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The momentum-dependent radiative corrections to the beta decays of the muon, the neutron, and 0"
have been calculated to order n using the techniques of dispersion theory. The transition matrix elements
can be expressed to this order (neglecting some effects of strong interactions) in terms of sets of vertex func-
tions which satisfy once-subtracted dispersion relations. The absorptive parts of the vertex functions can be
expressed to the appropriate order in terms of the vertex functions themselves and the amplitudes for
electromagnetic scattering of the charged particles. It is a curious feature of the present calculation that
the choice of the subtraction points is not arbitrary, but is determined uniquely by the requirement that
such physically significant quantities as decay rates and the momentum spectra of the leptons should contain
no infrared divergences when calculated including the contributions of processes in which soft photons are
emitted Dnner bremsstrahlung]. The subtraction constants play the role of renorrnalized weak coupling con-
stants. The significance of this electromagnetic renormalization, and the connection between the choice of
the subtraction point and the infrared divergence is examined in detail in the case of the muon. Two models
for the beta decay of 0"have been considered. In one model, the nucleon involved in the transition is treated
as a free particle insofar as the calculation of radiative corrections is concerned; in the other, the 0'4 and
N'4* nuclei are treated as point particles, and the effects of the nuclear structure are ignored. The results
obtained from the two models di8'er only slightly. Because of the appearance in the absorptive parts of the
vertex functions of the form factors of the charged particles, evaluated for the particles on the mass shell,
we are able to study analytically the efI'ects on the transition amplitude of the Qnite electromagnetic structure
of the nuclei. The effects of the finite spacial distribution of the decaying matter are treated using the usual
multipole expansion of the nuclear matrix element. The leading electromagnetic structure correction is of the
same form as the familiar ZnRW in the correction for finite nuclear structure (finite deBroglie wavelength
effect), but is of a different origin, and leads to a near doubling of the total structure corrections. The known
theoretical corrections to the decay rates for the 0+ -+ 0+ transitions 0"(P+)N"*, Al"*(P+)Mg", and
CP4(P+)S~4 are summarized. Using the recent, very accurate data on the decays of the muon, 0'4 and APs*,
we obtain the values G„=(1.436&0.001)X10 9 erg cms, Gs(0 )=(1.419&0.002)X10 ' erg cm, and
Gs(AP'~) = (1430+0002)X 10 "erg cm' for the regormalssed vector coupling constants for these transitions.
The less accurate data on the neutron yield Gz= (1.356~0.068) )&10 " erg cm'. The results for G„and Gp
are not directly comparable in the present theory, but the di8erent values of Gp should be. The discrepancy
of (0.8&0.5)'P~ between the effective coupling constants for the decays of 0" and AP'* could, therefore, be
significant, and may yield information about the still uncertain Coulomb corrections to the nuclear matrix
elements. If the validity of the cutoff-dependent results of perturbation theory is assumed, the renormaliza-
tion constants can be evaluated, and one obtains G„,b„,= (1.431&0.001)X10 " erg cm' and Gs, bye (0")
= (1.404&0.002&0.007)X10 " erg cm'. Those coupling constants differ by 1.9&0.2%, but because of
uncertainties regarding the nuclear matrix element for 0", the sects of strong interactions, and the possible
existence of an intermediate vector meson which mediates the weak interactions, a direct comparison of
these numbers may not be relevant to the possible universality of the Fermi interaction.

I. INTRODUCTION

HE hypothesis of Feynman and Gell-Mann, ' that
the vector component of the non-strangeness-

changing weak interaction current is conserved, implies
that the vector coupling constant 6 is una6'ected by
strong renormalizations. ' lf the Fermi interaction is
universal, G should, therefore, have the same value for
nuclear beta decay as for the decay of the p meson. This

f Work performed under the auspices of the U. S.Atomic Energy
Commission.
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'R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
(1958); M. Gell-Mann, sNd. 111,362 (1958).

~ J. Bernstein, M. Gell-Mann, and L. Michel, Nuovo Cimento
16, 560 (1960).
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conclusion is in reasonable agreement with experiment.
Thus, from the recent, very precise data on the
0+ —+0+ transition 0'4(P+)N'4*, ' one obtains for G
the value' (1.4140+0.0022) X 10 4' erg crn'; this differs

3 R. K. Bardin, C. A. Barnes, W. A. Fowler, and P. A. Seeger,
Phys. Rev. 127, 583 (1962);D. L. Hendrie and J.B.Gerhart, ibid.
121, 846 (1961);J. W. Butler and R. 0. Bondelid, sNd 121,1770.
(1961).

4 Obtained from the uncorrected value (1.4164&0 0022) X10 ~
erg cm' quoted by Bardin et a/. , reference 3, by including the elec-
tronic and nuclear corrections to the f value given in Table I of
the present paper. The value given by Bardin et al. is based on an
end-point kinetic energy of 1812.6&1.4 keV for the positron in
the 0'4(P+)N'4* transition, and a half-life for the decay obtained
from a weighted average of the values obtained by Bardin et al.
(71.00&0.13 sec) and by Hendrie and Gerhart, reference 3
(70.91&0.04 sec). The branching ratio to the ground state of N'4
was taken as 0.006&0.001 LR. Sherr, J. B.Gerhart, H. Horie, and
W. F. Hornyak, Phys. Rev. 100, 945 (1955)g.
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by only 1.0+0.2% from the value (1.4282+0.0011)
X l0 ' erg cm' derived from the muon lifetime. ' Since
the weak current is not conserved in the presence of
electromagnetic interactions, it is plausible to attribute
the small discrepancy to electromagnetic corrections to
the decay rates. These are of two types, the "radiative"
corrections which are present for the decay of an isolated
particle, and the nuclear electromagnetic corrections
which involve, for example, the effects of the Coulomb
field on the nuclear matrix element in the 0'4(P+)Nr4*
transition. We are concerned in this paper only with the
radiative corrections. These have been calculated in
perturbation theory by a number of authors. ™0The
results are finite in the case of the muon, and lead to a
small change in the predicted decay rate, ' (DI'/I')„
= —0.0042. However, the corrections obtained in the
case of nuclear beta decay are ultraviolet divergent, and
it is necessary to introduce a cutoff into the theory. The
cutoff-dependent term in (AI'/I') s, (3cr/2s) in(A'/m„m, ),
has customarily been treated by choosing A equal to the
mass of the proton in the expectation that the proper
inclusion of nuclear electromagnetic form factors would
cut oB the divergent contributions of virtual photons at
momenta in this region. Berman and Sirlin' have re-
cently investigated this assumption in detail, demon-
strating that such a "natural" cutoff will indeed be
present if the four form factors for a proton off the mass
shell decrease su%ciently rapidly for in6nite momentum
transfers and in6nite effective masses. Unfortunately,
nothing is at present known about the o6-mass-shell
behavior of the form factors, and the validity of the
cutoff theory is unclear. If it is nevertheless assumed
that a cutoff A m„ is reasonable, the leading term
reduces to (3rr/2s. ) 1n(m„/res, )=0.026; this represents
the greater part of the electromagnetic correction to the
decay of 0", (BI'/I' )s 0.017."When the radiative
corrections are incorporated into the analysis, the
discrepancy between the values of G derived from

'Bardin et al. , reference 3, quote an uncorrected value of
(1 4282&0 0011)X10~' erg cm' for the weak coupling constant
in the decay of the muon. This assumes a V—A theory for the
decay. The muon lifetime, taken as 2.210+0.003 @sec, was ob-
tained by averaging the result of R. A. Reiter, T. A. Romanowski,
R. B. Sutton, and B. G. Chidiey, Phys. Rev. Letters 5, 22 (1960)
Lr„=2.211&0.003 psecj with that of V. L. Telegdi, R. A. Swanson,
R. A. Lundy, and D. D. Yovanovitch, quoted by Reiter et al.
Lr„=2.208&0.004 psecg. The mass of the muon was taken as
206.77 m, : J. Lathrop, R. A. Lundy, S. Penman, V. L. Telegdi,
R. Winston, D. D. Yovanovitch, and A. J. Bearden, Nuovo
Cimento 17, 114 (1960) Lm„= (206.76+0.03)m, 7; S. Devons, G.
Gidal, L. M. Lederman, and G. Shapiro, Phys. Rev. Letters 5,
330 (1960) Lm~ = (206.78&0.03)m,]; G. Charpak, F. J. M.
Farley, R. L. Garwin, T. Muller, J. C. Sens, V. L. Telegdi, and A.
Zichichi, Phys. Rev. Letters 6, 128 (1961)Lm„= (206.77&0.01)m, g.' R. E. Behrends, R. J. Finkelstein, and A. Sirlin, Phys. Rev.
101, 866 (1956).

r S. M. Herman, Phys. Rev. 112, 267 (1958).
s T. Kinoshita and A. Siriin, Phys. Rev. 113, 1652 (1959).' S. M. Berman and A. Siriin, Ann. Phys. 20, 20 (1962). The

authors would like to thank Professor Sirlin for a preprint of this
work.

'OB. Chem, dissertation, University of North Carolina, 1961.
One of the authors (L.D.) would like to thank Dr. Chem for a
copy of this dissertation.

the decay rates of the muon and 0" is increased,
to 2.0&0.2% LG„=(1.4312&0.0022)XIO ' erg cm',
Gs(O' )= (1.4020~0.0022) X 10 "erg cm'$. s s This dis-
crepancy is perhaps not too serious: it may be reduced
by corrections to the nuclear matrix element for the
0'4(P+)N'4* associated with the Coulomb field of the
nucleus, ""and would be removed altogether should
the weak interactions be mediated by a vector meson
with a mass near that of the E meson. '~'~ It may,
nevertheless, be of interest to examine the radiative
corrections to the weak interactions from a different
point of view. Such an attempt has been made by the
authors using the techniques of dispersion relations;
preliminary results were reported elsewhere. ""

Xn the present paper, we wish to present the details of
our previous work, as well as some additional results
obtained very recently. The basic procedures are quite
simple, and consist in the calculation of certain vertex
functions for the weak interactions using dispersion
relations. The absorptive parts of the vertex functions
can be expressed, correct to order n, in terms of the
weak vertex itself, and the amplitude for electromag-
netic scattering of the charged particles. Not unex-
pectedly, it is found that the dispersion relations for
those vertex functions which have Born terms require
a subtraction, the subtraction constants playing the role
of renormalized coupling constants. It is a curious fea-
ture of the present calculation that the choice of the
subtraction point is not arbitrary, but is determined
uniquely by the requirement that such physically
meaningful quantities as decay rates and the momentum
spectra of the leptons should contain no infrared di-
vergences when calculated including the contributions
of processes in which soft photons are emitted (inner
bremsstrahlung). This point, which is closely connected
with the appearance in the theory of renormalized
rather than bare coupling constants, is examined in
detail in the case of the muon. Because our results for
the decay rates and the lepton spectra are perforce
expressed in terms of the renormalized rather than the
bare coupling constants, we are unable to discuss
directly the universality of the Fermi interaction. This
concept in its usual form requires that the bare coupling
constants in the weak interaction Lagrangian be the

"W.M. MacDonald, Phys. Rev. 110, 1420 (1958), and (private
communication to L. D.)."R.J.Biin-Stoyie and J.LeTourneux, Ann. Phys. 18, 12 (1962).
L. Lovitch, Pisa preprint (to be published).

'3 A. Altman and W. M. MacDonald, Bull. Am. Phys. Soc. 7,
17 (1962), and (to be published).

'4 H. A. Weidenmuller, Phys. Rev. 128, 841 (1962)."T.D. Lee and C. ¹ Yang, Phys. Rev. 108, 1611 (1957)."T.D. Lee (to be published)."R. A. ShaGer, Phys. Rev. 128, 1452 (1962).' L. Durand, III, L. F. Landovitz, and R. B.Marr, Phys. Rev.
Letters 4, 620 (1960). The difference between the dispersion and
perturbation theoretic results for the muon spectrum is incorrect
as given in Eq. (8) of the Letter; the correct result is given in Kq.
(40) of the present paper. Table I of the Letter is also superseded
by Table I of the present paper.

