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The Bethe-Salpeter equation for higher wave bound states of two scalar particles is investigated in the
ladder approximation. It is shown that all solutions have the Deser-Gilbert-Sudarshan-Ida integral represen-
tation and that they behave like oP(p') ' '7 as p' —+ oo apart from a solid harmonic. The angular momentum
l is continued to complex values, and it is proved that the wave functions are essentially holomorphic with
respect to l in Re l& ——,. The equation for the Regge trajectories is also discussed.

I. INTRODUCTION

HE relativistic bound state problem is usually
dealt with by the Bethe-Salpeter equation. For

solving it there are the following three approaches,
which are mutually complementary.

The first approach, which was 6rst introduced by
Wick, ' is to transform the relative momentum into an
Euclidean vector. By this technique, one can avoid the
singularity of a propagator and make use of many
mathematical theorems.

The second one is to use the so-called Deser-Gilbert-
Sudarshan-Ida integral representation. ' A special case
of this representation was used by Wick' and Cutkosky. '
A general consideration for 5-wave solutions was made
by Wanders. 4 Recently, Ida and Maki' have proved
that all S-wave solutions have this representation. On
the other hand, Sato' has shown that the Fredholm
theory is applicable for the weight functions in the cases
of S and I' waves. All these considerations are naturally
restricted to the ladder approximation. This approach is
useful for investigating the analyticity of the wave
functions.

The third method is to utilize the fact that the
invariant Bethe-Salpeter amplitude has a double
dispersion representation when the total momentum is
continued to a space-like region. Recently, the present
author~ has shown that even the exact Bethe-Salpeter
equation can be solved in an elegant way by this
I11ethod.

The purpose of the present paper is to investigate
higher wave solutions. Unfortunately, the double
dispersion approach does not seem to be suitable to this
purpose. Hence, we use the second approach and confine
ourselves to considering the ladder approximation. In
Sec. II the Bethe-Salpeter equation is decomposed into

' G. C. Wick, Phys. Rev. 96, 1124 (1954).It should be remarked
that for a multiple Feynman integral Wick's simultuneogs rotation
of integration paths of energy variables is not a mathematically
justifiable notion. If one applies Cauchy's theorem correctly, one
will generally meet complex singularities.

2 S. Deser, W. Gilbert, and E. C. G. Sudarshan, Phys. Rev. 115,
731 (1959).M. Ida, Progr. Theoret. Phys. (Kyoto) 23, 1151 (1960).' R. E. Cutkosky, Phys. Rev. 96, 1135 (1954).

4 G. Wanders, Helv. Phys. Acta 30, 417 (1957).
'M. Ida and K. Maki, Progr. Theoret. Phys. (Kyoto) 26, 470

(1961).
6 I. Sato, J. Math. Phys. 4, 24 (1963).

N. Nakanishi (unpublished). See also N. Nakanishi, Progr.
Theoret. Phys. (Kyoto) 24, 1275 (1960), and reference 14.

partial-wave equations. In Sec. III we introduce the
DGSI integral representation and derive an integral
equation for the weight function. In Sec. IV it is proved
that any partial-wave solution can always be represented
as the form introduced in Sec. III. In the 6nal section
the angular momentum l is considered as a complex
variable. The Fredholm solutions of the weight function
will be obtained by using Sato's method, ~ and the wave
function is shown to be holomorphic for Re l& —

~~

apart from some multiplicative factors. A connection
with the Regge trajectory' is also discussed. In the
Appendix the asymptotic behavior of the weight func-
tion is investigated.
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where p is the relative momentum, 2k the total mo-
mentum, X the squared coupling constant, and f(p) the
wave function. For simplicity, we always take the rest
system k= (ks,0,0,0). We assume the stability condition

(mt+ rent. )') tt —=4k') 0. (2 2)

According to the addition theorem of the Legendre
polynomial I'~,

cosM —=cos8 cos8'+sin8 sin8' cos (d
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and a formula
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' T. Regge, Nuovo Cimento 14, 951 (1959); 18, 947 (1960).

II. PARTIAL-WAVE DECOMPOSITION

We consider the Bethe-Salpeter equation in ladder
approximation for two scalar particles having masses
m~ and m2 which exchange a scalar meson p.

