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A gravitational action operator is constructed that is invariant under general coordinate transformations
and local Lorentz (gauge) transformations. To interpret the formalism the arbitrariness in description must

be restricted by introducing gauge conditions and coordinate conditions. The time gauge is defined by lock-
ing the time axes of the local coordinate systems to the general coordinate time axis. The resulting form
of the action operator, including the contribution of a spinless matter field, enables canonical pairs of vari-
ables to be identified. There are four field variables that lack canonical partners, in. virtue of differential con-
straint equations, which can be interpreted as space-time coordinate displacements. In a physically distin-
guished class of coordinate system the gravitational field variables are not explicit functions of the coor-
dinate displacement parameters. There remains the freedom of Lorentz transformation. The generators of
spatial translations and rotations have the correct commutation properties. The question of Lorentz in-
variance is left undecided since the energy density operator is only given implicitly.

INTRODUCTION

~ LECTRODYNAMICS is characterized by the
~ property of gauge invarianc- — —the freedom to alter

the phase of any charge-bearing field arbitrarily at
each space-time point while subjecting the electro-
magnetic potentials to a corresponding inhomogeneous
transformation. It is not surprising that Acyl, the
originator of the electromagnetic gauge invariance
principle, also recognized' that the gravitational field
can be characterized by a kind of gauge transformation.
This is the possibility of altering freely at each point
the orientation of a local Lorentz coordinate frame
while suitably transforming certain gravitational po-
tentials. Such a transformation is quite distinct from
the more familiar global coordinate transformation. In
a subsequent development of this conception, Yang
and Mills' introduced an arbitrarily oriented three-
dimensional isotopic space at each space-time point
thereby relating a hypothetical vector field to isotopic
spin. {The occasional remark that the gravitational
field can be viewed as a Yang-Mills field is thus rather
anachronistic. )

Due to the great interest in non-Abelian vector
gauge fields as a possible foundation for comprehending
the strong nuclear interactions, there have been some
developments in the formulation of a relativistic quan-
tum field theory of interacting vector fields. It is our
intention here to begin the task of applying this ex-
perience to the more difficult problem of "quantizing
the gravitational field". Since this work is based upon
the quantum action principle, there will be areas of
contact with the similarly based but diGerently de-
veloped semiclassical considerations of Arnowitt, Deser,
and Misner. '

ACTION PRINCIPLE

The field variables that we shall use4 to describe the
gravitational field are 4X4 e,&(x) and the 4X6&e„ob(x)

re„b,—(x) The.se are vector fields with regard to
general coordinate transformations,

e.~(x) = (axe/ax") e."(x),

4&yc b (X)= (BX"/BX~)tevc b (X) .

The response to a local Lorentz transformation is

e.c(x) = l.b(x)ebc(x),

o&„.b(x) = l. '(x)lb'(x)cv„. b (x)+lb'(x) fl„l.b (x),

where
l (x)g. b lb'(x) =g.b,

and g. b is the constant metric tensor of a Minkowski
space.

The inhomogeneous term in the gauge transformation
of co„.b must be removed to form a covariant that can be
used in the construction of an invariant action operator.
This is accomplished with the aid of the local spin
transformation

L (X) '$8„,'r'&u„cb (—X)Scb—jL—(X)=rl„,'i'„b(X)Sccb—, -
where

L(x)—'S"L(x)= l ..(x)l'b (x)S"'.

We consider the coordinate-spin commutator (there is
no reference here to operator properties of &e„,b)

Lr) —$tepcbS v Bv ss(evcsS j= s'cRcycb(x)S

where

yea (b)X= rlp~vab r)veipab ~yac&v b+rdvac~lc b

= —E.„„.b ———R„„b.,
and observe that* Supported in part by the Air Force Office of Scientific Re-

search under Contract No. AF-49(638)589.
'H. Weyl, Z. Physik 56, 330 (1929).' C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).
'R. Arnowitt, S. Deser, and C. W. Misner, Phys. Rev. 11

1595 (1960).

B„„.b(x) = l.c'(x)lb'(x)R„.;b (x).