'9 Similar calculations have since been performed by Dr. Clifford
Schumacher (private communication from Dr Schumacher). .
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same for the muon and the neutron. Since there is no
reason to expect the electromagnetic renormalizations
to be equal for these particles, our results, as such, shed

no light on the problem. Certain advantages are never-

theless to be found in this approach. It leads first to a
clear separation of those electromagnetic corrections to
the transition amplitudes which can be ascribed to a
charge renormalization, hence, affect the decay rates and

lepton spectra only by a scale factor, and the remaining

momentum-dependent corrections which affect the

spectral shape. The former do not appear in our results.
The latter are present whichever mode of calculation is

employed, and lead to signihcant changes in such

quantities as the Michel parameter in the decay of the
muon. ' Calculation of the renormalization effects is re-

quired only for the discussion of universality, and it is

only then that such questions as the behavior of the

electromagnetic form factors of the nucleon off the mass

shell are encountered. Although the form factors appear
in the dispersion calculations in the absorptive parts of
the vertex functions, these involve sums over real inter-

mediate states, and one need only know the behavior of
the form factors oe the mass shell. If it is assumed that
the form factors satisfy spectral representations, the
vertex functions can be calculated analytically, and an
expression obtained for the change in the transition

amplitude caused by the finite electromagnetic structure
of the nucleus. Although the leading term in this ex-

pression is of the same form as the familiar Ze8'R term
in the corrections for the 6nite nuclear structure of the

decaying system" (the "finite de Broglie wavelength
effect"), the origin of the two corrections is different.

The inclusion of the electromagnetic eBect leads to a
near doubling of the total structure corrections.

The radiative corrections to the decays of the muon,

neutron, and 0" are considered separately in Secs. II,
III, and IV, respectively. In each case, the necessary
approximations and the method of calculation are
sketched, and complete results are given for the vertex
functions, and the electron or positron spectrum in the

decay. The results for the vertex functions are compared
with those obtained in perturbation theory by Hehrends

Finkelstein, and Sirlin, ' the comparison yielding per-
turbation theoretic values of the renormalization factors

Gii/G. The details of the renormalization are examined

most carefully in the case of the muon. In the calculation
of the beta decay of the neutron, we have included in the
electromagnetic corrections contributions which involve

the anomalous magnetic moments of the proton and

neutron, and which have not previously been considered

20 M. Morita, Phys. Rev. 113,1584 (1959);M. E.Rose and C. L.
Perry, ibid. 90, 479 (1953); and references contained therein.

in detail. The aforementioned electromagnetic structure
corrections are important only for the beta decay of 0",
and are examined in Sec. IV C. Because of the length of
the calculations, the results of each section are sum-

marized at the end of that section; the over-all results
are discussed in Sec. V. We would like to call particular
attention to Table I, in which we have summarized all
the well-established theoretical corrections to the decay
rates of the neutron and the 0+ —+0+ transitions
0"(P+)N"*, Al"*(P+)Mg", and Cl"(P+)S" of which

we are aware.

In the ensuing discussion, we will use the second form
of the Lagrangian, which may be obtained from the first

by a Fierz transformation on the spinor indices. This
choice has the advantage that, to lowest order in G, but
all orders in n, the neutrino covariant enters the tran-
sition matrix element for the decay of the muon as a
simple factor,

(e .—Is I,)= ~ I z* i-.-l ~w(~) I vi

= (2~) '8'(e+v+v p) (16epp p—v pv p)

x -(.)v.(l+& ) (.)F.(,~). (2)

Electromagnetic corrections to the matrix element

appear only in the vertex function Fi,(e,y),

F~(e,~)= (e I ~~(0) II »
where

~i (0) =s(G/~~)0. (0)v~(&+vs)4v(0) (4)

For convenience, we have denoted the four-momenta of
the various particles by the particle symbols, and have
chosen the covariant normalization

u(p)y u(p) = 2sp„

for the free particle spinors. The general structure of the
vertex function Fi,(e,p) is easily determined using the

properties of Jq and the single-particle states under

II. ELECTROMAGNETIC CORRECTIONS TO
THE DECAY OF THE MUON

A. General Formulation

In accordance with the usual V-A theory of the weak

interactions, we will assume that the decay of the muon
is generated by the weak Lagrangian,

~~(*)= (G/v2)k. (*)v~(&+vs)~t.(~)

xit.( ) (&+ )ip, (*)+H. .
= (G/~2)it. (*)v~(~+vs)0. (~)

xit.(~)~,(l+~,)it „(*)+H. (&)
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proper Lorentz transformations and the operation of
Wigner time inversion, "
Fx(e,p) =u(e) P rx'A;(s)u(p)

j=1

= iu(e) {7.LA t(~)(1+vs)+A s(&)(1—»)j
+~x.( —e).LA s(~)(1+Vs)+A 4(~)(1—vs) j
+'(p —) I:A ()(1+7)+A ()(1—q')3) (p).

(6)

B. Calculation of the Form Factors A;(s)

The absorptive parts in Eqs. (g) and (9) may be
determined by standard methods. We begin, not with
the matrix element in Eq. (3), but with the related
matrix element &pe'"'I Jx(0) I0), which we write, follow-
ing Lehmann, Symanzik, and Zimmermann, " in the
form

&r '"'I J.(o) I o)

dxu(e)e "'&pl8(xs)Lf, (x),Jx(0)jl0&, (10)
The form factors A;(s) are functions of a single invariant
parameter, conveniently chosen to be

where

f,(x) = (p a+m. )P,(x).
s= —( —e)'= —(~y~)s,

and are real for s in the physical region for the decay of
the muon, 0&s&(tts„—m, )'. As a consequence of the
relation (p —e)q= (v+f)x and the Dirac equations for
the free neutrino spinors, the last two terms in Fx(e,p)
do not contribute to the transition matrix element for
the decay of the muon, Eq. (2), and we, therefore, re-
strict our attention to the first four terms.

The assumption of microscopic causality leads, by
the usual heuristic arguments, to the conclusion that
the form factors A, (s) are analytic functions of s in
the complex s plane cut along the real axis from
s= (mx+nz, )' to s= ~, and are real for s& (mq+m, )',
s real. One, therefore, expects the form factors to satisfy
the simple dispersion relations"

and

Ar(s) =At(ss)+
S—Sp 8,,(s')ds'

(g)
„+„,&' (s' —so)(s' —s)

0',,(s')ds'00

A;(s) =- j=2, 6. (9)
(~~+~e) ~ S S

"The present notation and choice of vertex functions is some-
what different from that in reference 18.The use of y~, o„„(p—e)„,
and (p,—e)„as the covariants multiplying the A;, while less con-
venient for the calculation of the electron spectrum and the spin
correlation coefFicient, has the advantage that the linear combina-
tions (Aq+As) and (As+A 4) reduce to the familiar electron vertex
functions in the equal mass limit, while the combination (A &+A 6)
vanishes. In particular, the new choice eliminates the covariant
(p,+e)„which acts like a current, and leads in the case of the elec-
tron to an incorrect (or unusual) definition of the renormalized
electric charge. Correspondingly, the change in covariants leads
to a redefinition of the renormalized weak charge in the present
problem. The authors are not aware of any method by which the
ambiguity in the choice of vertex functions can be eliminated.
The present functions and those of reference 18 are related by:
a(s) =A 1(s)—m,A 3(s) —m„A 4(s), b(s) =A 2(s) —m„A 3(s)—m,A 4(s),
c(s) =A3(s), and d(s) =A4(s).

~ The validity of the dispersion relations is easily proved for
the triangle diagram of perturbation theory using the methods of
R. Karplus, C. M. Sommerfield, and E. H. Wichmann, Phys. Rev.
ill, 1187 (1958).

where 8,(s)=ImA;(s+ie), c —+0+. We have made a
single subtraction in the dispersion relation for Ar(s);
this will be shown to be necessary.

We have omitted an equal time commutator which
affects only the constant term in A r(s). The absorptive
(or imaginary) parts of the functions A, (s) can be ex-
tracted using the observation that, under the operation
of Wigner time inversion, A, (s) —+ A, *(s), s real. Upon
performing the necessary manipulations, the absorptive
parts are obtained in terms of the familiar sum over
intermediate states,

u(e) Z~ 1'x'(t~(~)s(r)

,'(2')4-Q. 5'(p+e n)u(e—)
X(elf.(0)l~'"'&&~ "'I Jx(0)I0& (12)

For convenience, we have chosen the oil states for our
complete set. The fine-structure constant o. appears to
higher than the first power in the contributions from
all intermediate states except those of the form p'+e'.
When only these states are retained in the evaluation
of the absorptive part, the dispersion relations become
a set of coupled integral equations for the form factors
A, (s), accurate to order n, and can be solved by a single
iteration. To the required accuracy, the amplitude for
p—e scattering which appears in Eq. (12) may be evalu-
ated in the first Born approximation. Thus,

u(e)&I If (o) II'e"""&~
e'u(e)ysu(e')8(p')ysv(p) L(e—e') '+X'1 ', (13)

where we have introduced the usual fictitious photon
mass ) in the photon propagator in order to circumvent
later difhculties with infrared divergences. The vertex
function (pe""'I Jx(0) I 0) is to be replaced by its leading
term in powers of n. Since the conventional V-A theory
without electromagnetic corrections corresponds to the
choice A&=constant, A, =O, j=2, 6, we write

(p"""'IJx(0) I o& ~ iA t(») u("h»(~') (14)

The functions A, (s), j=2, .6, and the dispersion inte-
gral in Ar(s), are then clearly of order n relative to
A r(ss). Combining these results and denoting A r(s, ) by
Ap for simplicity, we obtain for the absorptive parts of

"H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo
Cimento 1, 205 (1955); 6, 519 (1957).
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the functions A;(s), correct to order a,

u(e)Q; I' IS;(s)z(p)

= pie'Ap(2pr)4 Q b'(p+e —p' —e')0(s —(m„+m.)')

X [(e—e')'+) '7 'u(e)yzu(e')u(e')y&,

X (1+hz)~(r')t'(r') v»(r)
= tA p(n/gz )(p/Qs) 8(s—(m„+m.)')

X dQ'[(e e'—)'+V7 'u(e)yz( iy—e'+. m„)y),

We then obtain

A, (t) =A,(1+a(t,) z) —a(1„)z)

+(3n/4rr)[tR(t) —toR(t,)7), (23)

A, (1)=(n/4 )ApR(1), (24)

Az(t) = —(n/4pr)Ap(m„z+m '—2m„m, t)
—'

X[(m„—m,1)R(t)—m, ln(m„/m, )7, (25)

A4(&) = (—n/4 z)A (pm'+m '—2m„m, t)
—'

X [(m,—m„i)R(1)+m„ ln(m„/m, )7, (26)
where

X(1+pp)I i/ —(p+e e') —m„]—yzv(p) (15.)
and

R(/) = (t' —1)-"'in[t+ (P—1)'~'7 (2/)

Here s= —(p+e)', and p is the 3-momentum of either
intermediate particle in their center-of-mass system,

2P/s= [(s mz' m—g')' —(2m/m—g)'$'~'. (16)

e.f
h(t, X') = ——

27r (/+1)(1 '—1)"'
t'2 —1

After the remaining integrations over the directions of
the electron 3-momentum in the c.m. system are per-
formed, the result can be reduced to the standard
form, and the functions S,(s) extracted, through the use
of the Dirac equations for the spinors u(e) and e(p).
The procedure is straightforward, and we give only the
results of the rather lengthy calculation:

8~($) = zaAp(2P/s) '(s—m„'—m,.')
4p'+X' 3

ln ——— 8(s—(m„+m,)'); (1/)
2

6tz(s) = ', nA pm-„m, (2pgs) 'g(s (m„+—m,)'); (1g)

e,(s) = ——,'nA p(m, /s) (2pgs) —'

X(s+m '—m.z)g(s —(m„+m )') (19)
g,,(s) = ~4nA p—(m„/s)(2P/s) '

X(g—m z+m z)g(g —(m„+m ) ) (20)

The form factors A5 and A6 do not contribute to the
decay of the muon, and the corresponding absorptive
parts have not been calculated. We have, furthermore,
set X' equal to zero wherever possible.