..
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For continuation we replace x' by Pf. x' if necessary. "
Our Eq. (3.18) is now rewritten as
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We can easily check that (4.15) is identical with (4.13)
by rationalizing the denominator of (4.15). Thus we
have established the equality (4.2). Hence, in general,
both traces of the nth iterated kernels coincide with
each other because they are equal to Q; ill; ".

V. FREDHOLM SOLUTIONS
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L. Schwartz, Theoric des distributions (Hermann and Cie,
Paris, 1950), Chap. II. Pf. x' equals x' Re/) —1, and for
Rel & —1 it means to take an appropriate Qnite part when inte-
grated over x.

In this section we shall present Fredholm solutions
of (3.18) according to Sato's method. ' The angular
momentum l may now be complex. Such analytic
continuation is unique if one requires that pl"'(s,n)
vanishes for l —+ in all directions in the right half-
plane. We assume p/0.
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Backscatter from Inhomogeneous Media*
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A WEB approximation is used to calculate cross sections for the 180' scattering of scalar and vector
waves by a class of spherically symmetric, repulsive potentials. These potentials are such that the corre-
sponding index of refraction has a unique zero. The scalar problem is discussed in the framework of quantum
mechanics, and the result is just the classical cross section. Electromagnetic backscatter from a dielectric is
found to be three-quarters of the scalar approximation in the extreme geometrical-optics limit.

I. INTRODUCTION
' NTERKST in radar cross sections has encouraged
- - investigations on the backscatter of waves from
inhomogeneous media. In general, this is a diKcult
problem to analyze. Exact solutions are rare, and the
Born approximation' is worthless when the index of
refraction differs significantly from unity. The Schiff
approximation' is expected to have a wider range of
validity, but its usefulness hinges on the evaluation of
a dificult volume integral. In this paper, we consider
the simplest spherically symmetric systems to which a
"semiclassical" approximation is applicable. Specifi-
cally, the index of refraction of such a system is a
continuous function of r, and it has a unique zero at ro.

The scalar-wave problem is studied by investigating
the equivalent problem of electron backscatter from
repulsive potentials. The correspondence principle is
derived for 180' scattering; that is, a WEB scattering
amplitude is obtained which gives the correct classical
cross section. The classical result is shown to have an
upper limit of ~ro'. In addition, the inverse square-law
potential is examined in some detail, for the phase
shifts are known exactly, and corrections to the classical
result can be derived.

~ The research reported in this paper was sponsored by the Air
Force Ballistic Systems Division, Air Force Systems Command,
under contract No. AF 04(694)-1 with Space Technology
Laboratories, Inc.

'D. S. Saxon, Lectures on the Scattering of Light, Scienti6c
Report No. 9, Dept. of Meteorology, UCLA, 1955.' L. I. Schiif, Phys. Rev. 104, 1481 (1956).

It is known'4 that the problem of electromagnetic
scattering from a spherically symmetric dielectric is
reducible to the solution of two scalar problems; i.e.,
two radial differential equations must be solved for two
sets of phase shifts. For our purpose, the amplitude for
vector backscatter is proportional to the difference of
the corresponding scalar amplitudes. Whil'e difhculties
arise because of the zero in the index of refraction,
these scalar amplitudes can be replaced by WEB
approximations analogous to the one introduced earlier.
This approximation is valid in the extreme geometrical
optics limit. Here expressions simplify, with the
differential cross section for electromagnetic backscatter
reducing to three-quarters of the result predicted on
the basis of the scalar wave equation.

II. THE SCALAR PROBLEM

The time-independent scalar wave equation is

t P+k'rt'(r) jf(r)=0, (2.1)

where rt(r) is the (spherically symmetric) index of
refraction of the medium, and 2s./k is the wavelength
of the incident wave. The asymptotic scattering solu-
tion of Eci. (2.1) is

~() „„= "'+ f(t),
(2.2)

fk[=k,
3 P. J. Wyatt, Phys. Rev. 127, 1837 (1962).
4 D. Arnush, Space Technology Laboratory Report 5'o.

6110-7466-RU-001 (unpublished).


