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Radiative Corrections to High-Energy Scattering Processes*
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A unified treatment of radiative corrections to a class of scattering experiments is presented. The experi-
ments considered are those in which either (but not both) the scattered or recoil particle is detected. The
recoil kinematics are properly treated and the calculation is simplified by retaining only terms of logarithmic
order. The general results are applied to specific practical examples in which radiative corrections are likely
to be important. Except possibly for the case of Compton scattering with nearly maximum or nearly mini-
mum momentum transfer, the errors are estimated to be less than 2% of the cross section.

L INTRODUCTION

~ALCUI. ATIONS in quantum electrodynamics,~ while straightforward in principle, are often labo-
rious; and in many cases the results have not been put
into a convenient form for application to specific experi-
ments. If one does not insist upon a complete calculation
(to a given order of n), it should be possible to pick out
the dominant contributions which may then be simpler
to calculate. That this is true has been made clear in
recent years by work in which the infrared contributions
are singled out for special consideration. ' 4 The physical
reason that these contributions are the most important
at very high energies is well known. They arise from the
large-scale distributions of the electromagnetic field,
which should be classically describable. At very high
energies these fields are strongly I orentz contracted in
the region transverse to the moving particles. They can-
not be quickly rearranged when a charged particle is
deflected in a scattering process; and, as a result,
radiation must be emitted (bremsstrahlung) and to-
gether with that there must be a strong radiative re-
action tending to suppress the elastic part of the scatter-
ing cross section. This feature of the radiative correc-
tions has, of course, been well known for many years,
but its importance from a practical computational
standpoint has perhaps not always been so well appre-
ciated. These general ideas are discussed in more detail
in reference 1; it is the purpose of the present paper to
exploit them for the calculation of radiative corrections
to a specific class of scattering experiments.

In this paper the radiative corrections are separated
into two parts, which are called, respectively, the
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' external radiative corrections and the internal
radiative corrections. "The distinction arises due to the
fact that in the scattering process the current density of
the interacting system can be split up in a natural way
into two parts: The first part is the "external current, "
which is speciGed entirely by the momenta and spin
states of the initial and final charged particles; the
"internal current" is the residue, which depends on the
specific details of the scattering interaction. To be more
precise, the external radiative contribution is obtained
by considering emission and absorption of photons (real
or virtual) from external lines. By themselves, these
contributions would not correspond to a conserved
current because the scattering matrices which they
multiply would be shifted off the mass shell due to their
dependence upon k, the momentum of the photon. The
external radiative correction is by deGnition the con-
tribution which is obtained when this particular k
dependence is neglected. Since these corrections are
associated mainly with long-wavelength (infrared)
photons, this is a good approximation if the scattering
amplitude does not have a strong dependence on k. The
residue from this approximation together with the con-
tributions in which a photon terminates on an internal
line is then called the internal radiative correction; it
clearly depends on the precise details of the scattering
process. On the other hand, the external radiative
corrections are independent of details. Furthermore,
if we are willing to estimate them by considering only
terms of logarithmic order, they may be approximated
with very little labor. Since the neglected terms of order
unity must be multiplied by (o/sr) to obtain the frac-
tional error, the error made in this estimate is likely to
be only of the order of magnitude of 1 or 2% of the cross
section. The throwing away of terms of order unity is,
of course, not unique, and we frequently simplify loga-
rithmic terms by making changes of order unity. (Some-
times, terms of order unity are retained in the results if
they are well known; for example, those arising from an
electron vertex are retained. ) An important feature of
this estimate is that the result can be factorized; i.e.,
the correction can be expressed as a factor depending
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only on the external momenta times the uncorrected
cross section. It is, of course, impossible to give a
general discussion of the internal radiative corrections;
however, in many practical examples one can give argu-
ments that they are not important relative to the
dominant external radiative corrections. Of course, in a
high-precision scattering experiment (precision of order
1/q) it would be necessary to give a complete calculation
of the radiative corrections. Even in such a situation, it
would probably be of value to split the contributions in
the suggested way. The main reason for this is that the
external corrections contain all the infrared divergence,
which can be evaluated explicitly once and for all. The
remaining part of the calculation need then have no
artificial infrared cutoff.

In the present paper we present a fairly complete
calculation of the external radiative corrections for
some typical scattering experiments. The aim is to con-
sider a general situation in which either the incident
particle or the target particle is detected; coincidence
experiments are not considered. The classic calculation
of this type refers to an experiment where the particle is
detected at a precisely de6ned angle but with a spread in
possible energies. In current experiments the momentum
spectrum of the scattered particles is also of interest. If
the kinematics leads to a rapid variation of elastic
scattering energy with angle, another type of experiment—precisely de6ned momentum with spread in angles —is
possible. ~ Radiative corrections to these three types of
experiment are discussed in a unified way here. Al-

though the experimental conditions envisaged may be
somewhat idealized, it is hoped that the principles will

be suKciently well illustrated so that the results may be
extended to more realistic experimental situations. Ke
do not wish to specialize to a particular choice of
projectile and target; however, in order that the correc-
tion be meaningful compared to its error, we impose the
restriction that the incident particle be extremely
relativistic and su8er a momentum transfer which is
large compared with its rest mass. ' The principal

difhculty that makes necessary a new calculation is the
fact that recoil effects may become important in the
general situation. Thus, additional terms arise dy-
namically from the fact that the recoiling particle may
possess a charge and kinematically from the fact that
the phase space is altered. Thus, if the scattered particle
has an energy loss e relative to elastic scattering, the
energy carried off byanadditional unobserved photon will

not be e, and it will, in fact, depend upon the direction of
its emission. This integration over the phase space of
the unobserved photons is the main source of difficulty
in making a complete calculation. There is, of course, no

difhculty in principle, but if we have the aim of doing
the calculation for a completely general situation and

' K B. Da11y, Phys. Rev. 128, 1&40 (1961).
~%'ithout this restriction the radiative corrections will be very

small unless the energy resolution is extremely good.

presenting the result in a convenient form for applica-
tions, the calculation must be carefully arranged to
achieve this purpose. We emphasize again that this
calculation is made feasible by the fact that we are
interested only in obtaining the dominant logarithmic
terms associated with the external radiative corrections.
A complete calculation would be many times more
dificult.

The paper is organized in the following way. In Sec. II
are presented the principal features of the calculation,
while some of the finer points are relegated to the
Appendices. Section III contains some discussion of the
errors made in neglecting the internal radiative correc-
tions and considers some special features of particular
scattering experiments. In Sec. IV the results are
specialized to various experiments in which the radiative
corrections are important. Some attempt was made to
keep Sec. IV self-contained; but an experimentalist may
6nd it of value to refer also to Sec. IIA, where the
"experimental conditions" are de6ned. Some of the
necessary notation is also defined in Sec. II.

~ ~ ~ gN e ~ ~

u
P—k—m k' —2k. p

The dots indicate a basic factor in the matrix element
which we need not consider explicitly in computing the
external radiative corrections. It is the same factor that
would occur in the matrix element without photon
emission, except that the momentum argument p is
changed to p —k. In fact, the rule for calculating the
external radiative corrections is to neglect the k de-

pendence of this basic factor; by definition, the correc-
tion to this approximation is included in the internal
radiative corrections as it depends on the specific details
of the interaction. On the right side of (2.1) the factor
corresponding to the emission of a photon appears as a
sum of two terms; the first is

(2p —k) e
ui, . (convection term)

k' —2k p
(2.1a)

This term, which is a simple factor times the original
matrix element, is independent of the particle's spin.

'The following notation is employed: Q'b=u"b„=upbp —u'b,
EP=Q'8) Q=p Q.

II. CALCULATION OF THE EXTERNAL
RADIATIVE CORRECTIONS

Ke want to review and extend some of the considera-
tions of reference 1 concerning the external radiative
corrections. Suppose a real or virtual photon of momen-
tum k is emitted from an incoming charged particle of
momentum p. For definiteness, assume the charged
particle has spin one-half; the corresponding result for
zero spin will be obvious by inspection. The matrix
element associated with this emission will have the
form
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The infrared divergent contributions, as well as some
ultraviolet divergences, arise from the convection terms.
The other term in the emission factor is

photon convection contribution to this matrix element
is simply

(2.3a)

——',Dr,el
N~. (spin term)

k' —2k p
(2.1b)

where

—iZOZ L9.