The form factors A, (s) are now easily calculated using
the functions 6,(s) in the dispersion relations of Eqs. (8)
and (9). We remark in particular that Sz, Cz, and 84,
vanish as s ' for s —+ ~; the dispersion integrals for A2,
A 3, and A4 consequently converge without subtractions.
In contrast, S&(s) diverges logarithmically for s —+po,

8,&(s) —+ rznA p[ln(s/) ') —zz7, s))m„', (21)

and the dispersion relation for A I requires the indicated
subtraction, at least when the calculation is restricted to
terms of order n. This circumstance will be discussed in
more detail later [Sec. II D7. The integrations are for
the most part straightforward. It is convenient to ex-
press the results in terms of a dimension1ess parameter t,

/= [m„'+m, '—s7/(2m„m, ) =-- —(p e)/(m„m, ),
1&1&(m„'+m, ')/(2m„m, ). (22)

&(In (28)
m„'+m. '+2m„m„/'

The function A(t, X') may be evaluated in terms of the
Spence function L(z),"

z d~

L(z) = — —ln)1 —/(.
t

(29)

C. The Infrared Divergence, Subtractions,
and the Electron Spectrum

The electron spectrum in the decay of the muon,
including those radiative corrections which arise from
the exchange of virtual photons between the muon and
electron, is readily calculated correct to order n using
Eqs. (2) and (6). It is convenient to extract from the
functions A, (t) the common factor Ap which plays the
role of the weak coupling constant in the present theory,

u K. Mitchell, Phil. Mag. 40, 351 (1949).Our de6nition of L(z)
corresponds to that of Mitchell, and diBers in sign from that used
in references 6, 8, and 9. We note the following identities, which
permit the reduction of the number of Spence functions in the
final results, x real,

L(x)+L(1—x) =-,'x —1n(x(ln(1 —x(,
I (x)+I (s ') =-'7r —

g ln'x x)oj
= —-',x'--,' lnz(x~, x&0,

x-- i 1=x 1 —xl, - - —L —— = —~1~/4+1nx ln. — +I.(g) —I.(—x)x+1 I+X 1+x

L(x)+L( x) =~L(x'). — 0&x&1,

Upon rearranging the large number of Spence functions
obtained initially, and dropping terms which are of
order (m./m„) relative to unity in the physical region,
one obtains for h(t, ),') the result

Q(] gz) ~ —(a/2z-)1(P —1) ~~z(ln(m z/X ) lnu+(z /6)
+2 ]n(uz —1) lnu —3 ln'u —ln[(m. /m„)(1+u)7

Xln[1 (m./m—„)u7 L(u —') L((m—,/m„)u)), (30)

where u=i+(t —1) ~ 1&u&(m„/m, ).
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and which is clearly present as a multiplicative factor
to any order in n. Thus, @re write

A,(t) =AOL1+ai(t)), (31)

A, (~) =A,a, (~), j=2, 3, 4. (32)

where x is the customary variable x=2eo/m„, 0&x&1,
and terms of order (m,/m„) relative to unity have been
omitted. To this must be added the electron spectrum
dlV~(x)/dx for the decay accompanied by the emission
of an unobserved photon. A consistent treatment of this
process correct to order o. yields results identical with
those of perturbation theory, with the usual weak
coupling constant G replaced by v2A0. We shall, there-
fore, use for dX~(x)/dx the results of Behrends, Finkel-
stein, and Sirlin, ' as corrected by Herman~ and by
Kinoshita and SlI'lln.

Each of the partial spectra dlV„(x)/dx and dX, (x)/Cx
depends explicitly on the ficitious photon mass
and diverges logarithmically for P —& 0. It is, of
course, expected that the total spectrum dX/dx
= Pd/, /dx+dX, /dx) will be independent of li, as is the
case in perturbation theory. The expected cancellation
of the infrared divergent terms does not, in fact, take
place for an arbitrary choice of the subtraction point
sp (oi' fp) in the dispersion relation for A i(t): Upon com-

bining dA„(x) and dX~(x), one obtains a term which

involves the factor

Kith this convention„ the electron spectrum is given in
the muon rest system by

d V,(. )/d = (A o'/48) —' „' 'L(3 —2 )(1+2 )
—24(m, /m„) x—'(1—x)a2

—6(1—x)(m,as+ m„a4)), (33)

coupling constant for the decay of the muon as"

G„=V2A, (&) i, , (36)

The complete spectrum is now easily obtained. In the
muon rest system, t= (eo/m, )=~(m„/re, )x; over almost
the entire range, t&)1. Ke therefore give the results in
this approximation. Thus, choosing to=i, and noting
that

we obtain

~(1,~2) = —(u/2~) )2+in(~.'/~')), (37)

D. Comparison with Perturbation Theory:
Renormalization of the Weak Vertex

The result for the electron spectrum given in Eq. (38)
differs from that of Kinoshita and Sirlin' by the presence
of a term proportional to the statistical spectrum,

—(~/~)(~ —l)( '/ )~ ' .'x'( —x), (4o)

and by the appearance of the renormalized coupling
constant G„rather than the bare coupling constant G.
Thus, while perturbation theory yields for the muon

decay rate the result'

dX(x)/dx= (G„'/96)ir 'm 'x'

X f(3—2x)$1—(n/~)(~ —-', ))+(n/2s. )f(x)), (38)

where co=in(m„/m, ) and f(x) is a function defined by
Kinoshita and SirHn, '

f(x) =2(3—2x) ((oP~s —2 lux+2 ln(1 —x))
+21.(x)—i3~'—2—2 ln'x+3 lnx ln(1 —x)

+lnx —(1+x)x ' ln(1 —x))
+6(1—x) llix+ —'x '(1—x)

X t (cv+lnx)(5+17x —34x') —22x+34x'). (39)

' Ao'(1+(n/n) in(m '/X')L/OR(to) —1)), (34)

where E(t) is defined in Eq. (27), and Ao denotes as
before Ai(to, li'). For arbitrary to, a finite decay rate in

the limit X —& 0 can only be obtained to order n if the
subtraction constant Ai(to, X') contains an infrared di-

vergence sufhcient to cancel that which appears ex-

plicitly. We note, however, that this unpleasant (and
highly ambiguous) situation can be avoided by a
judicious choice of to. The function tE(/), defined by the
dispersion integral

a(s.2 25
r„(r.S) = (G /192)~- ~„1—-~ ——

8

= (G'/192)x 'm„'$1 —0.0042),

the present calculation yields

n( m' 45)
I „=(G„'/»2) —~„ 8)

= (G„'/192)m 'm„'P1 —0.0107).

(41)

(&'+~) (&"—1)u'
(35)

is clearly real for t real, —1(t(~, and increases mono-
tonically from —~ for t —+ —1 to + 0O for t —+ +~.
For the unique choice of the subtraction point to +1, ——
302(to) has the value +1, and the explicitly infrared
divergent term in Eq. (34) vanishes. This circum-
stance makes it highly attractive to choose to=i
Lso

——(Ni„—m,)'), and to define the relormalised weak

On the other hand, the eRective value of the Michel
parameter is unchanged to order 0. fron1 its value in
perturbation theory, p, ff—0,708.

The renormalized coupling constant G„/V2' was de-

fined in Eq. (36) as the value of the vertex function
A i(/) at t= 1 Ls= (m„—te.) '). If this definition is applied
to the vertex function as obtained in perturbation
theory by Behrends, Finkelstein, and Sirlin, one obtains

"The factor V2 is introduced to conform to the usual convention
for a universal Fermi interaction.
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{a)

FIG. 1. Feynman
diagrams which con-
tribute to the radia-
tive corrections to
the decay of the
muon.

perturbation theory in the form

A 4(s) = const+ (o/2m) [1—tR(t)] ln(m '/X')+ (44)

where t and R(/) are defined in Eqs. (22) and (27).
Writing a once-subtracted dispersion relation as in
Eq. (8), A ~(s) is reproduced in the form

A, (s) =A g(so, X')

+(n/2~)[~, R(~,)—~R(~)] ln(m, /X')+, (45)

where A~(so, X'), which appears as the subtraction con-
stant, is evidently of the form

A 4(so,X') = const+ (n/2')
X[1—log(to)] in(m, m/x')+ . (46)

N y

{e)

a relation between the bare and renormalized coupling
constants, given to order n in the limit m, /'m„«1, by

G„/G = 1+(n/27r) (4o ', )= 1.0—0—32. (43)

With this identification, Eqs. (41) and (42) and the
corresponding electron spectra are seen to be identical.
It is interesting to investigate this relation in more
detail.

The vertex function F&,(e,p), Eqs. (2)—(4), when
calculated to order o. in perturbation theory, involves
contributions associated with the Feynman diagrams of
Figs. 1(a)—(d). The properties of the corresponding
matrix elements as functions of the variable s = —(p —e)'
are easily derived using the methods of Karplus,
Sommerfield, and Wichmann. "The diagram of Fig. 1(a)
contributes only a constant term (G/V2) to the function
A~(s), Eq. (6). This is changed to (Z2,Z»)'~'(G/V2),
with the wave-function renormalization constants calcu-
lated to order n, when the contributions of Figs. 1(b)
and 1(c) are included. The triangle diagram of Fig. 1(d)
contributes to all of the form factors A, (s), j=1, 6;
the contributions are easily seen to be functions of s
analytic in the entire finite s plane cut from s= (m„+m,) '
to s= ~.22 The functions A, (s) for j=2, 6 vanish
(in order n) at least as rapidly as s 'lns for s —+4o

[cf. Eqs. (24)—(26)]. These functions, consequently,
satisfy the unsubtracted dispersion relations which were
assumed in Eq. (9). On the other hand, the contribution
of the triangle diagram to At(s) contains a constant
term which acts as a vertex renormalization, in6nite in
Feynman perturbation theory, and additional terms
which diverge as lns and ln's for s ~~. Because of the
latter, a subtraction is necessary in the dispersion rela-
tion for At(s) even if the constant term arising from the
diagrams of Figs. 1(a)—1(d) is removed. The connection
between the infrared divergence and the choice of the
subtraction point is easily seen. A&(s) is obtained in

However, from the dispersion-theoretic point of view,
A ~(so,X') is a phenomenological parameter: one does not,
for example, attempt to calculate the renormalization
factors which enter the constant. The choice of the sub-
traction point, to 1, so————(m„—m, )', is then dictated by
the requirement that, in the infrared divergent term in
Eq. (45), ln(m, '/X') appear with the proper coefficient.

We, therefore, degree the renormalized coupling constant
G„[or more precisely, from the point of view of per-
turbation theory, we define the electromagnetic re-
normalization constant Z&w for the weak vertex] by

G„/v2 = (Z2,Z,„)"'Z&4r—'(G/V2) =A] (so) (47)

with the indicated value of so. G„ is then clearly inde-

pendent of 'A. It may be remarked that, while the Z's are
each logarithmically divergent in Feynman perturbation
theory, the product (Z2.Z»)"'Z&tv '=G„/G is finite to
all orders in n the value of the ratio G„/G is given to
order a, but with the neglect of terms in m, /m„, in

Eq. (43)." It is amusing to note that the same pro-
cedures used above, when applied to the electromagnetic
vertex function of the electron, lead to the usual sub-
traction point so ——(e—e')'= 0, and to the relation Z~ ——Z2
for the renormalization constants.