7, The viewpoint and notation follow a previous paper of the
author [J.Schwinger, Phys. Rev. 130, 800 (1963)).
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Thus, R»ab is an antisymmetrical tensor with regard to
local Lorentz transformations. It is also an antisym-
metrical tensor for general coordinate transformations,
in virtue of the curl derivative structure. The Jacohi
identity obeyed by a double commutator implies a
differential identity for the functions R„„.b(x). This is
expressed most compactly with the aid of the dual
tensor density

squared, and proceed to use it in a heuristic manner,
without regard to precise operator properties. Then,
apart from divergence terms,

6W = (—I/2~) (dx) fdete 8e,&(2R„' e„—R)+Re„,bKI bj,
in which

as

*Ra" b(x) = 'ba -""R»(x)
~' ab —~23ab) . -

l9 E M R" Q) g" =0

K"' =B.fdete(e"'e' —ea e" )j
&g

a fdete(eivcevb eabpvc)7

~ b fdettv(eaagve gaegva)]

alld
ge g abg v g av

pv b pv ~

dete= dete„.

The functions defined by the variations must obey
differential identities as a consequence of the invariance
of 8' under local Lorentz transformations and coordi-
nate transformations. Thus, the infinitesimal local
Lorentz transformation

There is also a double dual tensor density

44gijvab & &yves «g &e bed
X«cd&

with the local Lorentz transformation behavior

The term tensor density refers to the general coordinate gee have a]so written
transformation property

*8&" (x)= (detox/Bx) (Bxa/Bx") (Bx"/Bx") 'R"' (x)

+e'Rpvab(x) = fdetI(x)$Ia, (x)Ibb, (x) *aRpva'b'(x)

This object obeys the differential identity

++gpvab ~ a ++gpvcb b ++gpvac —0P C C

To construct an invariant action operator

W= (dx)Z,

and
fdete„ (x)$e"'(x)e"b(x)R„„.b(x),

—,'**Ra".b(x)R„„.,(x),

which share the property of reversing sign under an
improper local Lorentz transformation. The second
choice is constructed entirely from co„,b. It is not an
effective contribution to an action operator, however,
for the differential identity obeyed by **8&" implies
that

we must devise a local function of the gravitational
field variables that is a scalar density for general
coordinate transformations, and a scalar with respect
to proper local Lorentz transformations. The two
simplest possibilities are

Se,"=ROAN, beb",

~~vab ~bee ~vcb+~&b &vac+~v~~ abv

gabe. b(x) = —Reb. (x),

implies the identity

g Kvab ~ a Kvcb ~ b Kvac det&—eaaevb(R R )

where
~p,v=~p&v =ev & ~@Lab.

The infinitesimal coordinate transformation

he.'= —5x"B,eJ'+ e."8.8x",

~va b ~& ~Xva b Xab~v~&

gives the identity

B,fdete(2R„" 5„"R)$+dete(—2R„e„R)B„e."—
= B.(K""co„.b) K"ab8 a),.b. —

These identities become more familiar if we set E""
equal to zero, for then

R&v —Ev&&

while

(~x) (—g)'"2~g""(—I/~) (R"—kg"R) v

which is devoid of consequences for field equations.
Let us adopt provisionally the gravitational action

operator

in which
gP —e Pg eb

W= (dx) (dete„') (—I/2~)R,

where
agvbg g pv

pvab pv

while ~ is a constant with the dimensions of length

~ f(—g)'"(R."—k~."R)j
+ (—g)"'(Rb.—-', gx,R)-', ~,g'"= o.

Thus, R» ——,'g»R. is Einstein's tensor.
The held equations

K~b=0
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can be presented in the form

II" b
—ec'(&d b, o—)b„)+eb9(, e—,"Kb=0,

where
0".~ =e."B,e~i"—eb"B,e.I",

and

x,= (dete) '8„$(dete)e."1+0)bb. .

An equivalent version is given by while

I(:~ (m) P k ~ (k)~ ea

An equivalent characterization in terms of the inverse
system e„ is

ek&'& (x)=0.
Note also that

scab O)abc+0)bac+gbc&(a gac~b=0v
Furthermore,

&o(~) = —0 )«(~)e(0) ~

and a special consequence of the latter is

—0bb —
&d bb.+3K.=0.

Q~~.——B„e "—e "e„~&„eh~

= (dete) 'B„L(dete)e."],
and, therefore,

X,= Q.

