2.7) that e'= rt —rs defines that critical value
of the coupling for which the left-hand branch point
of n„(E) moves to o= —~. We thus distinguish be-
tween the two domains in which e' is less than and
greater than e—~. For the former of these, Fig. 1 shows

E2—tn2

(I+L(I+s)'+e'j'" —s }'
(2 5)

I

-.n+ &
2

7/=- E
Re( t+$)

(b)
which for positive integral values of l yields the eigen- Fio. 2(a). Trajectory of a Regge pole in scalar model for
value sPectrum. The inversion of (2.S) gives the Regge e'(n —s. (b) Trajectory of a Regge pole in scalar model
trajectories: for em&n —~g.

v Plane
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C

FIG. 1. Cuts of u„(r) for scalar model.

H. Bethe and E. Salpeter, Quantum Mechanics of One and Tao
Etectroes Atoms (Academic Press Inc. , New York, 1957), p. 34.

ie'm 2 -1/2

~-(E)= —rt+s —e' —s (2 6)
(E'—tts')'t'

It follows from (2.6) that rr„(E) has in the t plane both
the expected cut on the positive real axis and, corre-

the cuts of n (t) in the complex t plane. For e' approach-
ing the critical value of e—

~ the left-hand branch point
moves to v= —~ and emerges on the unphysical sheet.
Further increase in the value of e' has no effect on the
branch cuts on the physical sheet. In Fig. 2 (a) is shown
the Regge trajectory as dehned by the contour C of
Fig. 1. Finally, Fig. 2(b) indicates the corresponding
trajectory for the case e'&e—~~.

We remark that while the spin-zero wave equation has
been the basis for the above discussion, the extension to
spin one-half is straightforward. In this latter case the
Dirac equation

1 2-
7o-8„+rtt——lf (~)=0,
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which follows from the Lagrangian

d2: P—y&8„$ 2—[2—1+ex (2/) j~
2

can be solved by the usual techniques to yield the energy
spectrum

E —5$

b cd
e~ e~f

p/(n 3 )2+e4
I—n+—2

Im(/+&)
1

v=-8
~

Re(g++~)

m2 (I+[(~+-')'+e'j'")' Fxo. 4. Trajectory of a Regge pole in vector model.

The preceding discussion is extended to this additional
case with no difhculty. Except for the replacement of
22 —2 in Eq. (2.6) by 22, the results are identical.

In concluding this section, we draw attention to the
fact that Oehme has used the nonrelativistic Schrodinger
equation with a repulsive 1/r2 potential to obtain
results similar to those described here. These, however,
emerge in a more natural way using a relativistic wave
equation with a scalar coupling.

v Plane
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FIG. 3. Cuts of od (v) for vector model.

III. THE VECTOR COUPLING MODEL

The familiar Coulomb problem is represented by the
Lagrangian

A significant departure of this paper from previous
considerations of the Regge poles in the Coulomb
problem arises from our choice of E2—ns2 as the analog
of the usual invariant square energy variable rather than
E itself. The models considered here have all been solved
by comparison with the nonrelativistic Schrodinger
equation for a I/r potential, and one observes that
(E2—2/")/22/2 does in fact correspond to the nonrela-
tivistic energy variable. In Eq. (3.2) the 1/r term is
proportional to (E2)'/2 and one would, therefore, expect
a left-hand cut for n (v) originating at v= —1. While
the choice of E as the basic variable is sufhcient to
eliminate such a kinematical cut, the utility of this de-
vice is unique to the vector theory.

The equation for the Regge trajectory,

-2 I/2

rr„(v)= ——',+ e'+ i —I+-,'
(+2 2222)1/2

shows immediately the existence of branch points at
v=0 and v= —1. In addition, the vanishing of cr (v)+~2
yields complex branch points at

'S—
2

V=
1+2i[e2/(22 —-,')j

d& [4 "*c/A -' 422*/24+—-4 "24 v* The branch cuts are chosen as in Fig. 3 with the curve
connecting the complex branch points defined by—ie v* A„c.c.j.