An analysis of the data on the lifetime of the muon'
using Eq. (42) yields the value

G„=(1.4358&0.0011)X 10 4' erg cm',

for the remormalised coupling constant. However, this
result is not relevant to the hypothesis of the uni-

versality of the Fermi interaction and the conservation
of the vector current in beta decay, which require that
the bare coupling constant G for the decay of the muon
be equal to the vector coupling constant G~ in the decay
of the neutron. In order to test universality, one is
forced, in the present approach, to calculate the re-
normalization G„/G. Using the results of perturbation
theory' or Eq. (43), one obtains for the bare coupling

26 It is interesting to note that the renormalized coupling con-
stant, hence, the renormalized vertex function, has a logarithmic
mass singularity for m, —+ 0, ns„6nite, which is not present in the
unrenormalized quantities. This has been discussed by T. Kino-
shita, J. Math. Phys. 3, 650 (1962), who pointed out this behavior
to the authors.
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Psfl

FIG. 2. Represen-
tative Feynman dia-
grams for the radia-
tive corrections to
the decay of the p
neutron.

(a) (b)

(c)

constant
G= (1.4312&0.0011)X 10 ' erg cm'.

The situation is further complicated by the possibility
that the weak interactions are mediated by vector
bosons. "The electromagnetic corrections to the decay
of the muon in this theory have recently been examined
by Lee" using a theory of the electromagnetic inter-
actions of charged vector mesons developed by Lee and
Yang, '~ and by Shaffer'~ using a cutoff-dependent
theory; but these developments are beyond the scope of
the present paper.

III. ELECTROMAGNETIC CORRECTIONS TO
THE DECAY OF THE NEUTRON

A. General Formulation of the Problem

The basic interaction Lagrangian for the U-A theory
of beta decay has the form

& ()=(G/~2)~.().(1+~m )
Xf,(~)yi, (1jets)lt „(x)+H.c., (48)

where, with the assumption of a universal Fermi inter-
action, G is the same bare coupling constant as appears
in Eq. (1).The transition matrix element for the decay
of the neutron is affected not only by electromagnetic,
but also by strong interactions, leading to an extremely
complicated situation in which the neutron, proton, and
electron can each interact with the others after leaving
the weak vertex. A few of the possible diagrams are
given in Fig. 2. Topologically, the diagrams are of three
types. The first type, Fig. 2(a), corresponds to the re-
normalized Born approximation, with all particles
emerging from a single point. In the second type, repre-
sented by Figs. 2(b) and 2(c), two of the particles
emerge from single vertex, while the other two particles
interact fully. The Anal type of diagram is typified by
Fig. 2(d); in this case, the neutron, proton, and electron
all interact after leaving the weak vertex. Ke concern
ourselves only with the vertex type corrections to the
basic diagram.

The effects on the beta decay matrix element of the
strong interactions have been considered in detail by

sr T. D. Lee and C. N. Yang (to be published).

Goldberger and Treiman. "These lead in general to a
renormalization of the basic interaction Lagrangian, and
to the presence in the beta-decay matrix element of
extra-induced pseudoscalar and weak magnetic terms.
The inhuence of the latter, and of the momentum de-
pendence of the matrix elements caused by the extended
space-time structure of the complete vertex, is negligible
for the decay of the neutron in the absence of electro-
magnetic corrections. As a seemingly reasonably ap-
proximation, "we therefore replace the bare Lagrangian
of Eq. (48) by a renormalized Lagrangian, but shall
ignore the other effects of strong interactions. According
to the conserved vector current hypothesis, ' there is in
fact no renormalization of the vector component of the
interaction in the absence of electromagnetic inter-
actions. ' However, such interactions are present, and
we must, therefore, expect a renormalization G —+ G',
the details of which depend upon both strong and elec-
tromagnetic effects. The calculation of this renormaliza-
tion is beyond the scope of the present paper. On the
other hand, the axial vector current is observed experi-
mentally to be renormalized relative to the vector cur-
rent by a factor p = —(G~/Gv) = 1.25&0.06,so with most
of the renormalization presumably arising from strong
interactions. Ke, therefore, take for our effective
Lagrangian

~-(*)= (G'/~29. (*)"(1+~.)4,(*)
XP,(~)pi(1+p'y )P (a)+H c, (49)

and shall limit the discussion to the electromagnetic
corrections to the transition amplitude associated with
the electron-proton and electron-neutron interactions.
Ignoring strong interactions, it is clear that the correc-
tions associated with the two types of interactions are
independent to order n except insofar as both can lead
to renormalizations of the Born term, Fig. 2(a)."We,
therefore, ignore the presence of the electron-neutron
interaction for the time being, and discuss the appro-
priate changes later.

In the foregoing approximation, the transition ampli-

M. L. Goldberger and S. B. Treiman, Phys. Rev. 111,354
(1958).

"This approximation should perhaps be checked because of
the very large value of the induced pseudoscalar coupling,
reference 28.

'0 The value p = 1.25%0.06 was derived from the measured value
of the neutron spin-electron momentum correlation coefhcient,
A = —0.11&0.02 LM. T. Burgy, V. E, Krohn, T. B.Novey, G. R.
Ringo, and V. L. Telegdi, Phys. Rev. Letters 1, 324 (1958)g, and
is independent of the value of the vector coupling constant. With
the assumption of universality and the value of G obtained from
the 0+ ~ 0+ transitions, one obtains from the half-life of the
neutron the slightly smaller value p= 1.19&0.03. The situation
with respect to the determination of p from the decays of the neu-
tron and complex nuclei has been summarized by O. C. Kistner
and B. M. Rustad, Phys. Rev. 114, 1329 (1959).

"The lowest order electromagnetic correction which involves
both the proton and the neutron has the topology of Fig. 2(d),
with the pion replaced by a photon. This diagram is of order cP
relative to the Born term, Fig. 2(a).
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tude for the decay of the neutron is given by

(per ISln&=i dg(pe)'I Z)r. (x) ln, &

of the form

Gg, a(s) =Gz, a(so)+—
g, , ,(s')ds'

(60)
„~„)(s' —so)(s' —s)

Here

with

while

=i(2n)'P(p+e+v n—)(16eovoppno)

~(0)= (G'/v2)(1+~')0 (o)(1—v )4.'(0),

G ( P) = &P, l~ (0) I0&

&& P'(~) (1+v&)u(n)G(e, p)

+i~'(~)(1+v~)v»(n)G~(e, p)3 (5o)

G(e,P) = (Pel ~(0) I o) (51)

(52)

(53)

9 (s')ds'Qo

G~(s) =-
(m~+-m, ) - s —s

j=2, 4, 8. (61)

Here b, (s) = ImG;(s+ie), e-+ 0+. The physical region
for the decay of the neutron corresponds to the range
(m~+m, )'&s&m„', with s taken to approach the real
axis from above. It may be noted that, as a consequence
of the relation (p+e)),——(n —v)), and the Dirac equations
for the free neutron and neutrino spinors, the functions
G&, G2 and G7, G8 contribute to the decay of the neutron
only in the combinations (G)+G7) and (G2+G8). We,
nevertheless, consider the functions separately.

~ (0)= li(G'/~2)(1 —')0.(0b (1—v )g.'(0). (54)

To bring the electron and proton field operators into the
same covariants, we have used a I ierz transformation
and the formal operation of charge conjugation,

B. Calculation of the Form Factors G;(s)

The absorptive parts 8,(s) of the functions G,(s) are
given by the usual sums over intermediate states:

p.'(s) =Clpp'(s), p.'(s) = —y.'(x)c-', (55) u(p) I gl(s)(1 —75)+g2(s)(1+75))u'(e)

where C is an antisymmetric unitary matrix such that

C—I~C~T (56)

Gg(e,p) =u(p) Q I ),'G, (s)u'(e)

=iu(P)(Y) LG3(s)(1 75)+G4(s)(1+Ye)j
+m. '~~ (P+e) LG6(s)(1—v5)+G6(s)(1+v~) j
+im; ( p+ )e, LG( )s( 1 ~,)

+Gs(s)(1+y )j)u'(e). (58)

The usual V-A theory without electromagnetic correc-
tions, but renormalized with respect to the strong inter-
actions, corresponds to

(G'/~&)(1+~'), G~= 2 (G'/~&) (1—)I)'),

and G;=0, jW1, 3 Lcf. Eq. (51)j.
According to the usual heuristic arguments, the eight

form factors G;(s), j=1, 8 are functions of the
invariant parameter

s= —(e+p)', (59)

analytic in the complex s plane cut from s= (m„+m.)'
to s= ~, and are expected to satisfy dispersion relations

The general structure of the two vertex functions is
easily determined. Thus, G(e,p) can be expressed in
terms of two form factors,

G(e p) u(p) LG1(s)(1 75)+G2(s) (1+7&)lu (e) (5~)

while G),(e,p) has a form similar to that of the vertex
function F),(e,u) for the decay of the muon,

=-,'(27r)' p P(p+e —u)u(p)

X(elf.(0) lu- &(n-
I
~(0) IO&, (62)

and

u(p)g F),~g, (s)u'(e) =-,'(2~) 4 P P(p+e n)u(p)—

&&(e I f.(o) I
~'""&(~'"'I~~(0) I o) (63)

We shall at this point follow the procedure adopted in
the case of the muon, and retain only the contributions
of order n to the absorptive parts. However, in contrast
to that case, such contributions are associated not only
with the lightest intermediate state, that of an electron
and a proton, but with all intermediate states obtained
by adding pions and other strongly interacting particles.
The lightest such state involves a single pion, and
consequently contributes to the g, (s) only for
s)(m„+m, +m )'. This range of s is remote from the
physical region, (m„+m,)'&s&m„', and an examina-
tion of the dispersion integrals indicates that the pionic
contributions to the G, (s) are (at least nominally) of
order m./m relative to the leading terms. We, therefore,
confine our attention to the single intermediate state
which consists of a proton plus an electron. The dis-
persion relations for the form factors then become a
set of coupled integral equations, correct to order o.,
which can be solved by a single iteration. The amplitude
for e-p scattering which appears in Eqs. (62) and (63) is
given to the requisite accuracy by the first Born
approximation,

u(p) (e I f„(0)I
p'e""') ~ e'u'(e')y u'(e)

&«(P)Lve~ .((p' —p)')+( ./2m. )~ .((p' —p)')
&&~e (P' —P).]u(p')L(p' —P)'+~'] ', (64)
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g2

F»(q') = 1——

F .(q') =-

f»(~)
8$q

„~x(x+q')

f»(&)
4$.

~ ' &+q'
(68)

The resulting expressions are rather complicated. Thus,
for gt(s) and bs(s) we obtain

4@2

Xe(s—(m,+m, )') dq'

X{L—2(s—M')(q'+)') '+(2p's) '(M's —m')j

XF»(qs)+2 "F»(q')), (69)
and

e ()=—:G (")(2' )-'(4p')-'
4@2

Xe(s—(m, +m.)') dq'
0

XI 4 ,mmF»(q')+4P' (ltm/m„)F&, (q')5, (70)

where M'=m '+m, ' m'=m '—mP and

2pgs= L(s—M')' —4m 'm. 'j"'. (71)

These functions have several interesting features
which are characteristic also of the g;(s) for j=3, .8.
We note first the leading term in gt(s),

4p2

(s—M')(2p1/s) ' dq'(q'+)') '

XF (q') dq'(q'+) ') 'F (q') i & (72)

~The assumption of a subtracted dispersion relation for PI„
is not necessary, but leads to a convenient separation of structure-
independent and structure-dependent terms. The asymptotic form
of P~„ for g ~~ is not of crucial importance, viz. , the remarks in
connection with Eti. P2).

where F~„and F2„are the usual Dirac and Pauli electro-
magnetic form factors for the proton. The weak vertex
functions are replaced by their leading terms,

&p'e-~IS(0) Io) ~ G,(~,)e(p')(I —v, )N (e'), (65)

(p'e""'I ~~(0) I0) ~ ~Gs(»)~(p'4 ~(1—v )I'(") (66)

The functions g, (s) are obtained in this approxima-
tion by substituting Eqs. (64)—(66) in Eqs. (62) and.