——',
t egg

g~ . . (spin term)
k' —2k p'

(2.2b)

For purposes of calculation it will prove convenient to
catalog the various contributions to the external radia-
tive corrections according to whether the photons are
emitted or absorbed by the convection or spin part of
the current. The major correction arises from the
comectiom coetributioe, which contains all the infrared
divergence. For virtual photons the convection con-
tribution corresponds to both emission and reabsorption

by a convection term; for real photons it refers to the
contribution obtained by squaring the convection part
of the emission matrix element. An important correction
also arises from the cross term between convection and
spin terms (this is called the spirt comoecti-ort contribN

tioe). It is interesting to note that in the case of electron
scattering from an external potential treated in Born
approximation, all of the ultraviolet divergence is
associated with the convection contribution. This is in
spite of the extra powers of k in the spin terms; the
divergent part of the spin contributions actually turns
out to be zero as a result of the properties of the

y matrices.
The external radiative corrections due to virtual

photons are now obtained by summing the contributions
from all Feynman diagrams in which a photon is

emitted from one external line and absorbed by another,
together with the wave-function renormalizations. For
the convection terms the derivation is given in reference

1, and only the notation and result will be quoted here.
Consider an arbitrary process containing a number of
charged incoming and outgoing particles. The ith
external line represents a particle of charge eZ, and
momentum p;; a number 8; distinguishes incoming
(8;= —1) and outgoing (8;=+1) particles. If the
original matrix element for the process is 350, the virtual

This depends explicitly on the Dirac matrices and, hence,
it cannot be written as a simple factor times the original
matrix element. However, it will be seen later that the
largest (i.e., logarithmic in E/re) contributions which
arise from the spin term can also be reduced to a simple
factor. If the photon is absorbed rather than emitted,
k must be replaced by —k in these expressions. For
absorption of a photon on an outgoing charged particle,
the corresponding terms are

(2p' —k) e
N~", (convection term) (2.2a)

k' —2k p'

pairs

d'k (2p,8;—k)„(2p,8;+k)„+ . (2.3b)
k' —X' k' —2k p;8g k'+2k p8,

where

20,'BO p) (2.4a)

Z;g,z;0;8=+
pairs

a'k —p;„p,„-'
(k'+X')"' k p; k p;

(2.4b)

and fTO is the uncorrected cross section proportional to
~

Mo~'. The upper limit E generally is a function of the
direction of the photon, depending on the details of the
experimental arrangement. In determining E as a
function of direction, it is, of course, important rot to
ignore k in the over-all conservation laws. If, as is the
case in the problems under investigation here, E is
independent of direction in some I.orentz frame, the
integral in (2.4b) may be ca,rried out explicitly. When
the result is combined with (2.3), the net contribution
to the radiative correction is

2n(ReB+B)o p, (2.5a)

The sum extends over each pair of external lines. The
infrared divergence is cut oG by the introduction of a
small photon mass X; this makes the real and virtual
photon contributions separately convergent before the
final cancellation of the infrared divergence.

In reference 1 the probability for emitting an un-
observed soft photon is calculated under the assumption
that recoil effects are small. Roughly speaking, this
means that the requirements of energy-momentum
conservation are taken into account in computing the
phase space available to the emitted photon; but
changes in the cross section due to the dependence of
the momentum of the recoil particle on that of the
photon are neglected. This is a valid approximation if
the experimental conditions are such as to assure that
only very soft photons are emitted, and it leads to a
demonstration of the canceling of the infrared diver-
gence to all orders of approximation. However, for our
present considerations such an approximation is not
justified; and as we shall see, important corrections can
arise when the kinematics are treated correctly. Never-
theless, since it will provide a convenient way for
handling the canceling of the infrared divergence, we
give here the probability for emitting an unobserved
soft photon when recoil is neglected:
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where

ReB+8= Q
pairs

ZOZ, g, E 2

E;8;
'

E'dx
ln

p

computation of the external radiative corrections with
recoil properly treated.

A. Kinematical Considerations
i

p 2

ln dx, (2.5b)
4 g m,m;

and 2p, = (1+@)P,+ (1—x)P;. Some unimportant con-
tributions of order unity have been neglected. The
energies E;, B;, and E, appearing here have to be
evaluated in the Lorentz frame in which E is isotropic.
In case particle i is extremely relativistic relative to
particle j (i.e., p,"pj))2ripej), the leading logarithmic
contributions to the summand of (2.5b) may easily be
evaluated; the result is

2P,"P; E„2 222j E;
( );—— ln —1 ln +ln—ln—

224,422j Eg; 224; E,

Ej 2P4 Pj—-', ln' ——-,'ln' 8(222j2 —2p; p )z' m2'

2P"Pj
2

2P4'Pj——,
' ln' 8(n242 —2p,"pj)+-2' ln

m"

(when P,"Pj))224;222j), (2.6)

where 8(n) = 1 or 0 for rr) 0 or n (0.The only contribu-
tions which have been neglected are those of order unity
(i.e., terms which remain bounded or tend to zero as the
various energy ratios become large). It is also of some
practical significance to note that (2.6) contains no
Spence functions. In fact, the calculation has been
arranged in such a manner that all the Spence functions
which occur have argument less than one; they are
therefore of order unity and can be ignored. Of course, in
a complete calculation these terms would have to be
recovered; this, however, would be one of the least
difhculties in doing a complete calculation. The terms
multiplying the 0 function can occur only when m;)&m;
or ns;)&m;. Some additional remarks should be made
about this result. The last term in both (2.5b) and (2.6)
is related to the ultraviolet divergent part of the con-
vection contribution. As discussed in the Introduction,
the approximation of neglecting k inside the residual
matrix element may, therefore, not be terribly well justi-
fied for this term. In particular applications it is then
necessary to make a detailed study to verify whether it
is justified to retain this term in comparison with other
neglected contributions. Another term of similar order
of magnitude is the vacuum polarization and it should
be put in explicitly whenever it occurs. The only other
important logarithmic contributions that are known are
those associated with the spin-convection contribution;
they will be discussed below. We now turn to a more
detailed discussion of the kinematical problem and the

We would like to derive the external radiative correc-
tions to a scattering process in which either (but not
both) of the particles is detected. While we do not wish
to specialize the calculation to any particular physical
system, rather idealized experimental conditions will
be assumed. One of these is that the incident beam is
perfectly defined; in practice our result would have to
be folded into the energy spectrum of the incident beam.
It is also assumed that the detector spans a well-
defined angular range (8, )8)8;„)and momentum
range (p, )p)p;„) and that the probability for
detecting a particle is uniform in this range. Three
special cases will be considered: (a) Angular resolution
is sharp and the momentum resolution includes elastic
scattering; the result then depends on hp, the maximum
momentum the particle can lose below its elastic scatter-
ing value. (b) The energy spectrum of particles scattered
in a fixed small solid angle. (c) Sharp momentum resolu-
tion and the angular resolution includes elastic scatter-
ing; the result depends on 60, the di6erence between the
elastic scattering angle (8.2) and the minimum detection
angle. Case (c) can arise when the elastic-scattering
momentum has a rapid angular dependence. As will be
evident later, the results for Cases (a) and (c) can be
determined by a single calculation. Case (b) is simply
determined from Case (a) by differentiation.

We shall try to evaluate all integrals for arbitrary
values of mass, energy, and momentum transfer; the
results may then be specialized later to given choices of
projectile and target. The only restrictions will be that
the incident particle be extremely relativistic and that
the momentum transfer be large compared with the
mass of the incident particle. To avoid an awkward
nomenclature, we shall often refer to the incident
particle as an electron and the target particle as a
proton; in fact, this particular scattering process is one
of the major applications of our result. However, by
setting the masses equal, the result will apply equally to
electron-electron or electron-positron scattering. Sy
setting the mass and charge of the projectile equal to
zero, we shall obtain the radiative corrections to
Compton scattering. The latter process has not pre-
viously been evaluated for actual experimental condi-
tions. We do it here at the expense of omitting some
terms of order unity; those terms could of course be
recovered by comparing the present calculation with
that of Brown and Feynman. See also the remarks in
Sec. IIIA.

For elastic scattering the electron's initial and final
momenta are, respectively, pi and ps, while those of the
proton are ps and p4. The angle of the elastically

4 L. M. Brown and R. P. Feynman, Phys. Rev. SS, 231 (1952).



N. MEISTEP~ AN D D. R. YEN NI E

Pl+P2 P3+P4y (2.ga)

pi+ p2= p3'+ p4'+k (2.8b)

Experiments in which the incident or target particle
is detected will be labeled, respectively, I or II, with a
subscript a, b, or c to denote the type of detection. For
example, Experiment I means the electron is detected
at an angle 83 with a momentum loss smaller than AP3.
To keep the discussion general, the charge of the electron
is called Zie and that of the proton Z2e. Unless specifi-
cally indicated, energies and momenta are given in the
laboratory system.

Some important kinematical relationships will now be
derived and listed. The first of these are the energy and
momenta of the final particles as a function of their
direction for elastic scattering. Ke always assume condi-
tions such that the incident and scattered particle is
extremely relativistic (Ei))4433 and E3))ml); then we
easil find

scattered electron is 83 and that of the recoil proton is
04, both of these are measured from the direction of the
incident beam. Furthermore,

p2 p2 4N2

P2 P4 4332 ~

For scattering with bremsstrahlung, the final momenta
are primed. Energy and momentum conservation in the
two cases are expressed by

Then
k ' p 4 = 40 (E4 + 4tl) = r l~ (2.11c)

where co= (k'+X')'i' and E4' (k'——+nz2')'". Solving for
Cv, we find

4d =yl/(m22+2yl)'". (2.11d)

k p3' ~(E3'+4d) =y2, (2.12a)

p4 (El+2432) 2332

72= (IP I
—I14'I),

E4 (E4+2i32)
(II. and II3) (2.12b)

y2 =PlP4 sm84 (84—84'),

~=V2/(2i3i'+2V2)'",

where
E3'= (4i342+k2) '~2.

(2.12c)

(2.12d)

Also let I'~ be the maximum value of yi for either
Experiment I or I,. Then it is interesting to notice
the behavior for two situations. If nz2'&)I'l (for example,
if 4232)Ei), we have simply k=yl/2432 and the recoil
proton is never relativistic in the special frame. On the
other hand, if r~))m22, the recoil proton has a non-
relativistic velocity in the special frame for small y~
and a relativistic velocity for large p&. It is just this
dependence of E4' on k which was neglected in the
calculation of B. For experiment II, the corresponding
expressions are

2El4N2 (2332+El) cos84
4

(ts2+El) —El cos 84 d P3 d P4
8(p +P.—p.-p ) I~.l,

EQ E4(2l32+Ei) +El COS 84
E4—nz2

(2332+El) '—Ei2 cos'84
(2.10b)

where E denotes the region of phase space permitted by
the detection arrangement. This expression is invari-
antly defined, and hence, the following analysis can be
performed equally well in the laboratory or the center-
of-mass coordinate system; however, most present
experiments of the type under consideration correspond
to the laboratory system which will be employed here.
For the various experiments this reduces to

For each given momentum loss of the particle being
detected, there exists a Lorentz frame in which the
energy of the photon is isotropic. This frame is the
center-of-momentum frame of the photon and the un-

observed particle. Suppose the four-momentum of the
electron is p3', while the corresponding elastic scattering
value is P3. Then the energy of the photon in the special
frame may be determined from

p3 El/q with g
—1+(El/2l32) (1—cos83) (2 9) Again, I'2 is the maximum value of y2.