While the form (3.1) emphasizes the vector character
of the coupling, we shall consider only the usual 6xed
source limit A=O, As= e/r. Correspond—ing to (3.1)
one has the wave equation

P=
1+[e2/(22 —-,'+8 e')j'

as ) varies in the interval

—1&X&i.222' pr2 l (I—+ 1)—e 8 e'
&(&)= +, ———4(*), (32)

2m 2m 2ysr' m r This choice of the cut guarantees that

and the nonpositive definite Hamiltonian

g2

H = ——+ (P2+2/22)'/2.
r

Imn„(v) &~ 0

for Imv&~0. A trajectory corresponding to the path C
(3.3) is illustrated in Fig. 4. It is interesting to note that in

the scalar theory the trajectories closed at

Because the e'/r2 term in (3.2) represents an attractive
term in the effective potential, there exists a possibility
of collapse in this theory.

I= —[(22——',)'—e4j'/' ——',,

while for the vector coupling they close at the neces-
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sarily complex values

l= —p(n —22)2 —22o2(n —22) j'12 —22

This contrasts with the usual Schrodinger theory in
which the trajectories approach the negative integers
for E approaching plus and minus infinity.

IV. THE SCALAR PARTICLE IN
GENERAL RELATIVITY

Another case for which a solution can be found for a
fixed source is that of a scalar particle in the general
theory of relativity. Here, one considers the Lagrangian

dx ( g)'t'$y—"*a y+ 'y"*g y—" m—'y*—y+c c j. . .

which, for the classical Lagrangian,

m ( g„—„dx&dx")'ts

leads to the canonical equations of motion

dr yA

dt (m'A —'+y')

dy/dt = —Pm'A '+y'j 't'Ly'+-'m2A 'j (e2rA'/mr' )

where A '= (1+e2/mr). For completeness, we remark
that the energy momentum tensor corresponding to this
metric in spherical coordinates is"

82rT, "= 82rToo=——82rT44'= A(e /—2mr')

82r Too = —3A2 (es/2mr2) 2.

'
(4.2)The field equations are

~A+g, A"=o,

8„( g)'"y—&+m'( g)' 'y—=0, With the above choice of metric, Eq. (4.1) becomes

—1 A 82 Bts AV2 —m' (x)=0.which is equivalent to
t (/)(/ )+

g""4l~&+on re=0 (4 1) The corresponding eigenvalue problem,

/$2g2

ds = 1. —Zx dp ds
fysr 1+e2/mr

A metric which admits a solution to this equation is E2—542

yields the 5 matrix

p,' l (l+1) e'E'/m' —e2 E'
+ ————,'I ~(),2' 2mr2 r m' )

I'{((l+-')'—(E'/m')e4j'"+ ' 4(e'/m-)—(E' 'm')/(E—' —m')'")—
S(l,E)= exp{2~(l+-,'—~(l+-', ) —«E /m j )),

I'{[(l+-,')' —(E'/m') 84j' "+-'+2(e2/m) (E'——,'m')/(E' —m2)'~2}

and the spectrum of bound states

E2—m2

m2

e4 (E2/m2 r )2

{n+L(l+ r )2 e4E2/m2jl/2 r )2

As in the vector theory, there exists the possibility of a
collapse into the center because of the attractive 1/rs

term in the wave equation.
The Regge trajectories,

cussed in terms of the discriminant

~-=("/27)+(f /4)
Here

~=-'(1--'P')-'I 3(1--'P') —4P'j

& = (2/27) (1—-'P') 'L8P' —9(1—-'P')+27(1 —-'P')'j

and we have defined p=e2/n'. One finds for 4l the
expression

E2/m m/2—
n~(E) = ——,'+ e4E~'+ sesm

d = (1/432) (1—-'P') 4$16+31P2+28P4+27Psj—n+ —,
1

(E2 m2) 1/2

"Note added sn proof. It is perhaps useful to remark here that
this choice does, in fact, represent a physically realizable possi-
bility. Such an energy momentum tensor can arise, for example,
from a spherically symmetrical distribution of a uniformly charged
"Quid" which acts as the source of the radial electric field