(63). The results may be reduced to the standard form,
and the 8;(s) identified, after the indicated spin sum and
the integration over the azimuthal direction of the rela-
tive momentum in the electron-proton center-of-mass
system are performed. The Anal integration over the
polar direction of the relative momentum can also be
performed if we introduce the usual integral representa-
tions for the proton form factors, "

A similar term appears in gs(s) I and, in the case of the
muon, in 8&(s), but with F»(q') replaced by unityj.
For s~~, this expression approaches the indicated
limiting value, constant and independent of s if F»(q')
vanishes su%.ciently rapidly for q' —+. In particular,
the result does not vanish for s ~~, barring a purely
fortuitous cancellation, and single subtractions are re-

quired in the dispersion relations for G&(s) and Gs(s),
Eqs. (60). On the other hand, the Pauli form factor
F»(q') plays an essential role in securing the con-

vergence of the dispersion integrals for the remaining
functions. This is clearly evident from the second term
ln Eq. (70),

4@2 8

(2pgs) —' F,„(q')dqs + s—t F»(qs)dq

s —+oo. (73)

If F»(q') vanishes sufficiently strongly for q'~oo,
say as (q'), tt)0, the foregoing expression vanishes
for s~~, and no subtractions are necessary in the
dispersion relation for Gs(s), Eq. (61). At present, it is

known that Fs~(q') decreases rapidly for small values

of q', and is nearly zero for q' 25F '."We shall assume
that this rapid convergence toward zero persists for
larger values of q', and will use as an approximate form
for F»(q') the Hofstadter form factor"

F (q') —L1+(q'a'/12) )—' u 0.8—1.0F. P4)

The unsubtracted dispersion integrals for the G;(s),
j/1, 3, are then convergent, and, in fact, converge
quite strongly. We note 6nally that the expressions for

bt(s) and gs(s) in Eqs. (69) and (70) involve a number
of terms which may be omitted, being of order (m, /m„)
or higher relative to the leading terms. These are easily
identified by changing from s to the dimensionless
variable

t = pe/m, —m, = (s m' —m—')/(2m„m, ). P5)

The integrations in Eqs. (60) and (61) cover the range
j(t'( ~. However, the main contributions to the dis-

persion integrals arise from values of t' close to the physi-
cal region, 1(t((m s—m„')/(2m„m, ) 2.53. Thus, for
example, a factor (s—M') is of order 2m„m, while a
factor 4p' is of order 4m, '. From this remark, and the
observation that the most important values of the
spectral variable x in Eq. (67) are apparently associated
with the p meson Lx=(750 MeV)'j and the co meson
Lx= P85 MeV)'j, "'4 it is clear that the functions G;(s)
are insensitive to the precise behavior of F»(q ). It is

consequently a good approximation to replace F»(q')
by its value for q'= 0, unity; the resulting simplifications
in the functions g, (s) are considerable. It is also possible

'8F. Bumiller, M. Croissiaux, E. Dally, and R. Hofstadter,
Phys. Rev. 124, 1623 (j.961), and references contained therein.

'4 A. R. Erwin, R. March, W. D. Walker, and E. West, Phys.
Rev. Letters 6, 628 (1961).B. C. Magli6, L. W. Alvarez, A. H.
Rosenfeld, and M. L. Stevenson, ibid 7, 178 (1961). .



ii98 DU RAN D, LAN DOVITZ, AND MARR

8 (t) —l G (so)(t' —1) "'8(t—1)

g, (t) —,
' G (so)t(t' —1)—'t'8(t —1)

(77)

X {ln[(m '/1~')(t' —1)]——,o+'4~„}, (78)

8 (t) G ( )(1+-' )(t' 1) "'8(t 1) (79)

8 (t) -' G. ( )(t'—1) '"8(t—1)

X (1—,'~,)t[1+(2m,/m„)t]
—'

4p2

—z (2P') ' (q' 4P')F pn—(q')dq', (8o)

to replace F»(q') by unity in those expressions which
yield convergent dispersion integrals in this approxima-
tion. While the full momentum dependence of Fp„(q')
must be retained elsewhere to obtain convergent results,
the resulting contributions to the G; are for the most
part negligible.

On the basis of the foregoing discussion, replacing
F»(q') and F»(q') where possible by unity, and omit-
ting terms of order m, /m„, we obtain for the absorptive
parts of the functions G;, expressed in terms of the
variable t,

gi(t) ~ —,'nGi(so)t(t' —1)—'t'8(t —1)

X {in[(4m,'/X')(t' —1)]—1}, (76)

dependent term in gp(t), the numerical factor corre-
sponding to the use of the Hofstadter form, Eq. (74),
for F»(q'), choosing 4t=O.SF. The result is valid only
for small values of t, t((m„/m„and does not have the
proper limiting behavior for t —+~ . The function
D(t,X') is given by

D(t X') = (mn/2)t(t' —1)—'t'+D'(t 1~')

= (em/2) t(to —1)

+ (n/2pr) [2+(1—tR(t)) ln(mg/l~')]

+(n/2m. )t(t' —1) 't'[3 ln'I —2 lng ln(N' —1)
+L(N ')—(~'/6)] (92)

Here 1.(s) is again the Spence function, " dered in
Eq. (29), and u= t+(t' —1)'t'. The subtraction point in
the dispersion relations for G~ and G3 has been chosen
as tp= 1, sp= (m„—m, )', to insure the explicit cancella-
tion of the ) -dependent terms in the electron spectrum
when inner bremsstrahlung processes are included. The
arguments are essentially the same as were given in the
case of the muon. The first term in D(t,X') diverges for
t —+ 1. Since t=ep/m in the proton rest system, this
term is of the form ( p/rn2v, ), where v, is the electron
velocity. It may consequently be identified with the
term of order n in an expansion of the usual Fermi factor
F (Z, t) in the beta-decay matrix element, and will

henceforth be omitted from the "radiative" corrections.

go(t) —& —,'nGp(so) (1——,'~„)(t'—1) '"8(t—1), (81) C. Contributions of the E1ectron-Neutron
Interaction

The neutron decay rate and the electron spectrum in
the decay depend to order n only on the real parts of
the functions G, (t). Using the dispersion relations in
Eqs. (60) and (61), these are found to be

ReGi(t) =Gi(so){1+D(t,X')+(n/2m)[tR(t) —1]}, (84)

ReG, (t) = (n/2vr)Gi(so)R(t), (85)

ReGp(t) =Gp(sp) {1+D(t,7 ')
+ (n/87r) (6—K„)[tR(t)—1]}, (86)

ReG4(t) = —(n/Sm )Gp(sp) (2+~~)R(t), (87)

ReGo(t) = (n/Sm) Gp(sp) {(2—14„)[1n(m~/m, )—tR(t)]
X[1+(2m./m„) t] '+ 1.3614„}, (88)

ReGp(t) = —(n/Sir) Gp(sp) (2—14,)R(t), (89)

ReG~(t) = —(n/87r) Go(sp) (2—4„)
X[1 ( ./ .)—t~(t)][1+( ./ .)t] ' (9o)

ReGp(t) = —(n/Spr) Gp(sp) (6+a~)R(t), (91)

where E(t) is the function defined in Eq. (27). The con-
stant term 1.36Xa„ in Gp(t) arises from the form-factor-

&Per I
5

I I)=i(27r) 454(P+ejP rt)(16eo~opor—to) ' '
x [u(P) (1+yp)e(r) G'(e, rt)

+i~(P)v~(1+vp)~(~)Gi'(e, ~)], (93)
where

G'(e, ~)= & I(G'/v2)(1+ ')0.(0)(1—v )0-(0) I&)
= ()[G '()(1-~.)+G.'(~)(1+~.)] ( ), (94)

Gi'(e, rt)
= &e I

i—(G'/~2)(1 —p')tP, (0)(1—'Y )y&A(0) lrt)

=i~(e){v [G.'(e)(1+& )+G '(e)(1—v )]
+m '0 i.(e—it),[G4'(e) (1—yp)+ Go'(3)(1+74)]
+im„—'(e—n) i[Gal'(e) (1—y 4)

+G '(e)(1+v )]}I(&) (95)

The form factors G are functions of the variable

(96)e= —(ii—e)-'

analytic in the complex s-plane cut from 8= (m„+m,)'
to 8= ~, and are assumed to obey dispersion relations of

7(t —& i4nG p—(so-) (1 ,'~„ t—(t'——1)-"'
As noted previously, the electromagnetic interactions

X [1+(2m,/m )t]—i8(t 1) (82) between the electron and the neutron also lead to modifi-
cations of the beta decay matrix element, which, ignor-

e (t) —+ -',nG (so)(3+-.'K )(to—1) 't'8(t —1). (83) ing the electron-proton interaction, may be written in
the form
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the same type as the functions G;(s), Eqs. (60) and (61).
As was remarked earlier, the functions G, (s) and G (8)
for j~1, 3 are independent. On the other hand, the
functions with j= 1 or 3 multiply the same covariant
in the transition amplitude, and involve as a common
term the renormalized Born approximation. We will,
therefore, replace the functions Gi, s(s) and Gi, s'(8) by
functions of two variables, Gi, s(s,B) which are of the
form

Gi s(s,B) =Gi, s(so&o)+Gi, s(s)+Gi, s (e) (97)
The common subtraction constants Gi, s= Gi, s(sp, Bp) play
the role of renormalized coupling constants in the
present theory. With this convention, Gi(sp) and Gs(ss)
are to be replaced in Eqs. (76)—(91) by G, and Gs, the
functions ReGi(s) and ReGs(s) are then given by
[ReG, , ,(s)—G, ,s).

The calculation of the functions G (e) differs only in
minor details from that outlined above for the G;(s). ln
particular, it is necessary to introduce the aforemen-
tioned subtractions in 8 in the dispersion relations for
Gi(s, s) and Gs(s, s) for precisely the same reasons as
were mentioned following Eq. (72) in the case of the
proton. However, because of the vanishing of the neu-
tron charge, the Dirac form factor Fi„(q') satisfies a
dispersion relation of the form

fi-(x)
Fi.(q') = —— dx (98)

2 x(x+q')
and vanishes linearly with q' for q'~0. Fi„(q') is in
fact observed experimentally to be much less than unity
for values of q' less than about 20 F '." The extra
factor of q' in Eq. (98) has two significant effects. First,
it eliminates from the 8-dependent terms in G~ and G3
the infrared divergence characteristic of the s-dependent
terms, Eqs. (84) and (86). Correspondingly, the neutron
does not contribute to the inner bremsstrahlung proc-
esses during the decay [q'=Oj, and the choice of the
subtraction point 80 is not determined by the infrared
divergence problem. Secondly, the integrals involving
Fi„(q') vanish at least as rapidly as P' for p' —+ 0 in all
of the 8 (8) [cf. Eq. (69)$, and consequently lead to
negligible contributions to the G; (s). The only signifi-
cant sects of the electron-neutron interaction are
therefore associated with the anomalous magnetic mo-
ment a of the neutron. A straightforward calculation
leads to results for the 8,'(8) which differ from the
corresponding K„-dependent parts of the 8,(s) only in
the over-all signs for j=3, 4, 5, and 6, and in the re-
placement of the proton mass and anomalous magnetic
moment by the same quantities for the neutron. Using
the dispersion relations of Eqs. (60) and (61), one then
obtains for the (real) functions G, ', expressed as func-
tions of the variable

t= —n e/m m =(m '+mP s)/(2m. m,)&-
Gi'(t) Gs'(t) 0(m,/m. ), (99)
"C.DeVries, R.Hofstadter, and R.Herman, Phys. Rev. Letters

8, 381 (1962).