Consider next the integrals over the final phase
and space of the particles. For the elastic scattering part this

(2.10 )

(p4'+k)' —4432'= 2k p4'+V=28P3 (pl+ p2),

where
8P3=P3—P3' ~

For Experiments I, and Iq, p3' is parallel to p3, hence,

'yl= 8P3 ' (pl+ p2)

42325(IP31 —
I
Il3'I), (I.»d 13) (2»a)

and for Experiment I.

P3'
— dQ3 IM, I', (I.»d I,)

nS2Eg
(2.13a)

P3dg, IM, I2, (I,)
plE3

p4 (E4+4432)
d04 Iiv3I', (II. and 113) (2.13c)

4N2 (El+4232)

yl ——plp3 sin8, (8,—83'). (I.) (2.11b)
dP« l~ol'.

plE4
(2.13d)
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The inelastic scattering contribution to the observed
cross section takes the form

dsPs dP4 dk
~(pi+ps ps—' p4—' k)—( ")

A3 E4 GD 8=B(1)+B(2)+B(12), (2.15)

B. Details of the Convection Contributions

It is convenient to rearrange (2.3) into the sum of
direct terms for each of the particles and an interference
contribution

Consider Experiment I. Since the integrand is an in-
variant, the integration over k and p4' may be carried out
in any reference frame. For each fixed value of ps', it is
convenient to use that frame in v hich the photon energy
is isotropic; it is specified by the vanishing of the space
part of (pi+ ps —ps'). With the aid of the h function, the
integral may be reduced to

B(12)=—izlZ2 d'k —
(2pi —k)„(2ps+k)„

k' —Xs k' —2k Pi k'+2k. Ps

where B(1) is the s=1, j=3 contribution, B(2) is the
i=2, j=4 contribution, and all other terms are com-
bined into the single expression

d ps

7lZ3'
(MdQ( ),

—
(2p, +k) ~ (2p,—k) ~-

X (2.16)
k'+2k ps k' —2k. p4

where co and Z4' are defined in. (2.11). The remaining
factor in the integrand is to be evaluated at the ap-
propriate values specified by the 6 function; dQ indicates
an integration over angles in the special frame.

For experiments I.and I~, we have

d'ps' dDsps"dps'

E3' E3'

dQsPss

m281

If the two particles are identical, 8 is symmetric under
the interchange of the two initial or the two final
momenta, but the separate terms in the decomposition
do not have this property.

Now (2.4) must be generalized for the case where
recoil is important. To make the external radiative
correction approximation, we neglect all k dependence
in the integrands of (2.14) except that appearing in the
convection factors. It should be remarked that this
approximation involves neglecting k not only in the
Dirac operator, but also in the final-state Dirac
spinors which are held fixed at their elastic scattering
values. In place of (2.4), we then have for the real
photon contribution to the observable cross section

while for Experiment I„we find

d ps ps dpsd4s
sin93'd03'

E3' E3

where

2M

20!BOp)

0 Pi
kMdQ S.

(2.17a)

(2.17b)

psdpsd4s

1@3

Note that the kinematical factors are, respectively, the
same as in (2.13a) and (2.13b); a similar result is true
for Experiment II. Since the incident Aux factors are
the same for elastic and inelastic scattering, the frac-
tional corrections from inelastic scattering take the
form

r; d&.
GPkdn(. )/ ~

IVQ [, (I,I„II„or II,) (2.14)
0 Yi

wherei=1 or 2.
In summary, the calculation is to be carried out in the

following manner: for each fixed value of y;, the integra-
tion over photon angles is to be carried out in the special
Lorentz frame in which the photon energy is isotropic.
The result is then to be integrated with respect to y; in
order to obtain the desired radiative correction.

Ke shall akeays use the index i for the detected particIe
and j for the undetected one. Thus, we set i =3, j=4
for Experiment I, and the reverse is true for Experiment
II. S' is defined by

s =s (1)+s (2)+s (»),
where

(2.18a)

nZi pi~ ps
s'(1)=-

4rs k Pi k Ps'I

nZs f ps„p4„
s'(2) =—

4~' &k p, k.p4f
'

3'

27r' k pi k ps' k ps k p4')

(2.18b)

(2.18c)

The difference between 8 and 8' is that in the expression
for B all the momenta p&' are approximated by their
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elastic scattering values p~, in 8' the p~' are functions
of 8p; through the conservation laws.

In order to make use of the infrared cancellation
which has already been included in (2.5), we rewrite 8'
in the form

where the following notation has been introduced:

aq ——pq p3 A—xEs(1—cos03)

—m2(E4 —m2),

where

8'=8+58,

dQ (R&S$,

(2.19a)

(2.19b)

a2= p2'p4= m2E4,

C~ a,y (ap —m, ')'&')
pi= ln

i

—1
(ap —m)4)"' mp i

.r; d
dQ f Lk2S j—Lk'Sj). (2.19c)

28'—ln —1
ml2

for a~))m~2,

(2.21)
0 Pi

Again, i refers to the detected particle in either experi-
ment. In the last of these equations it is safe to set the
photon mass equal to zero because S'—S vanishes for
y, =0. In order to agree with the definition of 8 given in
(2.4), it is necessary for the photon energy Cu to be
defined differently when it is associated with S. It is
given simply by y,/m;; the square brackets in (2.19c)
are to emphasize that k is to be calculated differently in
the two terms. If the experimental situation is such that
the undetected particle is nonrelativistic in the special
Lorentz frame for all k (i.e., if mP)F, ), 88 may be
neglected and the convection contribution reduces to

Z12 2

p, ln +pg' ——', ln'q
2x ns2'E1E3

Z1Z2 F1
+ —Ing ln —Ing+P (2E&/m2)

2Ã nZ2'E1Esa2'

—P (2E3/m2), (I. and I,) (2.20a)

2 (a)—m(')
for a~—m~2,

3 m$

1 a~+mP '~' a~+(aP —m~')'~'
p)' ——— ln —1

2 c~—5$~

2a)——ln
2

P (X)= (lee.)0(1—Z).

The approximate form taken for p&' is actually valid
only for a&))m&2. In the nonrelativistic region, p&' tends
to zero; however, the error made in using the approxi-
mation for all a& is only of order unity. The function p&

is not similarly treated since it multiplies a logarithm
of F~. In evaluating (2.5) and (2.6), we have used the
fact that the energies E~ are the energies of the particles
as seen in the rest frame of the recoiling particle when
the scattering is elastic. Thus, for Experiment I:
E~ p~ p4/m2, while f——or Experiment II:E~= p~ p~/mq.

When the energy of the recoil particle can be rela-
tivistic in the special Lorentz frame, 58 can make an
important contribution. The details of this calculation
are relegated to the Appendix; however, some of the
general features will be discussed here brieQy. Ke recall
that each value of k corresponds to a definite choice for
the special Lorentz frame. We see from (2.17) and
(2.18), that the angular integration in the special
Lorentz frame involves terms of the form

ZP ( Fg' (a,
p~ »I +p~' ——,

' »'I
2x EmPay kmP

k'pi' p~' k'p~ p~
dQ™

~ ~

~

k pi'k. p
' k p&k p ) (2.22)

Z2 F'
+ p2 ln ~+p2' —-,'ln'g

2~ m, 2E,E,)

Z]Z2

2Ã

4

—lng ln —1ng+P (2E~/m2)
5$2 818381

—P (2E3/m2), (II, and II,) (2.20b)

It is necessary to state carefully what this expression
means because two different Lorentz frames are in-
volved. The angular integration in the second term is
carried out in the rest frame of the unobserved recoil
particle when the scattering is elastic; the factors of k,
of course, cancel out for this term. The angular integra-
tion in the first term is carried out in the special Lorentz
frame; for uniformity of notation, we have set pz=pz'
and p2= p~'. If neither 1 nor k corresponds to the un-
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observed particle, pl' and p3' are both independent of
angle and the integral may be easily evaluated; the
result is

, &p. 3(~k) p,3(m))

where 2P, (tk) = (1+@)P~+(1—x)P3, with a similar
definition for p '. If / and k are any combination of 1 and
2, p, equals p, ' and this integral is identically zero; the
same is true for /= 0= i. Under the assumption that the
momentum resolution is good (EP3/P3«1 or EP4/P4«1),
it can be shown that the remaining terms of this form
(l, kH j) are also unimportant; the details are in the
Appendix.