That property is still implied by the resulting equation

&abc sac =~cab)

which has the solution

&v)abc 2I„IIbca+IIcab IIabc]

This represents a dynamical deduction, based upon
E~~=O, of the symmetry restriction

dete„'=ep&'& detel"' ——Le(0)'dete&l)kj '

The gravitational action operator appears in the
time gauge as

W= (1/&() (dx) det(0)et ek&"Eok(0) &l&

——,'ep'0)ek( )e'(")Rkl(„)( )+ep(0)ek( 'e(0)'Ekl(m)(0)],

where

~or (0) (&)
= ~&~(o) {~)

—a&0(0) (i)

+(ok(l) O)0(0)(m)+&Ok(0)(m)&00 (l),

+kl(m) (0) ) (kl&(d)(0m)+&&EO)k(0) (m)

+&ok(m) &ol(0) (n) o)l(m) ook(0) (n) v

and

for the quantities

I abc I &ac
+kl(m) (n) (8)~kl(m) (n) o)k(0) (m)(ol(0) (n)+&pl(0) (m)ook(0) (n) ~

I abc &dabc (ea (Iveb )e &cc

Invariance with respect to arbitrary local Lorentz
transformations and coordinate transformations implies
that the field equations exhibit a corresponding in-

completeness in the description of the time evolution of
the system. In order to obtain a clear physical interpre-
tation of the formalism one must limit this arbitrariness

by restricting the choice of local Lorentz frame and
general coordinate system. We shall designate such
restrictions as gauge conditions and coordinate condi-
tions, respectively.

TIME GAUGE

The first objective will be to give the time coordinate
a physical meaning by locking the time axes of the local
coordinate systems to the time axis of the general coordi-
nate system. The time coordinate x' can be distin-
guished by the requirement that e,o (x) sha11 be a time-
like vector in the local coordinate frames,

—e.o(x) "ge(bxo)) 0.

Then it is possible to choose each local coordinate
system so that the spatial components of e' vanish.
This is the time gauge,

e (k & (x)=0.

In the last equation, the notation (3)Ek&( )(„) implies
the formation of this tensor from the three-dimensional
quantities col, ( ) ( ). We have also written

det(3) e= det«(').

It will be observed that ~~(0) (~) and det(3)e e~(') obey
equations of motion. There are no equations of motion
for 0(0) (l)p &0(l) (m)~ k(l) (m)y &(0) &

or e(0)'. When only the
gravitational 6eld is considered, the variations of the
first three sets of variables give equations of con-
straint which are, respectively,

Bk(det(0)e e(l&") o)k(l)( —) (det(0)e e& &")=0;
(&) (o) (~) +(~) (o) (&) ~

where

(l) (0) (m) e(L) &k(0) {m) p

(0)Ãk( )(")=det(0)epek( ) (o)(0)(0)(")—e'(")Bl Inep('))
ek(n) (o)(p) (p)

(m) l( e)Pm) inep(0)) j
in which

o)(0) (o&
= e(0)'(ol(0) +e&o) 000(0)

and (3)K~( '("' is formed from three-dimensional quan-
tities in the manner of KI b.

If the first constraint equation,

Bk(det(0)e e&l& )+det(0)e 0)( }&m&(l&=0,
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is combined with the formula for (3)Ek( ) („~, the latter
simplifies to

(2)E & )(„&=—det(2)e[(2)Q (~)(~)
( ) ((o(m)(e)(p) ~(n)(m)(p))]r

and a second application of this constraint shows that

ek (3)E ( )( )
= —det(2)e[(2)Q & )(„)+(o ( && )]=O.

Accordingly,

~(p) (p~(m~ = e(m~'Bl lnep'",

and

or

oo(~) (n(~) = 2I (2)Q(~) (~)(2)+ (2)"(~) (2) (() (2)Q(2) ()) (~)]~

all of this being a three-dimensional counterpart of the
four-dimensional discussion.