(100)

(101)

Gs'(t) = (rr/Sir)GsK„[tR(t) —1$,

G,'(t) = —G, '(t) =—G,'(t) =—(~/Sx)G...R(t),

Gs'(t) = (n/Sm. )GsK„f [ln(m /m, )—tR(t)j
X[1—(2m, /m„)t) '+1.36}, (102)

G,'(t) = (~/Sx)G,.„[ln(m„/m, )—tR(t)j
X[1—(2m./m )t7 ' (103)

where R(t) is defined in Eq. (27), and we have used the
Hofstadter form factor in Eq. (74) to evaluate the form-
factor-dependent term in Gs'(t). The subtraction point
in the dispersion relation for G~ and G3 has been chosen
as te 1, sp=——(m —m,)'. This choice, although notneces-
sary, is suggested by the similar choices ss ——(m~ —m, )'
and ss ——(m„—m, )' which were necessary for the proton
terms and in the case of the muon. 36

(per l S l is)
= i(24r) 4t"(P+e+r —n) (16epr pppes)-"'

Xf '()(1+7) ( ) (P)
X [F (1—7 )+F (1+7 )$ '( )
—V (v)(1+7,)7iu(m)u(P)
X L s7~(1—7s)+F47 (1+7s)jl'(e) } (104)

where the Ii's are linear combinations of the G's. A
number of the G's in fact cancel out in the sums, and
one obtains for (m, /m~)t((1

F,= (G /&2)(1+ )f1+D'(t,X')

+ (n/24r) [tR(t)—1j}+iBi(t) (105)

's=(~/x)( G/~ )2p(R)+t[i8 ( s)+tBs(t)+Bs(t)j (106)

Fs= s (Gv/v2)(1 —P) f1+D'(t ) ')+(~/2~) [tR(t) —1j
—(4r/Sir) (K„K 2)[ln(m~/m, )—1j}

+i[8,(t)+8,'(t)+8,(t)+8,'(t)3, (107)

F = —( /4 )(G /v2)(1 —P)R(t)+il 8 (t)+8 (t)3 (108)

"The ambiguity in the subtraction point affects only G3(t)
LG&(t)~O(4a, /4ri„)g, and leads to the replacement of the factor
PtR (t) —1j by PtR (t) —t4R(t4)g. The change is not large unless the
subtraction point is chosen near the inverse square root-type
singularity of the second term at t0= —1. An alternative choice
of subtraction point corresponding to the value (m„—m„)' for
the momentum transfer variable —(n —p)' would also be attrac-
tive did it not lead to a value of to near this singularity. It is pos-
sible that the ambiguity vrould be resolved by the consideration of
those higher order terms in the decay amplitude which are infrared
divergent and depend on both s and 8. We have not attempted to
carry out such an investigation. The analytic properties of the
higher order functions are essentially unknown, but it is likely
that these functions have complex singularities, hence, do not
satisfy double-dispersion relations of any simple kind.

D. The Electron Spectrum in the
Decay of the Neutron

The transition amplitude for the decay of the neutron
may be reduced in the static limit for the nucleons to
the form
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It is interesting to note that those magnetic moment
terms which were essentially independent of the be-
havior of the form factors F2„and F2 for large q'
appear only in F3 and then in the isotopic vector com-
bination («i,—«„). The form-factor-dependent terms
appear in the F's only in the isotopic scalar combination
(«„F»+«„F») which contributes negligibly to the re-
sults, and have consequently been omitted. The transi-
tion amplitude in Fq. (104) is, therefore, essentially inde-

pendent of the details of the charge and magnetic
moment distributions of the nucleons.

The subtraction constants Gi(sp, 8O) and G«(so, Bp),

which play the role of renormalized coupling constants
in the present theory, have been written in Eqs. (105)-
(108), according to the usual conventions, as

G (",")= (G./~2)(1+ p),

G«(so 8o) = 2(Gvlv2)(1 P),—

so= (m„m,)', 8—
O
——(m„—m, )'.

(109)

(110)

Here Gy is the vector coupling constant, renormalized
with respect both to strong and electromagnetic inter-
actions, while p= —G~/Gv gives the relative renormali-
zation of the axial vector and vector couplings.

A brief calculation yields for the electron spectrum in
the decay of the neutron, corrected to order 0. for the
exchange of virtual photons, the result

dh„(t) = mme'7r 'G (vt~ t)'(t'—1)"t—F (1yt)dt

X{(1+3p')[1+2D'(t X')

+(n/~) [(t'—1)t 'R(t) —1]]
—(n/Ss. )(p —1)(3p—1)(«„—« —2)

X [ln(m„/m, )—1]}. (112)

Here F (Z, t) is the usual Fermi factor which corrects
for the presence of the attractive Coulomb interaction
between the electron and proton. The remaining terms
of order o, represent the "radiative" corrections. To
dN„(t) must be added the spectrum for the decay
accompanied by the emission of photons,

dh~(t) = (n/2n. )m. 'n='Gv'(t —t)'(t' —1)"tF (1,t)dt

X{[tR(t) —1][ln(m,2/X')+ 2 ln2(t —t)
+-', (t„—t)t '—2]+2+(1/12)(t„—t)'t—'R(t)
+t(t' —1) 'I'[3 ln'u —2 in' ln(u' —1)

+I-(~- )-(-'/6)]}, (»3)

where, as usual t=eo/m„ t =(m„—m) m/„and
u=[t+(t2 —1)'I'] Because of our choice of the sub-

traction point so, the complete spectrum is independent
of the photon mass ),,

Ch(t) = g~m, 'ir 'Gv'(t —t)'(t'i —1)"'tF (1,t)dt

X{(1+3p')[1+(n/n. )m(t) ]
.—(u/Sm) (p —1)(3p —1)n (t)}, (114)

where to order m, /m„,

m(t) =4+ t
—'R(t) [(1/12) (t —t) '—1]

+[tR(t) —1][2ln2(t„—t)+-', (t„—t) t
—' —1]

+2t(t' —1) "'[3ln'I —2 lng ln(u' —1)

+ (~ ') —(~'/6)] (»5)

m(t) = («„—«„—2) [ln(m, „/m, )—1]. (116)

It is useful to note that the variable u is related to the
electron velocity v by

(117)I'= (1+~)/(1—~).

E. Comparison with Perturbation Theory

Here G~ and pG~ are the completely renormalized

coupling constants defined in Eqs. (109) and (110),
while G' and p'G' are the coupling constants which

appear in the effective Lagrangian in Eq. (49). (It
should be recalled that G' is rot equal to the bare
coupling constant G which enters the universal Fermi
interaction, but divers from that constant by a re-
normalization arising from the combination of electro-
magnetic and strong interactions between the neutron
and proton. ) The renormalization factor for G3, Eq.
(119), is finite and differs as expected from that en-

countered in the case of the muon only by the replace-
ment of m„by m~. The situation with respect to G& is

quite diferent. This vertex function, when calculated in
perturbation theory for a point proton, is ultraviolet
divergent. Finite results have been secured only through
the introduction of an ultraviolet cutoff A in the mo-

mentum integration. The significance of the perturba-
tion theoretic results for G~, and of the A.-dependent
renormalization factor in Eq. (118), is consequently not
clear. It has been customary to choose A equal to the
mass of the proton in the expectation that a proper in-

clusion of the electromagnetic structure of that particle
wouM provide a natural cutoff at momenta in that

The electron-proton vertex functions G;(s) have been
calculated in perturbation theory, neglecting the con-
tributions of the anomalous magnetic moment of the
proton, by Behrends, Finkelstein, and Sirlin. Compari-
son with our results [Eqs. (84)—(91), with «„=0] indi-

cates that the two methods are equivalent for the G;
with jA1, 3. On the other hand, the vertex functions

G& and G3 differ by constant terms which may be
ascribed to renormalization eGects. If it is required that
the dispersion and the perturbation-theoretic results be
equivalent, one obtains the relations

Gv(1+p) =G'(1+p') {1+(n/2m) [—', ln(m„/m, )
—(5/4)+3 ln(A/m„)]}, (118)

and

Gv(1 —p) =G'(1—p') {1+(n/2ir) [ln(m„/m. )——',]}.(119)
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region. " This point has been examined in detail by
Herman and Sirlin, ' who conclude that such a cutoff
will in fact be present if the four electromagnetic form
factors for a proton oB the mass shell vanish for infinite
momentum transfers and infinite effective masses. Un-
fortunately, nothing is as yet known about the off mass
shell behavior of the form factors, and the perturbation
theoretic results for G~ remain ambiguous. The authors
therefore prefer the results obtained using the dispersion
theory approach, which involve no ad hoc assumptions
about the behavior of the proton form factors off the
mass shell, and are expressed in terms of completely
renormalized quantities defined by the values of the
decay amplitudes at specilc (unphysical) points. This
approach unfortunately precludes a direct test of the
universal Fermi interaction through a comparison of the
bare coupling constants in the decays of the neutron and
the muon (nor is such a test possible in perturbation
theory without a specific assumption about A., and a
calculation of G'/G and p'/p), but yields, on the other
hand, relatively unambiguous results for the electron
spectrum, spin correlation parameters, and the neutron
decay rate."

It is clear from the foregoing that the functions m(t)
and n, (t) which appear in our result for the electron
spectrum in the decay of the neutron, Eq. (114), differ
from the perturbation theoretic results of Kinoshita and
Sirlin' (p= 1) and the more recent results of Berman and
Sirlin' (p&1) only by the presence of the anomalous
magnetic moment terms and the formally infinite re-
normalization effects. However, the resulting expres-
sions for the neutron decay rate are quite diferent. An
analytic calculation by Kinoshita and Sirlin (KS), using

37 It could perhaps be argued that an equally plausible choice
for h, is the "natural cutoff" of 100—300 GeV for the weak interac-
tions determined, for example, from the requirement that the
cross section for the scattering process v+7-+ p+e not exceed
the limit imposed by unitarity. The results would be quite dif-
ferent. Another possibility is to ascribe the cutoff to the pionic
structure of the weak vertex. If the vector weak interaction cur-
rent is assumed to be proportional to the & components of the
conserved vector isotropic spin current, ' the pionic structure of the
weak vertex must in fact be identical to the structure of the iso-
vector electromagnetic vertex for the nucleon. That is, the weak
vertex appears with a form factor FIg((p —n)'), where FI~ is
expressed in terms of the electromagnetic form factors for the
nucleons by FI&=&(F»—F») —',F». The proton form factor
Lor more precisely, the form factors for a proton off the mass
shell (reference 7)7, therefore, appears twice in the electromagnetic
corrections to the weak vertex function. Although a cutoR in the
perturbation integral based on the structure of the nucleon is ap-
pealing, the requisite experimental information is not at hand, and
the question as to whether the form factors have the required
properties must be considered as open. The behavior of the form
factors on the mass shell suggests that a cutoff at about the mass of
the p meson may be reasonable (references 33, 34, and 35). How-
ever, F» decreases only slowly for large q2, and there has been
some speculation that it might approach a constant value for
q'~~ Lsee, for example, R. G. Sachs, Phys. Rev. 126, 2256
(1962)j.The authors are unable to shed any light on this problem.
We note only that the use of a cutoff A=vs„corresponding to a
proton form factor ft'»(q') =m„'(m„'+q') ' leads in perturbation
theory to an electromagnetic correction to P„of +1.2% rather
than the 1.8% quoted above. A detailed study of the dependence
of the correction on the form and magnitude of the cutoft is given
in reference 9.

the approximations t &)I, p=1, and A=as„, gave the
results

I' (KS)= I's'(1+(o./2s)L3 in(m„/2E )—2.85j)
= I'p'[I+0.017j. (120)

Here E, =m„—ns~=1.293 MeV, and Fo' is the uncor-
rected decay rate expressed in terms of G' and p',

I' s' ———,'m, ss. 'G"(1+3p")f f= 1.688. (121)

In the same approximation, the dispersion relation
treatment of the neutron decay yields a decay rate

I'„=I',{1—(n/2s)L3 ln(2E /m, )+0.35))
= I'o (1—0.0060), (122)

where I's is given by Eq. (121) with G' and p' replaced
by G& and p. More precise numerical calculations by
Berman and Sirlin including terms of order m„/&
omitted in Eq. (120) yielded for the result of perturba-
tion theory I'„(KS)=I's'(1+0.018&0.005) for 1.8m„
)A&0.3m„and p=1.2. On the other hand, numerical
calculations based on Eqs. (114)—(116) show that the
correction arising from m(f) decreases I'„by 0.546%,
while that arising from ts(t) decreases I' by 0.043'P~ for
p=1.2, and by 0.053'%%uo for p=1.25." Adopting the
latter value of p, we obtain for the result of dispersion
theory I'„=I'p(1 0.0060). The radiative corrections thus
increase the decay rate expressed in terms of the partially
renormalized quantities G' and p' but decrease the rate
expressed in terms of the completely renormalized
quantities G& and p. It is amusing to note that the
radiative corrections to the muon and neutron decay
rates differ by only 0.47% when these quantities are
expressed in terms of the physically significant re-
normalized coupling constants.