(E2/m2 ——,')'

+( sE/m) /2 j2

E —ts

From the general theory of the cubic equation' it is

branch cut from p2 —~2 to p2 —Oo and deduced that because of the positive definite property

additional branch points corresponding to the solution
of

The substitution x= sm/E yields—
xLx (n"—e4/4)+ 2e'n'x'+n"x+2e'n'j =0, (4.3)

where we have introduced n'=n ——', . Equation (4.3)
immediately exhibits the branch point at

~
E~ = ~.

The remaining cubic equation is conveniently dis-

e'
P»=g3t~

2mr

By associating with this Quid a sufFiciently large charge-to-mass
ratio, the combination T,&t„&"+T, fI'" can be made to yield the
energy momentum tensor of Eq. (4.2).

'R. S. Burington, in Handbook of Muthematica/ Tables und

Formmlus (Handbook Publishers, Inc. , Sandusky, Ohio), p. 7.
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e4 e6
E2=nP 1— ai +0(e')

4(e—-')' 2 (e——,')'

It can readily be shown that the real solution of (4.3)
is on the unphysical sheet of the E' plane. However, for
the repulsive case which is formally obtained by the
replacement of e' by —e', this branch cut appears on
the physical sheet. In this latter case for small e' there
is a cut from E'= —ao to E'= —m'(ii —-')'/4e'. As e'
increases this branch point approaches the origin which
it reaches at the critical value of e'=2m'. Further in-
crease in e' causes it to move back on the negative axis
and to approach minus infinity for very large coupling.

Figure 5 shows a trajectory of this model for the
analog of contour C of Fig. 3. In contrast to the scalar
coupling theory for which n„(v) approaches a path
independent value for ~E~ ~ ~ and the vector theory
for which it approaches a path dependent value, n„(i)
has no finite limit for

~

E
~

-+ ~.

V. MULTIPOLE POLES IN SCATTERING
AMPLITUDES

of d for all P, Eq. (4.3) has one real and two complex
conjugate solutions in addition to the null root already
observed. These correspond to a branch point on the
negative E' axis and a complex conjugate pair.

The positions of the branch points can be extracted
to lowest order in e' by using the following form of
(4.3):

(1+x') (xe"+2t."m') = e4x'/4.

From the factor xe"+2e'e', it is seen that one of these
occurs at

E'= —m'(ii —-')'/4e'.

Expansion around x= +i yields the remaining branch
points at

V~ -Oo
I-n+—
2

I"zo. 5. Trajectory of a Regge pole in tensor model.

The Regge poles occur for

D(t, i) =0,
the inversion of which yields the trajectories n (i). By
the implicit function theorem it follows that in a domain
of analyticity in I and v, singularities of n„(v) can arise
only if there exist multiple roots of D(l, v), i.e., from
solutions of

As has been previously noted, the left-hand branch
points of n„(i) occur for I= —i~ which, by a suitable
choice of the branch cut of D(l, i ) connecting the points
3= —~~ie', does indeed lie within the domain of
analyticity of D(l, i). Thus, the left-hand cut of the func-
tion a„(i) must originate in the existence of multiple
roots. This can be seen directly by showing that D(l, v)
has in fact a double root at l = —~~. Because this function
is analytic in [(I+-,')'+e4ji~' —-'„ it follows that

a
=D'—{[(l+-,')'+e4J"—-', }

Bl

Because of the fact that the "pathological" features
we have found are a consequence of the modification of
the centrifugal term in the wave equation at small
distances, it is to be expected that they will persist even
when the potential has no long-range tail. In the case
of the usual Schrodinger equation for the potential (1.1)
with the representation of the scattering amplitude as

a(i,k) =$(l,k)/D(l, k),

it has been shown that D(l, k) is analytic in the product
of the right-half l plane with the E plane cut along its
positive real axis. Since the relativistic wave equation
for the scalar theory considered here is formally mapped
into the nonrelativistic case by the replacement of E by
(E'—rr.')/2m and I by [(l+-',)'+e']'"——',, one can infer
in this case that the corresponding denominator function
is analytic in the product of the v plane cut along the
positive real axis with the l plane cut from t= —~+ie'
to i= —-,'—ie',