In case k or / corresponds to the unobserved particle,
the corresponding momentum will depend upon the
angular variables in the integration. For example, in
Experiment I we have

k'p4
and

pl' p4'= pl' (p4+&p3) pl' k —
(„4)

=p4'pl k'pl .
In evaluating the integrals, we are interested only in
keeping contributions which can be large under fore-
seeable experimental conditions. If terms of non-
logarithmic order are neglected, the calculation is rela-
tively easy; the details are given in the Appendix and
the results are contained in the following formula:

z,' p 2r;—-,'ln3~ 1+ . (2.2S)
2~ k 4l«, 3

The energy spectrum may now be obtained from
(2.20) and (2.25) by differentiation:

40 CXO 0 2r
2Zl'pl+Z3' 2p3 —ln 1+

~

—4ZlZ«in'
dp3 «rBp3 m3'J

(exp. I), (2.26a)
d0' Qfo 0 2r

2Z3'p3+Zl' 2»—» 1+
dp4 Vr5p4 ml3)

(exp. II). (2.26b)

In the terms arising from 68, the denominators should
be 5P;t 1+(«l«P/2r;)) rather than 8P, . However, these

terms are important only if r&&mp, and in that case the
given approximation is valid.

C. Syin-Convection Contributions

The convection contributions discussed in the pre-
vious subsection are independent of the spin of the
charged particles. If the particles have spin, additional
terms, such as (2.1b), will appear in the factors for
emission and absorption of photons. These terms depend
on the details of the current distribution at somewhat
smaller distances than the convection terms. This is
evidenced by the extra powers of k they contain, which
tend to emphasize the harder photon contributions.
However, as will be seen, the interference between the
spin and convection terms has a part which is large (i.e.,
logarithmic in a large energy ratio) and is independent
of the specific details of the scattering interaction. In
contrast to the infrared part of the convection terms,
which is characterized by an integral of the form J'dk/k,
the spin-convection contribution is characterized by
J'dk/E, with an upper cutoff of order E for virtual
photons and AE for real ones. Thus, the approximation
of neglecting k inside the residual factor in the matrix
element is not likely to be as good in the latter case.
However, there seems to be no indication that the
correction to this approximation contains logarithms of
large energy ratios; this of course does not prevent it
from having a large numerical value.

In view of these remarks, the significance of the spin-
convection contributions is somewhat uncertain in the
general scattering situation. However, they may then
give us some information about the order of magnitude
of the errors in the straight convection approximation.
In any case, there are numerous important applications
where the basic scattering is given quite well by the
Born approximation; the approximations required can
then be studied in detail and they are generally found to
be quite adequate. The following analysis will be for
Dirac particles only, with no anomalous moment in-
cluded. The contributions of the anomalous moment of
the proton in electron-proton scattering will be discussed
explicitly in Sec. III.

Consider the virtual photons first. If the incident
particle has spin one-ha, lf, it contributes the following
spin-convection term:

m(1) =
4n'

«Z, 'n d'k «4(P3){r(P3 k, Pl k)LI3)P3]+LPl,kjr(P3 kg Pl k)}Q(Pl)

k' (k3—2k p,)(k' —2k p,)
(2.27)

where F is the y-matrix operator appearing in the basic
scattering matrix element. In order not to make use of
the detailed properties of I', we wish to arrange the
calculation in such a way that p matrices need not be

shifted through it. In fact, if we restrict our attention to
logarithmic terms, we will find that it is possible to
eliminate the extra y matrices and thus express hM(1)
in terms of Mo. If the k dependence of F is neglected,
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the integration with respect to k is easily carried out and
it leads to the result

with
Bf(1)=nc(1)Mp, (2.28a)

Zi' ' dx Zi' 2Pi P3
C(1)= pi p3 — ln . (2.28b)

4m- i p.' 2gr mi3

By the same arguments (we see in the Appendix that
the neglect of terms proportional to m2 gives no ap-
preciable error), we 6nd for the interference of spin and
convection currents of the target particle

Z3' a3 (a3+ (a3' —4i33') ' )
C(2) = »I

I
(2 29a)

(g33 yg34) i/3 ( A@33 j
which reduces to

Z2 2p2 p4
ln when p3 p&)4433'. (2.29b)C(2)=

2'

The latter approximation will be used for all values of
p3'p4 although it yields a small (order unity) error for
small p3 p4.

For the cross terms between particle 1 and particle 2,
we have to distinguish the contribution from the
interference of the spin current of particle 1 with the
convection current of particle 2 called C(12) with the
corresponding contribution C(21). The result, whose
derivation is presented in the Appendix, is

Z1Z2 p2 ' p3
C(12)=C(21)= ln

2Ã Pi' P3

Z1~2
in'. (2.30)

Thus, the contribution from the spin of particle 1 to
radiative corrections is given by

2 [C(1)+C(12)j,
and similarly the contribution from the spin of particle
2 is

243[c(2)+C(21)g,

At erst sight, the real photon spin-convection terms
involve integrals of order uJ'dk/E and they should
accordingly be of relative order nhE/E. However, if the
undetected particle is extremely relativistic in the
laboratory, a photon emitted parallel to it can carry off
considerable energy and a much larger contribution
might be obtained. %hen this situation attains, it is no

Z'n ' dx
gM(1) = ((1+~)u(P3)r[P„P3$N(P,)

16' ip'
+ (1—*)+(P3)EPi P33'N(Pi)),

with 2p, = (1+@)pi+(1—x)p3. Now if terms of order mi
are neglected (ultimately in the cross section they would
be of order mi3/Ei3), the comrnutators can be replaced
by the invariant scalar product 2p,"p3 and we find

longer prohtable to attempt a general analysis since
other features, such as variation of the traces through
the dependence of the final momentum on k, will be of
comparable importance. Accordingly, we do not include
these terms among what we choose to define as the
external radiative corrections. These contributions are
discussed in greater detail in the following section.

III. REFINEMENTS AND LIMITATIONS

The preceding section contains most of what can be
said in a general way about the radiative corrections
without a detailed consideration of the basic processes.
Before turning to some of the re6nements which are
possible for specific processes, let us review qualitatively
the origin of the logarithmic terms. The doubly loga-
rithmic terms are associated principally with the
infrared divergent integrals; roughly speaking, one
logarithm comes from the strongly peaked angular
integration and the other from the dk/k integration. ' In
the case of the virtual photons, the upper limit of the
dk/k integration is effectively determined by the ex-
ternal momenta. In making the external radiative
correction approximation, the dependence of the basic
factor on k was neglected. If this variation with k is, in
fact, not too violent, the doubly logarithmic terms
should be well estimated. "The effect of the variation of
the basic factor on k may perhaps be estimated by
expanding it in a power series in k. The linear term in
k would no longer contain an infrared divergence, but
it could yield a single logarithm from the angular
integration. This procedure will be used in one of the
estimates that follows.

In the noninfrared parts of the external radiative
corrections (occurring in both the convection and spin-
convection contributions), some single-logarithmic terms
are associated with the strongly peaked angular inte-
grations times a nonlogarithmic dk/E integral. Others
are residues of the spurious ultraviolet divergence, which
is logarithmic. Clearly if there is any important varia-
tion of the basic factor, these terms have not been
reliably estimated. In that situation there is no justi-
Gcation in retaining them if the corrections mentioned
in the preceding paragraph are ignored. In the most
general situation, we therefore regard only the dominant
doubly logarithmic terms as having been reliably
estimated.

Fortunately, in most of the contemporary or possible
experiments in which radiative corrections are likely to
be an important consideration, a more detailed study is

~ More precisely, the form of the doubly logarithmic terms
occurring in I3 and 8 separately depend on the type of infrared
cuto8 employed. However, the ambiguous terms cancel in the sum
8+8.

'o In case the basic factor already contains infrared divergences,
its variation with k is important. This problem of overlapping
infrared divergences is discussed in Appendix A of reference 1,
where it is shown that the neglect of this k dependence is com-
pensated by the neglect of photon emission and absorption from
internal lines.
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possibl. Some of these refinements on the general dis-
cussion will now be presented.

exact one, ' we find a difference (exact minus approxi-
mate) in B of

A. The Effect of the k Dependence of the
Basic Process

pl'p4)
BB + —ln'—

pi ps&
(3.3)

Suppose the basic scattering is due to the exchange of
a single photon. Consider two-photon exchange; in
obtaining the convection contribution for the soft
photon, we have made the following approximation
relative to the hard photon:

1/(q —k)' 1/q'. (3 1)

The correction to this approximation corresponds to
inserting an extra factor (2k. q/q') into the definition of

B(12), Eq. (2.16). The resulting correction is easily
found to be

3Z]Z2
6B(12)= in', (3.2)

which is important enough to be included in our final
formulas.

Suppose the basic interaction is more complicated,
but still may be expressed by a function G(q'). Then
(3.2) must be multiplied by a factor

—q'G'(q')/G(q'),

where the prime denotes differentiation with respect to
the argument. If the scattering is due to electromagnetic
interaction, but involves finite structure, G(q') takes
the form F(q')/q', where Ii is the form factor, and the
correction factor which should multiply (3.2) becomes

1—q'J'(q')/F (q'). (3.3)

The second term, which might become more important
than the first in some circumstances, has been omitted
from the tabulated formulas presented in the following
section.

The preceding argument is valid only when the basic
factor does not vary much within the range of values of
k which are important in the integral. Some examples
where this variation must be considered more com-

pletely will now be cited. The first of these is electron-
electron scattering at small center-of-mass angles. Then
q' is small and the magnitude of (2k q/q') might
become large. To see how important these effects might
be, we may compare the contributions obtained by the
present methods with the exact two-photon exchange
contributions. ' The surprising result is that our methods
yield quite accurate answers for this example. Another
example is Compton scattering near 180' in the center-
of-mass system. The dominant diagram is the one in
which the incoming electron emits the final photon
before absorbing the initial one. The intermediate
electron propagator then yields the small denominator

2p3 p2. In this case if we compare our result with the

An exact calculation of 8 for large energy loss has not
been done, so we cannot determine the corresponding
error ~ in the calculation of real photon emission. To
the extent that AB and ~ are associated with infrared
photons, they may tend to cancel like the doubly
logarithmic terms which depend on the type of infrared
cutoff. The term (3.3) is not included in the tabulated
result of Sec. IV; the results for Compton scattering
are clearly less reliable than those for the other processes
tabulated.