We remark finally on the different manner in which
the anomalous magnetic moments of the nucleons affect
the radiative corrections in the dispersion- and perturba-
tion-theoretic calculations. In the latter, these introduce
additional logarithmic divergences in the electron-
proton and electron-neutron vertex functions, v and
presumably finite terms as well. These contributions to
the vertex functions have not been calculated in detail.
On the other hand, the magnetic moment contributions
to the vertex functions as calculated in dispersion theory
are finite, and the dispersion relations for the G, require
no subtractions because of these terms, provided the
form factors Fs„(rj') and Fs„(g') vanish sufficiently
strongly for q' —+~. This strongly suggests that a
proper inclusion of the magnetic structure of the
nucleons would eliminate the divergences encountered
in perturbation theory, and lead to anomalous magnetic
moment contributions to the vertex functions which
vanish for s, 8 —+~. It would be of interest to investi-
gate this point in more detail. The over-all eGect of the
anomalous magnetic moment terms is rather small in
the present treatment of the decay. The moments appear
in the spectrum in the large isotopic vector combina-
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tion only in the function e(t), Eq. (116),and lead when
considered alone to a 0.115% decrease in I'„.

IV. THE BETA DECAY OF 0'4

A. Single Particle Model of the Decay of 0'4
FIG. 3. Feynman

diagrams for the rad-
iative corrections to
the beta decay of
0'4 in the "element-
ary particle" model
of Sec. IVB.

N

(b)

(c)

B. Beta Decay of Structureless Nuclei

It is interesting to compare the foregoing result with
that previously reported by the authors, "in which the
radiative corrections were calculated treating the 0"
and N"* nuclei as elementary particles. The transition
matrix element in this case is of the form

&e~p I~l pi)
=i(27r)484(e+v+p2 p,)(—16eovopiopM) ' '&(&)&y ~(&)

X [A (s,s)(P1+P2).+&(s,s)(Pi—P2).], (125)

where pi and p2 denote the 4-momenta of the initial and
final nuclei, s= —(p2+e)2, and s= —(pi —e)'. The finite
extension of the nucleus leads to an explicit dependence
of the functions A and 8 on the momentum transfer
variable Q',

Q = (pl p2) =ml +w2 +m s s.

However, this dependence may be adequately accounted
for by the usual multipole expansion of the nuclear
matrix element, and will be neglected. In the absence of
electromagnetic corrections, 8=0 and A = constant &(M,
where M is the nuclear matrix element for the allowed
Fermi transition.

The calculation of the functions A and 8 follows

closely that described previously for the muon and the
neutron. The contributions which are included in the
iterative procedure to order n correspond to the dia-
grams of Figs. 3(b) and (c). The vertex function A is

dN(/) = -,'m, 'm='Gi'
I
M

I
'(3 —t) '(t' —1)"'tF+(s,t)dt

X [1+(n/ir)m(t)+(n/Ss-)(p —1)e(t)j, (123)
then given by

ImA i(s')ds'
ReA(s, s) =A(s, ,s,)+ I'

where M is the nuclear matrix element, M V2, and m(t)
and e(t) are the functions defined in Eqs. (115) and
(116).The decay rate of 0'4 in this model is given by

-,+-,&* (s' —so) (s' —s)

ImA ~(s') ds's—$0
(126).„+,) * (s' —so) (s' —s)I'(0")=-',m, '7r 'Gv'I M

I 'f[1—00079j, (124)
where

The very accurate data' obtained in recent years on
pure Fermi transition 0'4(P+)N'4~ (0+ —+0+) have
been used to determine the value of the vector coupling
constant in the V-A theory of nuclear beta decay. The
nuclear matrix element is thought to differ from the
value V2 characteristic of a transition between adjacent
members of an isotopic triplet only because of eGects
associated with the nuclear Coulomb fields; these have
been estimated by several authors, " "and are probably
small. However, one may expect additional radiative
corrections of the type which we have considered to be
present. These involve the interaction of the positron
with the decaying nucleon, and the emission of inner
bremsstrahlung during the decay. It is of interest in this
connection to consider a model in which the decay is
treated as that of a free nucleon insofar as the calcula-
tion of these radiative corrections is concerned, the
remainder of the nucleus simply providing the proper
selectrion rules and decay energy, and the Coulomb field
in which the decay positron moves. "The positron spec-
trum is easily calculated in this model using our previous
results. The appropriate vertex functions are obtained
from those for the neutron decay by an analytic con-
tinuation in the variable s to the physical region for the
proton decay, s= —(p —e)'. Inspection of the dispersion
integrals shows that the vertex functions G; are real in
this region, and are obtainable from the real parts of the
functions G; for the neutron decay, Eqs. (84)—(91), by
the replacement of t by t, R(t) by —R(t), and D—(t,X')

by D'(t, X2), with t= —p e/m„nz, . Similar replacements
are necessary in the functions G, Eqs. (99)—(103), and
these are now complex. Upon making these changes and
retaining only the Fermi component of the resulting
transition matrix element, the positron spectrum, in-
cluding the effects of inner bremsstrahlung, is found to be

where f, calculated without radiative corrections using
the positron end-point energy eo ——2.3236&0.0014 MeV
of Bardin et al. ,'4 is equal to 42.97~0.13. The factor in
square brackets represents the eGect of the radiative
corrections, and was calculated by numerical integration.

This model has been used in references 7, 8, and 9 to estimate
the radiative corrections to the beta decay of O' .The justification
for such a model is discussed in detail in reference 10.

ImA i,.(s) = W-', Z, ,,nA (s0,8,)(2pgs) —'

X (s—m, ,P—m, 2)0(s—(m, ,p+m, )')
4p9

dV'[(V'+l') '—(4p') '3Fi,2(V') (12&)

and we have dropped some terms of relative order
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m, /mrs. The functions Fi,s(q') are the charge form
factors of the initial and final nuclei, which, to an
adequate degree of approximation, may be taken as
equal. The function B(B,s) does not contribute signifi-

cantly to the decay, and will be ignored. We remark only
that Fi &(q') must vanish for g'~ pe if the dispersion
integrals for B(s,e) are to converge without a subtraction.

In the evaluation of ImA i, &(s), we have included only
the contributions of those electron-nucleon intermediate
states in which the nucleus is not excited. The validity
of this approximation depends on the rapidity of con-

vergence of the dispersion integrals for s'))s, 8'))8, and
on the remoteness from the physical region of the singu-
larities associated with those excited states of the nuclei
which can contribute to the absorptive parts. We will

consider in detail the possibility that low-lying excited
states of N" could contribute significantly to ImA&(s)
through diagrams such as that of Fig. 3(d). The only
transitions from the 0+, T= 1 state of 0'4 to the levels
of N'4 which can have large (allowed) matrix elements
are the vector transitions to the 0+, T=1 levels, and
the axial vector transitions to the 1+, T=1 levels.
Other transitions involve either forbidden matrix ele-

ments, or a violation of the isotopic spin selection rules,
and are strongly inhibited. Furthermore, were it not for
the change in the Coulomb field of the nucleus between
the initial and final states, the matrix element for an
allowed transition to a possible high 0+, T= 1 level of
N" (the first such level is at 8.62 MeV") would involve
the overlap between wave functions for different energy
levels of the same system, and consequently would

vanish identically. Because of the smallness of the
Coulomb interaction for Z=7, the matrix element is

probably of neglibible size in any case. The first possi-
bility other than the desired transition to the 2.311-MeV
level of N" is an allowed axial vector transition to a
possible 1+ level at 8.99 MeV, 39 provided the isotopic
spin of this level is T= j.. However, the subsequent
interaction of the nucleus with the positron, with the
concomitant de-excitation to the 0+ level, proceeds via
an M1 transition, with the consequence that the electro-
magnetic matrix element will be small relative to the
FO matrix element ZeFs(q') which enters Eq. (127).The
conservation of isotopic spin and the selection rules for
the weak and electromagnetic transitions, therefore, pre-
clude the existence of significant contributions to ImA2,
or, by similar arguments, to ImA&, associated with low-

lying excited states of N" or 0".The arguments are less
certain for large excitations, but the effects on Red of
small changes in ImA& 2 for large 8', s' are in any case
small because of the rapid decrease in the factors
(s'—s) '„(s'—e) ' in the dispersion integrals. Thus, a
100jq change in ImAs at an excitation energy corre-
sponding to one oscillator spacing ( 25 MeV) results in

only a 5 /q change in ReA. This suppression of the effects
of highly excited states is a direct consequence of the

"F. Ajzenberg-Selove and T. Lauritsen, Nucl. Phys. 11, i
(1959).

low energy of the decay, and the resultant long wave-
lengths of the positron. "

It will be convenient to evaluate the dispersion inte-
grals in Eq. (126) first in the approximations Fi=Fs= 1.
The calculations may be simplified further by the
introduction of the usual dimensionless variables
t= —e ps/r/z, t/s& and t= —e pi/m, t/ii. The physical
regions for t and t are identical if we neglect the recoil of
the nucleus. Then t= t= ep/m„1 & t, t& t . For the decay
of 0", t =(mi —ms)/m, 4.53. With the introduction
of appropriate integration variables

t'= (s'—ms' —m ')/(2m, m, ),
t'= (I'—mrs —m, ')/(2mims),

the ranges of integration can be converted into the
interval 1&(', t'& ~.The integrals are easily performed,
and we obtain for ReA the result

ReA (t,t)
—A(t t )f 1 &Z~rrt(ts 1)—1/2+ 1Z~t (1 t 2)—1/2

ylnL(4m, s/~')(1 —t, ')$—Zt D'(t, X')—D'(t, X')j
—(Zri/2pr) LtR(t) —tpR(tp) 7
+ (Zy 1)$D'(t, V)—D'(t„Xs)j

+(Z+1)(n/2pr) ftR(t) —tpR(tp)g), (128)

where R(t) and D'(t, X') are defined in Eqs. (2'r) and (92)
and Z is the charge of the final nucleus. We have
assumed that

~
tp

~
& 1, and will, as usual, neglect terms

in the functions D which are negligible in the physical
region. The subtraction points fo and fo are to be deter-
mined by the condition that the positron spectrum and
decay rate for 0", as calculated including the effects of
inner bremsstrahlung, be independent of X. This condi-
tion leads to the transcendental equation

1=Zt, (1—tp)
—'/'L(pr/2)+sin 'tp]

+(Z+1)tp(1—tp') ' 'L7r/2 —sin 'tsar. (129)

Ke will choose a subtraction point which corresponds to
the value (mi —ms)' for the momentum transfer variable
Q'; A(tp, tp) will then involve the usual nuclear matrix

40 It is interesting to compare this result with that obtained in
perturbation theory by Chem, reference 10, following a procedure
applied to the mass 12 system by M. Gell-Mann and S.M. Berman
(Phys. Rev. Letters 3, 99 (1959)g. The perturbation expansion for
the electromagnetic corrections to nuclear beta decay involves a
sum over excited nuclear states with energy denominators which
depend on the energy of those states and the energy of the inter-
mediate electron. If it is assumed that the main contributions to
the sum are associated with large electron energies, the nuclear
energies may be neglected, and the sum evaluated using closure.
(This approximation leads directly to the single particle model
for the decay which was discussed in Sec. IVA.) Consequently, if
the region of large electron energies yields the dominant contribu-
tions to the logarithmically divergent integrals encountered in
perturbation theory, many excited states of the nuclei contribute
to the electromagnetic renormalization of the weak vertex. On
the other hand, it is clear from our results that the momentum-
dependent corrections to the renormalized decay amplitudes are
associated almost entirely with energies comparable to the physical
energy of the decay positron. The selection rules for the weak and
electromagnetic interactions then restrict the sum over intermedi-
ate states to essentially only one signi6cant term.
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tureless nucleus considered above converts the diagram
of Fig. 5(b) into that of Fig. 3(c), and that of Fig. 5(c)
into that of Fig. 5(d). The contribution of the last
diagram to the transition amplitude is independent of t
and t, but leads to a change in the value of the effective
coupling constant, as yet unknown. The results of a
detailed calculation of this type would be of considerable
interest.