In virtue of the symmetry possed by co(k~(p) (l), there
are six pairs of variables in the time-derivative term of
the action integrand. A particularly convenient choice
is obtained by introducing

k l= GOk(P) ( )e
—(g (0)kl

and the three-dimensional tensor

(3)gkl ek ~l(m) gkl)

together with its inverse

gkl gk(m) g l~gkl

Thus,

det(2&e eo(')Bo(oo(o)(() —— g'"eo("—Bo((oo(o) e&1& ),

where

g= det(3)gkl,
and this becomes

g1/2 ( )gklg~k(0) l &gl/2~k(0) leap (3)gkl

= lg '"~~"))~o(g (2)g"') —~ [g'" (2)g"~~"))]

The time-derivative term may be omitted since the
action operator of a given dynamical system can be
altered by the addition of boundary terms. The required
pairs of variables are

=g (3)g
and

II$$——(1/2K)g '('07$") $.

in which

22 ———II)„B),q'™+B),(2II(„q' )—B((2111.„q' ),

oo= (1/2)()g (2)R—2)(II2)(q2)q "—q2"q™)II

The explicit structure of

is given by

where

g (3)R=q ' (3)Rkl

(2)~) (= ()2()(q +Q~

MATTER FIELD

We shall consider here only the simplest example of a
matter field. The action operator of a zero spin field in
a prescribed metric field g„„can be written as

(d~) [0"~8+24"(—g) '"g"4"—2~'(—g)"V],

where &(p is a vector density. The constraint equation
implied by variation of gk is

O=&r.e+( g) '"ga,y—",

or equivalently, in the time gauge,

e(1) ~)~= e(o) g e ())~"

The square of this local vector equation gives the
relation

&.eq"'& ~= (e(o)o)'e"g,.e"+ (~o)2.

An alternative combination, obtained by multiplication
with e~('&82$ is

eo&o&g )l2$1yqk)8(4—=$2()24 eo( &e(o) "qp()k4.

The resulting form of the action operator, from which
Po has been eliminated, is

8 = (&)[qP&)op —eo e(o)2T),—eo '
g

' 'T ],

Q= ——,'q""8 q"B„qo(——2'8 q"q) 82q""
—-,'q"'82 In(q'(2) 8) 1n(q'"),

and

g
=detgk'= g',

while

gkl=g gkl

is the matrix inverse to qk'.

Note that the other terms in Rpk(p~(l~ are effectively
equal to zero by virtue of the constraint conditions,
provided that e(0~k and Bkep"' vanish sufficiently
rapidly at remote spatial points.

The resulting form of the action operator is

where

1[go)2+g yqklg y+q1/2 2y22)]2

W= (dx)[112)Boq"'—eo o
e(o) "r2—eo(' g

' 2ro] The equal-time commutation properties of these opera-
tors follow easily from the canonical commutation rela-
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tions obeyed by g and qP. Thus,

—i[T'(x) To(x')]
= —[q"'(x)T l (x)+q" (x') Tl (x')]8k8 (x—x'),

tions, and here

2~k~«l+2V2IIk=~lllkl ~kiIll=pek,

(V )'q= Bk8lqk'= —2z80.

The action operator can now be reduced to
—i[Tk(x),T,(x')]

= —Tl(x)Bk5(x—x') —Tk(x')Blb(x —x'). W= (dx)[IIkPBpqklr+P'80&I&

COORDINATE CONDITIONS

The action operator of the combined gravitational
and matter 6eld system is

W= (dx)[IIkl80q '+qH0&t& ep
0 e—&pl" (rk+Tk)

~ (pig—1/2(rp+ Tp)]

+ek80( ——,'qk) —O'Bp( —2&ill)],

which also exploits the freedom to add boundary terms.
The operators ek and 80 are to be constructed from &0,

P and IIkl~, qk'r, together with qk and II. The pairs of
fields are evidently canonical dynamical variables
while q~ and II are numerical transformation param-
eters. The action operator is formed additively from
operators describing infinitesimal increments of x',

The constraint equations supplied by variation of e~p~

and ep~ ' are Wg, o —— (dx) [IIkgdqkl~+&I&0~

el+ Tk 0, r'+ T'——=0

Alternative forms are

2 (~lllkl —&killl) =4+ Tk = ~k,

where

—8kB lqk'= 2&l (tp+ T') = 2&l80,

tk ———Il,„akq' +ok[211,„(q' —s,„)]
—a,[2rrk„(q' —8,„)],

and
~0 (I/2&)Q+ 2&11„(qknqlm qklqmn)11

This version presents the constraint equations as im-
plicit determinations of certain linear diGerential func-
tions of the fields q~' and IIq~.