We conjecture that the difference between electron-
electron scattering and Compton scattering arises as
follows. The effective range of integration over k which

yields the major contribution is determined by the
external charged lines. For small q in electron-electron
scattering, the range is proportional to q. Thus, as q

decreases, k q/q' does not increase in importance. On
the other hand, for Compton scattering the important
range of k is probably determined from (p&

—p4)', which
is large relative to 2p2 pa in the situation under con-

sideration. Important corrections result.

B. The Effect of the Anomalous Magnetic
Moment of the Proton

In electron-proton scattering, suppose that the extra
soft photon exchanged between the two particles
interacts with the anomalous moment of the proton
rather than with its convection or spin current. Corre-
sponding to the fact that the photon is assumed to be
soft, we consider the terms with the least number of
powers of k in the numerator and we neglect the
dependence of the basic interaction on k. It is then easy
to give an argument why these contributions vanish to
logarithmic order. For example, suppose the photons
are exchanged between the incident particles; we then
have to study the structure

Ppil d4k

(p2+~2) 44(p2).
(k' —2k p2)(k'+2k pi) k'

But the result of the k integration can only replace the
k in the commutator by P2, it is then trivial to see that
the remaining Dirac operators acting on the proton
spinor give zero.

The point of this demonstration is that no logarithms
arise from the interaction of soft photons with the
proton's anomalous moment. However, if we take into
account the variation of the basic interaction with k, or
the contributions from electron spin interacting with
the proton moment, a nonvanishing contribution could
occur. These contributions come mainly from the region
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of very large k and they are not easily included within
the framework of our present discussion.

C. Small Virtual Electron Four-Momentum

A situation in which the integration over virtual
photon momentum might have a large contribution
due to several denominators becoming small simul-
taneously occurs as follows. The virtual photon emitted
by the incoming electron takes nearly all the energy and
momentum of the electron. It then scatters from the
proton as a nearly real photon and is reabsorbed by the
electron. We might view this qualitatively as a Compton
scattering of the Lorentz contracted proper 6eld of the
electron. Letting p be the momentum of the virtual
electron, we consider the contribution arising from the
region of small p:

n(ps) d'p
(P' —2Pt P+ttsts) (P' —2P, P+mts)

(p+mt)
Xv~ v„g(pt).

p —Sit

As in the case of the spin convection and infrared terms,
a logarithmic factor arises from the angular integration.
More important, the factor p is replaced (in form) by
Pt+Ps, we then 6nd

(Qxply+ psxyp) Xlog.

When this is combined with the factor associated with
the scattering of the photon by the proton, which we
denote simply by F„z(p&,ps, ps, p4) (p is here neglected),
the result is zero by gauge invariance:

pt"~,) =ps"&,~=o

Thus, no large contribution arises from the situation in
which the virtual electron is "soft."

In this subsection and the preceding one, the two-
photon exchange terms have been studied from the
point of view of radiative corrections. Other studies"
have placed the emphasis on the off-the-mass-shell
Compton scattering by a physical nucleon. While a
critical study has not been made of the extent to which
the two methods overlap and the extent to which they
are supplementary, it seems significant that they agree
that the specific two-photon terms are unimportant at
energies below 1 BeV. Our analysis shows that, as a
consequence of gauge invariance, an unusually large
nucleon Compton scattering need not result in a large
two-photon contribution. There is no theoretical indica-
tion that these terms will become important at higher
energies, but neither is there proof that they do not. The
situation is also subject to experimental study by com-

"S. Drell and M. Ruderman, Phys. Rev. 106, 561 (1957);
S. Drell and S. Fubini, ibid. 115, 741 (1959).

parison of electron-proton and positron-proton scatter-
ing, the difference in cross sections being due to the
interference between the one- and two-photon terms.
Present experiments" give no indication of a significant
two-photon term at incident energies of 200 and 300
MeV. Two-photon contributions could also introduce
terms in the cross section which would make it im-
possible to fit the experimental data with the Rosen-
bluth formula. '3 There is no experimental evidence for
such a "breakdown" of the Rosenbluth formula. "

D. Radiative Corrections to Electromagnetic
Scattering of Spin-Zero Particles

Radiative corrections to scattering of spin-zero par-
ticles have already been partially included in the so-
called convection contributions. However, in case the
basic interaction is electromagnetic, there are certain
additional refinements which we would like to describe

briefly. These refinements are actually of no practical
importance, because in actual physical situations the
basic interaction is nonelectromagnetic.

The first of these refinements is that two photon lines
may terminate at the same vertex because of the A'qVp
term in the Lagrangian. Thus, it is possible for a virtual
photon to have one end terminate on the external boson
line and the other terminate at the same vertex as the
exchanged photon. It is not difficult to show that this
gives purely a contribution to the "spurious charge
renormalization, " and is, hence, not of interest. The
second refinement comes about because the photon
emission operator depends on the momentum of the
charged particle. Thus, in the radiative correction in
which the boson emits a virtual photon, exchanges a
photon, and then reabsorbs the virtual photon, the
emission operator for the exchanged photon has the
factor (pt+ps —2k)„ in place of the factor (pt+ps)„ in
the basic matrix element. Using standard methods, the
—2k„results in a contribution to be added to 8:

(3a/2') ln(2p, ps/est').

E. Other Refinements Involving Virtual Photons

Some other re6nements are relegated to the Ap-
pendix; these are necessary for the justification of some
of the approximations which have been used, but they
are not in themselves of any great intrinsic interest.
They will be described very briefly here. One of these is
electron spin-proton convection contribution arising
from an additional exchanged photon. In Sec. IIB, this

u D. Yount and J. Pine, Phys. Rev. 128, 1842 (1962).
u M. N. Rosenbluth, Phys. Rev. 79, 615 (1950); the possible

form of such anomalous terms has been studied by D. Flamm and
W. Kammer (to be published).' K. Berkelman, R. M. Littauer, and G. Rouse, in Proceedings
of the 196' International Conference on High-Energy Physics at
CERE, edited by J. Prentki (CERN, Geneva, Switzerland, 1962),
p. 194.
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term was treated by neglecting powers of the proton
mass in the numerator in comparison with its energy.
On its face, this is not a good approximation unless
the electron energy is very much greater than the
proton mass; nevertheless, the error is shown to be
unimportant.

extra powers of k in the numerator may be neglected. In
integrals containing a factor (1/k ps'), the other k's in
numerator and denominator may be replaced according
to the substitution

For example,

F. Refmements in the Calculation of the Real
Photon Contribution

k ps ps' ps

k ps'k ps k ps'ps pa
l, k/3

In some situations, the kinematics permit the un-
observed photon to have an energy comparable to that
of the unobserved particle. For example, if the proton
is detected in high-energy electron-proton scattering,
an unobserved photon emitted parallel to the electron
can carry away most of the unobserved energy. The
approximation of neglecting powers of k in the numera-
tor is then no longer valid, and the calculation must be
reconsidered carefully. In addition to the explicit k de-
pendence of the integrand, there is an implicit one due
to the dependence of the 6nal electron projection
operator on k:

ps'+t)si
= (ps —

0+ bps+ vasss)/2ssss.

In the calculation of Sec. IIB, this projection operator
was aPProximated by (Ps+ms)/2ssss.

A direct calculation of the additional contributions
arising from tt dependence would be possible, but some-
what lengthy. Fortunately, as we are interested only in
the logarithmic terms, it is possible to give a rather
detailed discussion without explicit evaluation of the
traces. As usual, the logarithmic terms turn out to be a
simple multiple of the original traces. For de6niteness,
the discussion will be given for Experiment II. Recall
that the product of the traces can be reduced ultimately
to a polynomial of invariant products of the momenta

p), ps, ps, p4, Bps, ps', and k. Because of the conservation
equations (2.8), there are various relations between the
invariant products. Clearly, since 8p4 is small, it can be
neglected everywhere in the trace. Also, ps' may be
eliminated by:

ps'= ps —k+~p4,

k p)k ps 1 ps p)ps. ps
I, k, nz/3.

k. ps'k p 2k ps'ps p

The 6rst term is the one already included in 8'. With
the substitution k-+-', ps and the approximation pss
=as~'—0, the second and third terms cancel. Thus, the
interference terms may be ignored; this applies also
to interference terms in which the other factor corre-
sponds to emission from an internal line. Finally, the
term involving emission only from line 3 involves

(2p '+&7.) (2p»'+v. k)"
,

"p'
2k ps' 2k ps'

~ ~ ~ ps ps
(k.ps')' 2k ps'

The 6rst term is already incorporated in 8'. The second
term is proportional to the original trace and yields the
radiative correction

If there are higher than two powers of k in the numera-
tor, an additional numerical factor is required. However,
in all these cases, it will turn out that cancellations will

give a result which is identically zero.
Because of these simple results for the integrals, we

can neglect all terms in the trace which do not involve
photon emission from external line 3;wherever possible,
factors of no~ are neglected. Let us consider 6rst the
interference terms; the pertinent factor in the traces is

(2ps'+v. &)

2k ps'

(ps2ps„' —2%ps„+ps'„k)/2k ps'

The product of traces then depends on invariant
products of p~, ps, ps, ps, and k. Its value for k =0 is just
the trace occurring in elastic scattering. We have then
to consider integrals in the special frame with poly-
nomials in k p) in the numerator. The detailed con-
siderations are given in Appendix D; and the results,
which are simple, are the following. If the integrand has
the form

ass/(k Ps')' or 1/(k. P))(k.P),); l, k83,

eZ s ( 2I';)
in' 1+

4)r k siss)
(3.4)

where i refers to the observed and j to the unobserved
particle.