Df
[(I+1)2+~4jl/2

(5.1)

demonstrating the double root at l= —~. In writing
(5.1) we have used a dash to indicate the derivative of
D with respect to [(I+2)'+e')'"—i~. Similar considera-
tions hold for the vector coupling model and in fact we
have shown above in quite general terms that a modifi-
cation of the wave equation such as that considered here
will give rise to multiple roots in D(l, v).

VI. CONCLUSION

In this paper we have considered three coupling
schemes which are the simplest possible relativistic
models. The scalar model is a particularly satisfactory
one by virtue of the positive definite character of its
Hamiltonian. Viewing these models as static limits of a
fully relativistic theory, three points emerge which might
have application to @ complete theory,
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(1) We have shown in various examples the existence
of multiple poles in the scattering amplitude, the pos-
sibility of which has frequently been ignored.

(2) It has been suggested that the singularities of
n (v) which occur off the positive real axis might be
absent in a true Geld theory because of their connection
with the fall into the center. ' However, the scalar
coupling theory considered here has displayed such
singularities in spite of the fact that it has no possibility
of collapse for physical l. The occurrence of these addi-
tional branch cuts in a complete theory cannot be ex-
cluded, and it would be almost remarkable if the con-
sideration of recoil could completely eliminate them.

(3) We have noted that the trajectories associated
with the models considered in this paper display marked
differences in their qualitative behavior and analytic
properties. All of these display analytic properties in
conQict with those which have been expected to occur
in a real held theory. Xt might well be anticipated, there-
fore, that the problem of analytic continuation in the
complex angular momentum plane is not independent
of the nature of the coupling.
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The singularity introduced artificially into the equations of the new strip approximation, in order to
bridge the gap between low and high energies, is investigated in detail. By explicit construction, it is shown
that a necessary and sutlicient condition for a (unique) solution of the pi/D equations to exist is that the
unitarity constraint on the cross section just above the strip boundary should be obeyed. The only singu-
larities of the solution in the right-half angular momentum plane (ReJ &0) are Regge poles.

I. INTRODUCTION

A SET of approximate dynamical equations based
on the strip concept has recently been proposed

for determining the self-consistent strong-interaction
5 matrix with Regge asymptotic behavior. ' This paper
is concerned with the singularity at the strip boundary
introduced as a consequence of the approximation
procedure. We propose to show that in spite of its
arti6cial character this singularity plays a useful
physical role and does not prevent a numerical solution
of the equations. Xt also does not affect analyticity
properties in angular momentum. The reader is assumed
to be familiar with reference 1, whose notation is
maintained here.

The integral equation in question is (III.11) of
reference 1:

function Bg~(s) has a logarithmic branch point:

1
Bg~(s) .- —ImBgp(sg) ln(s, —s). (I 2)

Let us split off the singular part of the integral in (I.1):

Eg(s) =BgP(s)+ ds' Eg(s,s')Sg(s')
Sp

ds' k(s, s')1Vg(s'), (I.3)
8p

where
ln (sg —s') —ln (sg—s)

h (s,s') =
$ —S

Eg(s) =Bgg (s)
)tg ——pg (sg) ImBg~(sg), (I.5)

1 81

+
Sp

and where Eg(s,s') is the residual part of the kernel
obtained by comparison of Eqs. (I.1) and (I.3). In the

II dangerous region, s~ s~, s ~ s~,

The singularity arises in the kernel because at s=s& the

*Work done under auspices of U. S. Atomic Energy Com-
mission.' G. F. Chew, Phys. Rev. 129, 2363 (1963).

(sg —s ) ln(sg —s )—(sg —s) ln(sg —s)
It, (s,s') ~ (I.6)

S —S

a behavior that causes no trouble. Equation (I.3) may