The same field combinations will occur in the time
derivative term of the action operator if one writes

+8 d( —-,'q )—0'd( —2&ill)].

The infinite-dimensional parametric transformation
given here can be identi6ed with a local description of
the physical space-time evolution of the system. Thus,
d( ——',qk) and d( —2&ill) are interpreted as infinitesimal
local space and time coordinate displacements, while
81, and 8' appear as momentum and energy densities,
respectively. With this physical identification of coordi-
nate parameters, we can proceed to restrict the mathe-
matical freedom of coordinate transformation in order
to exhibit a physically distinguished class of coordinate
system.

Under what circumstances are the q~' not explicit
functions of the space coordinate displacement param-
eters2 The condition is

2 (leak dql+ ~ ldqk) bkl~ md—qm= 0,

or equivalently

and
+ 2 (~kql+l1ilqk) pkl~mqm+~k~lq&

ilkl=ilkl +2(~kill+~«k) —~kB 11 +plk~lll&

Bkdql+Bldqk=0,

which also implies that

Pdqg =0.

where q~'~ for example the transverse-traceless part of As a consequence of these restrictions, —2dqI can only
kl'is such that

""'""' ""'
be the linear sPace coordinate function

g qatar 0 qatar 0

The two independent components of this field combine
with q~ and q to represent the six-component field q~'.

These representations are such that

(dx)llklBpqk'= (dx)[IIklr80qk'r

—(28kBlIIl+2 V'Ilk)Bpqk+1180(V')'q],

under the conditions that validate the partial integra-

—2dqk= dpk(X )—d4&kl(X )Xl,

dp&kl+dp&lk= 0&

which describes a rigid translation and rotation of the
coordinate system. The associated generating operators
are the total linear and angular momentum

Pk (dX)8k, ——

J„= (dx) (xkgl —xlgk).
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In a similar way, III,& will not be an explicit function of
the time displacement parameter if

aj.agdII= 0,

so that dII is a linear space coordinate function,

2KdII=dE (g )+dMop(g )gp.

(dx)P-y'(goal-g, a~)y

T(g g g g )qmnT+2II TqkmT 2II FqlmFj

The corresponding generating operators are the total All the anticipated commutation properties of these
energy operators can be derived from the equal-time canonical

commutation relations:I"= (dx)0',

and the Lorentz transformation generator

J g g I'Jg=—— (dx)gp9.

and
=q +~l~l(q+ X)+~ll

IIl l=IIl l +2(~l IIl+~lIIl) ~l l~—mIIm

A spatial boundary condition thereby indicated for
points. far outside regions occupied by energy,

~l~l(q+2X) ~O
is compatible with the fourth order differential equation
obeyed by q or q+ 2x'.

The linear and angular momentum operators involve
only the canonical variables in the explicit forms

P& (dx) p p'8&——p IIl „T—B&q'"Tj—,

A given member of this distinguished class of Lorentz
transformation equivalent coordinate systems is char-
acterized by the coordinate conditions

—~q'I, =xl, )
—2~II= x .

In such a coordinate system, the field operators simplify
to

—9 (*),~'(*')j=&( -"),
—iraq" (x) II (g'))=)5m "8(x—x')j

kl —1(g lt;g l+g kg l)

including

fqlmT(g) P j— ig qlmT(g)

Pq""T(g),J„,$= —i(gga, —g,a,)q""'(x)
+i(g nqkmT+ g mqknT g nqlmT g mqlnT)

These observations show that the quantum-mechani-
cal formalism associated with the canonical commuta-
tion relations satisfies the requirement of invariance
under three-dimensional translations and rotations. The
question of Lorentz invariance depends upon integral
aspects of the energy density equal time commutator.
It is at this vital point that the gravitational field differs
from all other physical systems, for there is no explicit
formula for 0' in terms of the fundamental variables
but only an implicit determination by means of the
constraint equations. While such a lack of explicitness
in a classical theory would raise computational diK-
culties, in a quantum theory it could also be a formidable
barrier to verifying the consistency of the formalism.

We shall consider aspects of this basic problem in a
separate paper.