IV. SUMMARY OF RESULTS FOR VARIOUS
EXPERIMENTS

The aim of this section is to assemble the various
contributions derived in Secs. II and III into convenient



1222 N. MEISTER AND D. R. YENNIE

formulas for various possible experiments. Since terms
of order unity have already been neglected in approxi-
mating the various integrals, we omit terms from the
general formula which will be small in any foreseeable
practical energy range. An exception to this remark is
that we keep certain terms of order one when they are
associated with the electron vertex function or vacuum
polarization. There is no particular justification for this,
except that the numbers are simple and well known. It
would be feasible to calculate these terms of order unity
for pure electrodynamic processes —in fact, they are
partly contained in some earlier exact calculations —but
present experimental accuracies for this type of experi-
ment do not seem to warrant the effort at the present
time. To get an estimate of the error involved in neglect-
ing these contributions of order unity, we note that they

are to be multiplied by (n/x) to yield a relative correc-
tion to the cross section. An educated guess is that errors
as large as 1% are likely, but errors larger than 2% are
not likely. Although some new notation is introduced
here most of the quantities are defined in Secs. IIA and
IIB. Particularly to be noted are (2.9), (2.10), and
(2.21).

A. Electron Scattering from a Proton with
the Electron Detected

To conform with the notation of Tsai, we set ns1=m,
m2=3f, Z1——1, Z2= —Z, where Z is 1 for electron-
proton scattering and —1 for positron-proton scatter-
ing; AE3 is the energy resolution of the electron detector
as discussed in Sec. IIA. According to (2.10) and (3.2)
the fractional correction is then given by

8=2n (ReB+B),

Zn (Et ' DEs '
+—lnt) ln tl~— —P (2Er/M)+P(2Es/M)

s. (E4 Es

+ —ln( ~

—1 ln ( ) +—ln( )
——ln'~ —

) . (4.1)

It has not been necessary to include 88 in this expression
since it is negligible for all feasible energies. By differ-
entiation, we find for the spectrum of scattered electrons

do op n 2P]'Ps
— 2 ln —1 +4Z 1nt)

dPs 6Ps s. sos'

E4 E4+p4
+2Z' —ln —1 . (4.2)

4 M

Table I contains two numerical examples of the appli-
cation of (4.1); they are the same examples given by
Tsai, whose results are labeled 6*. Ke may note the
following differences between the present calculation
and Tsai's: (i) The terms retained by Tsai are expressed
in terms of Spence functions; in e6ect, our calculation is
arranged so that all Spence functions are of order unity
and they are neglected. (ii) In the Z and Z' contribu-
tions we retain spin-convection and noninfrared con-
vection terms which Tsai neglects; these terms have a
single power of a logarithm of energy ratios, but they
are not numerically very important in the cases con-
sidered. The difference between these two approxima-

CoeKcient of
Case a/sr Ze/~ &2~/~

A
B
A'
Bl

—47.7
-58.2—53.5—44.1

—13.0—31.2—18.4—30.1

—0.8
702—1.9
7 ~ 1

—0.142—0.225—0.171—0.191

—0.150—0.210
—0.082—0,080—0.086—0.051

-0.086—0.099

tions is not unreasonably large; and as far as accuracy
is concerned, there is no great basis for preferring one
over the other.

B. Electron Scattering from a Proton with
Proton Detected

The principal difference between this and the preced-
ing example is that 8B is quite important, corresponding
to the fact that a photon can carry off a large amount of

TABLE I. The table contains the fractional radiative corrections
for electron-proton (e —p) and positron-proton (e+—p) scattering.
A and B are experiments in which the electron (or positron) is
detected and 2' and 8' are experiments in which the proton is
detected. The results of this paper are given by 8, and those of
reference 3 by 5*. The experimental conditions for the various
experiments are:
A(A'): Ez=900, E3=327, E4=1~11, ~En=13.1 (~p4=10);
B(B'): Er=5000, Es ——500 E4=5438 aEs=10 (ap4 ——110).
where the energies and momenta are in MeV.
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energy if it is emitted parallel to the 6nal electron, even
if the energy loss of the proton is relatively small. An-
other complication of lesser importance is that it is

necessary to treat the electron trace in its entirety,
including spin contributions, as discussed in Sec. IIIF.
The fractional correction is

n (2pi p» 17 2pi p») 28
ln~ —I lnA+ —ln

~

————', ln'A. ——' InA
m' 12 m' ) 9

Zn —(pi. pg)'
+—in' ln A» P(2E—,/M)+P (2E»/3I)

M'E~E3

Z Q E» (E»+p» {pi ps) (2E»)—in~ —I in A +-;in~
~

—-', in'g, (4.3)
p, E m Af2E»E, kmi

where A= $(Ei+M)/E»$(b p»/p»). The energy distribu-
tion of the recoil protons is

»fo 00»x 2pi' p»
ln —1—lnA —»3 +4Z in'

dp» 5p» 7r»»»'
E» E»+p»

+2Z' —ln —1 . (4.4)
M

It should be noted that the "radiative tail" is con-
siderably smaller in proportion to the cross section than
for the case where the electron is detected; it also de-
creases somewhat more rapidly with increasing energy
loss. Table I contains numerical examples for the same
experimental parameters worked out previously for the
electron detection experiment. It should be noted that
(4.3) disagrees with the result obtained by Krass. » The
disagreern. ent can be traced to an error in the hard
photon calculation in reference 4. In particular, the
equation giving k p3 after (3.18) should be replaced by

& p»=—(p»"/p3) (&.p»")

With this change, his result can be reconciled with
ours "

C. Electron-Electron Scattering

There is now no physical distinction between Experi-
ments I and II; the radiative corrections may be cal-
culated in either way and both methods give the same
results. Adhering to the restrictions imposed earlier, we
assume that both 6nal electrons are extremely rela-
tivistic in the final state (laboratory system) when the
scattering is elastic. A slight complication is introduced
because exchange gives rise to two terms in the scatter-
ing amplitude. In the doubly logarithmic corrections,
both terms are corrected by the same factor. However„
for the singly logarithmic corrections, these factors are
diferent and the scattering amplitude is not altered by a
common factor. This difhculty may be overcome by the

"Dr. Krass agrees with these remarks in a private communica-
tion.

following observation. When the two terms are com-

parable, the factors are the same. When they are not
comparable, we may simply use the factor associated
with the biggest term, with negligible error. To see this,
consider vacuum polarization which modifies the photon
propagator occurring in elastic scattering

by the factor

&/(pi —p')'

n 2ESE» L'i2 ) f Ei'
ln —1 ln r'

~

—
2 ln'~ r

mEi E»E» I (E3E»

+—"i (' ")—*, i ( '), (».»)

where r depends on the type of experiment and the

Here p' refers to either ps or p», and a linear combination
of both photon propagators occurs in the elastic scatter-
ing matrix element, corresponding to the direct and
exchange contributions. If pi p3 and pi p» are com-
parable (i.e., the same within a factor of 3 or 4), we can
use either as the argument of the logarithm with an
error of order unity. If they differ by a large factor, the
photon propagators will also differ by a large factor; and
the term with the smallest values of pi p' dominates.
Accordingly, we can take as our rule that the minimum
value of pi p' be used as the argument of the logarithm;
this is simply mE, where E is the smaller of E3 and E4.
A similar argument may be used with respect to the
two-photon terms. Recall that the single logarithmic
contributions arising from convection and spin-convec-
tion were fortuitously cancelled by the contribution of
Sec. IIIA. As a consequence, only the single logarithmic
terms from the vertex parts survive. These may also be
expressed in terms of E . The fractional radiative cor-
rection is then
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resolution

&=~P'/P'

P; sin8;
r= '

'ae,.

for type (a) experiment, (4.6a)

However, we may use our previous result by taking the
limit of the expressions for B and 88 as mi —+ 0. Only
B contributes, and the correction is

il=— ln~ )
—I ln(~')

E;i 60;—2I 1——
i

for type (c) experiment. (4.6b)
Ei) sin8;

It is also a simple matter to revise (4.5) for a clashing
beam experiment (pi+p~ ——0) where only one of the
particles is detected with energy resolution. Simply re-
place E& by the invariant p&. p2/m; r is then given by
(4.6a) with the understanding that d,p; and P; are
center-of-mass quantities. As usual, the energy dis-
tribution may be obtained by diGerentiation; it will not
be reproduced here. Equation (4.5) differs from the re-
sult of Tsai. ' His calculation uses approximations
adequate for the experimental conditions he envisaged,
but the present results are valid for more general
conditions.

D. Electron-Positron Scattering

The results are contained in a single formula:

n (2EyE4 f EP (Eg
Ini —1 Ini r' ——,

' In'i —r
5 mEg EEEE4 (E4

11 2E4) Ey )+—ln .
i

——,'ln —r i, (4.7)
3 m) mi'

where r is given by (4.6). The result may also be used in
the center-of-mass frame using the rules given in the
preceding subsection.

E. Compton Scattering with Photon Detected

In this case, particle (1) has mass and charge zero; as
in electron-electron scattering, 08 is quite important.

The result is

n /2E4 (Ei i (L'i
»I ~

i

—k»'i ~
&E4 ) &E4

2E,4 (Lip
+-,' ln —-' Ini —r . (4.8)

m km

From the discussion given in IIIA, this formula is not
expected to be very reliable for backward scattering
in the center-of-mass system, corresponding here to
gi))F3

F. Compton Scattering with Electron Detected

There is now a slight complication in that the un-
detected particle has zero mass; the separation of B'
into B and Bb is. therefore, apparently meaningless.

2E4i Ei)
(4.9)

m) E)
The validity of the limiting procedure (m&~0) has
been con6rmed by a direct calculation in which m~ is
taken to be zero and B' is evaluated directly. As in the
preceding example, this equation is not expected to
be reliable for E'i))E3.

V. DISCUSSION

Two basically diRerent approximations have been
made in obtaining the results of the preceding section.
The 6rst of these, which was discussed with the aid of
numerous examples in Sec. III, is the neglect of all
terms which are not obviously large because of the
conQuence of several small denominators. The terms
retained can be studied without reference to the details
of the basic interaction; we have termed them external
radiative correction~'. The ieterrsal radiativ)e corrections,
whose complete evaluation mould be many more times
dificult, have in most cases been estimated to be of
lesser importance. A general estimate of the error made
in neglecting the internal radiative corrections cannot
be made. In the case of Compton scattering with nearly
complete interchange of momentum between the elec-
tron and the photon, the corrections appear to be large.
On the other hand, in those cases where the basic inter-
action is due to the exchange of a photon between
charged particles, there is no reason to suppose that
these corrections are important relative to the second
type of approximation, which is the neglect of terms of
order unity (times n/m. ) in the external radiative correc-
tions. This second approximation is expected to intro-
duce an error of order 1% and probably not more than
2% in the calculated cross section.

There is one other important question to be discussed;
namely, to what extent can the higher order corrections
be estimated by assuming that the factor (1+8) is
actually the beginning of the series expansion of e',
where e~ provides a good estimate of the corrections to
all orders. It is known that the infrared part of the
radiative correction should be exponentiated in this
manner. ' The doubly logarithmic terms in the virtual
photon contribution 8 clearly are related to the infrared
divergence since they depend on the type of cutoff (X or

; ) used in the calculation. With very good resolution
(F; sufliciently small), the real photon contribution
8' (—8) is purely infrared, and so its doubly logarithmic

"See reference 1 and other references given there; a more recent
work on the same subject is K. T. Mahanthappa, Phys. Rev. 126,
329 (1962).
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contribution may also be exponentiated. With poorer
energy resolution, 58 becomes important and terms
involving the square of the logarithm of the energy
resolution arise. Although these terms are not of the
typical infrared form, their main contribution does arise
from the smaller values of the energy loss /see (2.26)].
We, therefore, make the following coejectlre. If 5' is the
doubly logarithmic part of 6, the expression

yields a better estimate of the radiative corrections than
does the original estimate (1+8).

CE '=(k+p, ') p1'=(p+~p') p1' (A3)

The resulting values of E~' for the two experiments are
the following:

Experiment I:
2N2E3+71 2232~E3 2N2E3+71

Cg

energy E&' of any other particle as seen in this special
frame can then be determined from
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y, '+k=0. (A1)

In this equation, and in the remainder of the Appendix,
we shall always let the subscript j refer to the Qnal
unobserved particle and i to the observed particle; the
spatial parts of four-vectors in this frame are indicated
by boldface type. The energies of the unobserved
constituents in the special frame are

k=y;/C and 5 = (224, +y;)/C, (A2)
with

and

When it is necessary to distinguish, we use C= C~ or C2
in Experiment I or Experiment II, respectively. The

APPENDIX A. KINEMATICAL DETAILS

As discussed in Sec. II, it is convenient to carry out
the final-state integration over the phase space of the
6nal unobserved photon and particle by 6rst integrating
over angles in a special Lorentz frame in which the
total momentum of the unobserved constituents is
zero. There is a different Lorentz frame for each value
of the four-momentum loss of the observed particle. This
section of the Appendix will be concerned primarily with
the details of how various kinematical quantities, as
seen in the special frame, depend on the momentum loss
of the observed particle. Unfortunately, the analysis is
complicated and uninteresting, but it is straightforward
and it seems unavoidable if all the terms of logarithmic
order are to be properly identified.

The special Lorentz frame is deQned by the relation

2232E1
Z3'= (A4c)

Experiment II:
tN2(E4 2242)+72 4132~E4 2242(E4 2222)++2

E1'= =, (ASa)
C

782E3+5425E4

(ASb)

sz2Ey
Z4

Obviously, in these expressions 6E; is zero for Experi-
ments I, and II,. In order to make suitable approxima-
tions in evaluating the 6nal integral over the momentum
loss, it is necessary to know whether these various
energies are relativistic or nonrelativistic. The situation
is complicated by the fact that as Sp, varies, some of the
energies may vary between relativistic and nonrela-
tivistic values. This variation is to be studied under the
general experimental restrictions we have imposed,
namely, that the energy of the incident and scattered
particle be extremely relativistic as seen in the labora-
tory, that

~
q2))22312, and the resolution of the detected

particle be reasonably good (say ~8y, (/~y;~ &0.05).
Also, we assume m~ &~m2 and if m~ ——m2 that both final
particles are extremely relativistic in the laboratory
system. As 8p; tends toward zero, the various Et' ap-
proach limits B& which are simply the energies of the
elastically scattered particles in the Lorentz frame in
which the unobserved particle is at rest. For the two
experiments these are:

I. Bg=E3) Z2=E4) EG=Eg.

II. E1——2N2(E4 —m2)/2131, E2=n42E3/m1, E4= m2E1/2131.

Now we can discuss the situation in the two experi-
ments. In Experiment I it is easy to see that B&' and
Ba' are always much greater than m&. It is also easy to
see that if 82 is large compared to 2232 (i.e., E4))2242),
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E&' will be large compared to lli2 for all 8P2. The only
case that might cause trouble then is that E2' might be
comparable to m2 for small 6P2, but might become
relativistic for larger BP2. From (A4b), this could
happen only for Experiment I. when 8E&))E4, which
implies E2))E4 and, hence, Ei/El=1. Now the condition
that E4 be a nonrelativistic energy is simply that
~q')/m2' be much less than one. But since

~
q'~))nip,

this may happen only if m&)&m&. Thus, we need
simultaneously

mi'«~q'~&&m2' and E,))8P,))m, .

In the most "favorable" case of electron-proton scatter-
ing, one couM reach these conditions by the following
experimental parameters:

El=50 BeV, 82 ——0.5&&10 ' rad, and 8P2 ——5 BeV.

It seems unlikely that precision work v ill be carried out
in this region in the near future; even if it was, it would
not be justified to investigate this point in further
detail in view of other more serious approximations that
have been made in the calculations. Thus, for Experi-
ment I we conclude that the 8»' always have the same
character (relativistic or nonrelativistic) as the corre-
sponding E».

In Experiment II, Z&' and E4' are always extremely
relativistic; B2 is also extremely relativistic, but under
certain conditions, E2 may become nonrelativistic. For
electron-electron scattering these conditions cannot be
attained because of the restriction that both final
particles to be extremely relativistic. For electron-
proton scattering they can be attained for Experiment
II.when E~))m2 and 04 is small. %e shall not present a
detailed analysis here, but in the calculations special
attention will be paid to those integrals which depend on
Z2' in Experiment II.

Finally, we present a simple approximation which is
useful in evaluation of certain integrals which will occur
in the next section. Angular integrations often result in
expressions of the form

E+p~
I

~

p E—p)

It is easy to show that this function can be bounded
from above and below in the following manner:

&'pi' pi' ~'Pl Pk
(Bi)

k Pl'k. P)' k. Plk Pg

The angular integration in the 6rst term is carried out
in the Lorentz frame defined by (A1); that of the second
term is defined by y™,=0. We have given arguments in
Sec. II that all terms with / and k combinations of 1 and
2, and the term with /=A=i are identically zero. Now
we shall show that the terms with l=i and k =1 or 2
are also unimportant as a consequence of the restriction
~Ap, ~(((p, ). The integral (2.34) yields a logarithm only
if Pl P,))nllm, ; in that case it is approximately

Pl P' l 'Pl'8P'&
ll, ;——42r ln

~

—42r

P~ P' Pl P'&

The resulting contribution to bB is always of order
(~p'/p').

We must therefore consider only two cases for (B1):
1. The case k= j, lA j.

Using (2.35), we find for the integrand

El Pl cos8 El P—l cos8—
which yields

+» +» l

pl El Pl

El+pl) 2v,——ln
p, E, p,i nz'+2q—;

(B2)

2. The case k=3= j.
The integrand is

(E —p; cos8)'

which yields

APPENDIX B. CALCULATION OF OB

We have to evaluate the integrals of the form given
in (2.22):

2lnl ~(—In( )(2~ 1+ )1D( ). (A6) I;;=4m —1 = —Sx
4N,'+2y; m,'+2y;

(B3)

If E)~, we can approximate the function by the lower
bound; the upper bound is numerically a better ap-
proximation. than the lower bound (error is less than
5% for all E), but it leads to slightly more complicated
integrals. These bounds will be particularly helpful in
the case of B2 in Experiment II since it will enable us to
determine the consequences of its variation from
relativistic values to nonrelativistic ones.

The results may now be combined and the final
integrals evaluated for the two experiments.

Experiment I.
It is convenient to split 8B into three parts associated

with the decomposition of S'. For Experiment I, 88 (1)
vanishes and we need consider only 88(12) and 8B(2).
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Z.,l
88(1)=

4m.

Z1Z2 d| 1 El E3)
88 (12)— In

E,E3'i

The arguments of Appendix A showed that E1' and Ba' are
are always relativistic, so it is permissible to approxi-
mate the functions of (B2) by the lower bound of (A6).
It follows that

2F2i—ln2 1
2231'i

(El )hp4
+2ln2 1+i —1i, (B'r)

EE4 i p4

Z1Z2 d+1 Vl &
ln 1+

0 P1 202E3J

1
88 (12)=

2x

Z Z2 ( AE4)
in2i 1+

E3i
(BS)

Z1Z2 Fl
ln' 1+

2' nS2E3j (B4)

There are no experimental conditions for which this
term is likely to be important. The expression for
88(2) reduces to

The contribution resulting from the difference between
the upper and lower bounds of (A6) is of order (22412/E32)

compared with (BS) and is, hence, completely negligible.
As in Experiment I, only the erst term of (BT) is im-

portant in practice; the unimportant terms are dropped
in the result quoted in Sec. IIB.

Z2' "dpi E2 E2+p2)
58(2)= — —ln

3 vl p2 E2 p2i—
APPENDIX C. SPIN-CONVECTION TERMS

INVOLVING A HEAVY PARTICLE

The purpose of this Appendix is to derive some of the
results of Sec. IIC. In eGect, it is an exercise in the
manipulation of relatively complicated expressions to
reduce them to a simple form by neglecting terms of
order unity. Consider 6rst the contribution arising from
the convection current of particle 2 and the spin current
of particle 1. Following the procedure used in deriving
C(1), the result may be written

E2'+p2')
ln

P2' ~2' P2'i—
If we use the simple lower bound approximation from
(A6), the result is

Z2' 2F1 f DE3)
88(2)— —ln2I 1+ +2 In2i 1+

i
. (BS)

42r i 21322 1 E4 i Z1Z2
C(12)=

p, '(12) p, '(32)
The additional contribution that would be obtained by
using the upper bound of (A6) rather than the lower
bound can, after considerable labor, be reduced to

Z22 @+22

8X 842

p '(12) =41)(1+x)'211'+(1—x)'23322 —2p, p2(1 —x')),

p,'(32)= 4t (1+x)22N12+ (1—x)222322+2p3 p2(1 —x')).2I',~ ~ EE3—1n2I 1+ i+1n2I 1+
233,2i & E, It is understood that (C1) is a principal-value integral,

AE3i t F, since the imaginary part will not contribute to the
+2 in' 1+

i
1n~

i
. (B6) cross section to order n. The general restrictions assumed

E4 i (2E46E3i on the parameters are

We want to show that this can safely be neglected. Note
first that it can be comparable to (BS) only if E4 is
comparable to m2. The logarithms can then have a large
argument only if E3—El))AP3)&2132. As discussed in
Appendix A, there are no practical experimental situa-
tions where these and the other restrictions are likely to
be met. The approximation (BS) is, therefore, adequate.
In practice, only the first term of (BS) is likely to be
important.

Exyeriment II

C(12)=—Z1Z2
t
pl' p2) 2232 f2pl

' p2)
i+

Ep, .p, i 233,2+2p, .p, i 21322 i
2p2 p3

(C2a)
N32 —2p3' p2 2332

822'

Pl 'P2 P3' P2»23314332

however, it is possible that 2332'&)pl. p2 p3 p2.

Neglecting terms of order unity, we And

This time b8(2) vanishes. The results for 58(1) and
88(12), using the lower bound approximation of (A6)

Z1Z2 pl ' p2
ln

2% p3 p2
(C2b)
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The approximation is justified as follows: It is clear that
the second and third terms of (C2a) are important only
when the arguments of the logarithms are small; the
third term is of order one when 2ps. ps—ms' in spite of
the small denominator. The scattering kinematics yield

2E~/ttss 2ps ps/tls'))—
ttss 1+(E$/ttss) (1—cos8s) 1+(2p& ps/ttss )

2ps ' ps 2Es

yg22

P)N(Pg) =ttsgN(Ps)=0

was used repeatedly. In fact, detailed examination of
the trace shows these terms are actually of relative
order (ttsp/Ep). In evaluating the contributions from
the spin of particle 2, more care is needed since these
terms may not be negligible if m2 is large. The contribu-
tion from the convection current of particle 1 and the
spin current of particle 2 yields a contribution C(21)
which is identical to C(12) (to order unity) plus a
residue

m2ZyZ2 pD'+rps psr+rpx
(1—x)ch +

p.'(») p.'(»)
5$2ZQZ2 ln(2P, Ps/ttsss)

— y,r+rpsj
27r tls' —2ps ps

Thus, if 2Pq Ps))ttsss, the second term of (C2a) is small
and the third of order unity. If 2P& Ps((mss, the second
and third terms tend to cancel; and, in fact, C(12) itself
is small.

In calculating the contributions involving the spin
of particle 1, the approximation

Cuse l. u=b=3
k'mg' k2tng2 5$]

dQ =4n- =4n.
ttsP+27s(k ps')' 72'

272
=4m —4~

tNP+2ys

Here the first term yields a contribution to 8 and the
second to 88. Suppose there is an extra factor k.p,

' in
the numerator. If c=3, this factor will yield an extra
factor 72 after the angular integration, and it may there-
fore be neglected. Suppose c/3; then

k p, '=k(E,—p, cos8),

The modification of these integrals produced by factors
of form k p, ' in the numerator is to be determined for
various choices of a and b. It may be helpful to preface
the following analysis with a brief outline of the argu-
ments which will be used to determine which terms are
significant. The main point is to observe the y2 de-

pendence resulting after the angular integration. If m~2

can be neglected without causing a divergence for small

y2, and if there are powers of y2 in the numerator, the
final integral will be some positive power of F2. Such
terms will be of relative order (~ Ays~/E~)", N)~ 1, and
hence negligible. We, therefore, retain only the terms
with the smallest degree in ys (as ttsp ~ 0). How this is

used may be illustrated by the following example:

p ps=Ebs —p 'ps,

p'(ps+&p4)ps (ps+~p4)
4

ttss +27s

ln(2ps ps/tls')
+Lp,r+rp, $

tsss'+2px ps
(C3)

V.p. (ps+ p4)
='kE, =

ttsP+2ys

If ttss'(&2p~ ps, 2ps ps these terms are of relative order
(ttss'/2Pi Ps)xln(2P~. Ps/ttss') and hence negligible. If
ttss ))2p& .ps, 2ps ps, their relative order is E&/tsss or
Es/ttss, which is again negligible. In the intermediate
region, they are of order unity.

The contribution involving the spin and convection
current of particle 2 may be evaluated in a similar
manner. Again, the terms involving a factor m2 are of
order unity or less and the surviving contribution is
given by (2.29).

where a term drops out in the angular integration. The
final integration yields a result of order unity. Thus, an
extra power of k p, ', gives a result which may be
ignored. The same is true of higher powers as well, so in

this case the trace variation may be neglected.

Case Z. a=bW3

If the extra factor is k ps' ——ys or k.po the resulting
contribution is clearly negligible. If it is k p, (cW3, b),
we write

APPENDIX D. FORMULAS FOR CALCULATION OF
THE EFFECT OF TRACE VARIATION

In this Appendix the formulas needed in the analysis
of Sec. IIIF will be derived. The integrals required in
the evaluation of 8' take the form

k p, =kE, k p„—.

=-kE.—(I y.y. p./E. )—(1 Xp.) (y, Xy.)/E.',

p. (ps+&p4)=—kp. = kp. .
p. (ps+bp4)

i'& dye k'p. ' ps'
dQ

k p.'k pb'

The second term in the second line was transformed by
the argument given in the introductory paragraph and.
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the third drops out upon angular integration. The Gnal
contribution is negligible.

Case 3. c/3, b/3, u/b

It is necessary to consider only the special cases c=3,
a, or b, since all other cases may be reduced to these by
momentum conservation. H c=3, the extra factor of y~
yields an unimportant contribution. If c=u, the angular
integral yields

kp. pb 2Kb)
4s ln

Eb mb)

But (k/Eb) =y2/pb (pb+bp4), and the resulting con-
tribution may be neglected.

Case 4. a=3, b/3, orbe factor k P, il numerator

This is now the only case which can yield an im-
portant contribution. A factor k Pb' in the numerator
may be neglected. Thus consider

Case 4. This time the last term involving (kXpb)
~ (p, Xyb)/Eb2 in k P, and a similar term in k. Pq cannot
be eliminated by angular symmetry since there are two
such factors in the numerator. However, they may be
eliminated by another argument:

(&Xpb) (p.Xpb)
{LybX (p.xpb) j')"',

2 b2

k
)P 2P b2 (Po ' y b)

2j1/2

Eb
—1/2

=k p, pb
Eb-

Because of the factor k (y2/2)'12, this term may be
neglected.

k p,—(8,/Eb)k pb,
and

As in Case 2,

k'k p.pb' pb
dQ

k Pb'k p. b

k'pb' pbk- p,k pd
dQ

k pb'k pb

E,
kp, =—kpb-

Eb

(kXyb) (P.XPb)
k'pb' pb B,Ee

=4m
V2 Eb

'

E.=—k pb.
= 4m.

(mg'+2yg) '
P3' PbP. PSPd Pb

Pb'P3

This is just what is obtained by the substitution The resulting term logarithmic in F2 is precisely what
would be obtained by the substitution

k P /k Pb ~ Pb P /Pb Pb.

Case 5. a=3, b/3, factor k p,k pq iu Numerator
k p, k pd 1 pb p, pb pd

k b 2 pb pd
If c or d=3, the result is immediately negligible, For

c, dW3, the factors k p, and k pq are rewritten as in in the original expression.