The radiative correction factor for the 0'4 decay rate
calculated from Eq. (133) differs by 0.24% from the
rate calculated from Eq. (123),

I'(0")= —,'m, ss 'Gp'
j M ~

'f t 1—0.0103j. (134)
Frc. 4. The radiative correction to the positron spectrum in the

decay of 0" as calculated from Eq. (133).The radiative contribu-
tion to the spectrum is (dN/dx)„s=(n/x)s(x)(dN/dx)0, where
(dN/dx)0 is the statistical spectrum not including the Fermi
factor, and x is the variable x=eo/eo

element 3f as a factor. For this choice, to to, and one
obtains as an approximate solution for Eq. (128),

to~to~ (2/s. )(2Z+1) '
X$1+(4/s')(2Z+1) —'+ )-0. (130)

Recalling that t and $ are equal in the physical region
to within terms of order E /fir, s, we obtain for Red(t, t)
the result

Red (t,t) ~ (Gp/%2)M(1 —stZrrs. t(ts —1)—ris+D'(t g')
+(rr/2s. )ftR(t) —1j+(n/2~) $2 ln2 —2$}, (131)

with
(Gp/V2)M =2 (tp, to), (132)

and M the usual nuclear matrix element evaluated for
Q'=(mr —nzs)s, M=(1) V2. The Z-dependent term in
this expression arises from the expansion of the Fermi
function F"(Z,t). As emphasized by Herman, " the re-
maining terms, which represent the radiative correc-
tions, are of order n rather than Zn.

The positron spectrum corresponding to the above
form for A(t, t) is given by

dlV(t) =-,'trt. 'm 'Gp'( M )
'(t —t)'(t' —1)"'tF+(Z,t)dt

XL1+(n/s. )m(t)+(a/s)(2 ln2 —2)$. (133)

This difference represents at least in part a difference
between Gy and Gp, but, pending a complete calculation
of the nuclear decay rate in terms of 6&, we have no
means of making a detailed comparison.

" ot, s(x)
dS.., x(x+g')

(135)

For simplicity, we also assume that rj. o.2,
' the error

C. Corrections for Finite Nuclear Size

We have thus far restricted our discussion to a theory
in which the initial and final nuclei in a decay have no
euclear structure in the sense that the nuclear matrix
element M(Q') was assumed to be independent of the
momentum transfer variable Q'= —(pi —ps)'. The elec

tromageetic structure of the nuclei was also ignored when
the form factors Fi s(q') were set equal to unity in

Eq. (127). However, the structure effects are not
negligible even for the Or4(P+)N'4* transition, and must
be considered.

The changes in the radiative corrections associated
with the nuclear electromagnetic form factors are easily
determined. We will assume that the form factors satisfy
spectral representations with anomalous thresholds, "4'

The factor in square brackets is shown in Fig. 4 for the
decay of 0'4. The foregoing result for the spectrum
diGers from that obtained by treating the nucleus as a
collection of free particles LEq. (123)j in the small final
terms in the square brackets, and in the appearance of
Gp, the renormalized coupling constant for the nuclear
beta decay, rather than G~ in the leading factor. One
can, in principle, attempt to relate the two coupling con-
stants by choosing the decay of the neutron as funda-
mental, and calculating the nuclear beta decay including
such diagrams as those in Figs. 5(b) and 5(c)." The
normal decay is in this case described by diagrams
similar to that of Fig. 5(a). The transition to the struc-

4' Such a calculation would represent a relativistic generalization
of the work of Chem, reference 10.

N N
4

(b)

Fxo. 5. Represen-
tative diagrams for
a calculation of the
radiative corrections
to the decay of 0'4
in which the struc-
ture of the nucleus
is not ignored.

(c) (d)

~ S. Mandelstam, Phys. Rev. Letters 4, 84 (1960).
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incurred thereby is negligible. Upon changing variables
from s and 8 to t and t and noting that t and t are in the
physical region, we obtain from Eqs. (126), (127), and
(135) the change in ReA(t, t) associated with the form
factors,

A[ReA (t,t)]

=(Zn/2~)(G&/v2)MtI' (t"—t') '(t"—1)'I'dt"

X u '(1—u)du o(x)x '
gp

X[t s—1+(oc/4m, su) ] ~doc

+(n/2~)(G&/~2)Mt (t'+t)-'(t" —1)' 'dt'

X u '(1—u)du o.( )a* '

finite size of the charge distribution. "The remaining
terms, of order n would be absent had we calculated the
structure corrections using the Dirac equation with the
static nuclear field of charge Ze. The positive and nega-
tive frequency components of the wave function in that
case each involve the charge Ze, rather than charges
diGering by t, as in the decay problem. It is interesting
in this connection to note that the leading term in
Eq. (138) depends on the average of the initial and final
charges. The same should probably be true of a corre-
sponding term in the nuclear structure corrections, as
will be noted below.

We shall not discuss the calculation of the nuclear
structure corrections to A (t,t) in any detail, but will take
over the results of Morita" obtained by the usual
multipole expansion of the nuclear matrix element using
for the positron the Dirac wave functions for a point
Coulomb field. These corrections result in the replace-
ment of jM~'= ~M((mr —ms)')(' in the positron spec-
trum by

X[t"—1+(x/4m 'u)] 'dx+0(E„/mIs) (,
13.6)

Integrating successively over t' and u, expanding the
result in powers of the small parameter 4m, s/x, and
noting that the moments of the nuclear charge distribu-
tion are given by

we obtain

(r"),h = (n+ 1)!
Xp

( l
—"+' 'd , (137)

&[ReA(t,t)]~ (Ge/v2)N( s(Z+ts)nm, t(r),h

+(n/s )m 't'(r'[lnym, r—(31/72)]),h

+(n/6~)m st(t' —1)S(t)(rs) „
+O(Znm, '(r'), h), in' =0.5772 . . (138)

Only the leading term is of significant size for the decay
of 0'4; this changes the positron spectrum, Eq. (133),by
a factor (1+6,h), where

where A~„represents for the most part the "Qnite de
Broglie wavelength effect, " and A2 arises from the in-
terference of allowed and second forbidden components
of the transition amplitude. To order Znm, 't '(r'),
one obtains"

A,„=-,'(q —1)+-,'Znm, (r).[4t+t-'+t ]—-,'m '(r')„
X [(t'—1)+(t —t)'+-'t-'(t' —1)(t„—t)], (141)

and

t4„=Zn(in ~ r)„—m, (v'rn ~ r)„[t —t+—t—r (ts —1)] (142)

Here y= [1—(Zn)']'" m, (t —t) is the momentum of
the neutrino, (r )„ is the mth moment of the spacial
distribution of the decaying nucleon in the nucleus,

(r") =OR(r")/OR(1), OR(1) =M, (143)

and (ir n r)„ is the mth moment of the second-forbidden
matrix element OR(in r),"

Aeh = —,
' (Z+ s )nm, t(r),h. (139) (ir n r)„=OR(ir n. r)/OR(1). (144)

The electromagnetic structure corrections have been
calculated for the beta decays of 0'4, Al"*, and Cl'4,

assuming the equivalent uniform charge distributions
as given by Hofstadter4'; the results are summarized
in Table I.44

It should be emphasized that the foregoing corrections
to A(t, t) arise from the electromagnetic structure of the
nucleus, and are present even if, as has been assumed,
the det, ayieg matter is concentrated at a single point. The
Z-dependent term arises from the rescattering of the
positron emitted by this point nucleus, and represents
the change in the value of lt -.(0), the value of the posi-
tron wave function at the origin, associated with the

4'R. Hofstadter, Arcnaat Review of Nuclear Sciervce (Annual
Reviews, Inc. , Palo Alto, California, 1957), Vol. 7.

44 This correction was not included in Table I of reference 18.

It is customary to remark at this point that changes in
the positron wave function are to be expected within the
range of the nuclear charge distribution, and to evaluate

4' The electromagnetic structure correction has been calculated
previously for heavy nuclei by numerical integration of the Dirac
equation assuming specific charge distributions. Qn the other hand,
the simple analytic expressions for the correction given in Eqs.
(138) and (139) has not, so far as the authors are aware, been ob-
tained before. The separation of the electromagnetic structure
corrections from such purely nuclear corrections as the "Qnite
deBroglie wavelength effect" is no longer possible in order
Zat~2me2EchRe.

4' We have retained the proper r dependence of the wave func-
tions in the following expression in order to show clearly which
monents of the nuclear matter distribution are actually relevant.
Morita, on the other hand, follows the customary usage in refer-
ence 20, with the result that the actual r dependence is not always
clear; for example, OR(r) is at one point replaced by R 'OR(rs).

4'See, for example, E. J. Konopinski and G. E. Uhlenbeck,
Phys. Rev. 60, 308 (1941).
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TAsrz I. Corrections and ft values for nuclear beta decay. '

Nucleus

Half-life, secb
Total end-point energy, keVb
f(Z,E ), uncorrected"

Corrections, /z of f
Competituon from X capture
Electron screening
Nuclear electromagnetic form factors, A,h'
Finite nuclear size, 61„f
"Second forbidden" nuclear matrix elements, 62„g
Total electronic and nuclear corrections
Electromagnetic (radiative) s
Total corrections' to f, %
f, (Z,E ), corrected f value
f,$

Gp, j 10 4' erg cm3

702&18
1293&1

1.688&0.006

~ ~ ~

—0.002—0.002
~ ~ ~

0.00—0.60—0.60
1.678+0.006
1178~30

1.356+0.068

71 36~0 09c
2323.6a1.4
42.97%0.13

+0.090
0.093
0.110
0.079—0.028

+0.34—0.79—0.45
42.78+0.13
3052&10

1.419&0.002

AP6'

6.374&0.0016
3719.0&2.3
473.0%1.5

0.078
0.113
0.355
0.253—0.074

+0.73—1.01—0.28
471.6+1.5
3006~12

1.430&0.003

CP4

1.53&0.02
5011&30
2036&61

0.068
0.127
0.680
0.466—0.117

+1 22—1.38—0.16
2033&61
3110~110

1.406&0.025

a This table supersedes Table I of reference 18, and should be used in preference to it.
b The half-lives and end-point energies for the decays of the neutron and Clg4 are those summarized by O. C. Kistner and B. M. Rustad, reference 50,

while those for the decay of 0'4 are taken from Bardin et al. , reference 3.For A12'~, we have used the recent, unpublished values of Freeman et al. , reference
49,

e Weighted average of the results of references 3, corrected for the (0.6&1)% branch to the ground state of N14 (R. Sherr, J. B. Gerhart, H. Horie, and
W. F. Hornyak, Phys. Rev. 100, 945 (1955)j.

& Calculated by numerical integration using Tables for the Analysis of Beta Spectra, National Bureau of Standards Applied Mathematics Ser. 13 (U. S.
Gpvernment Printing Ofhce, 1952). The f value for 0'4 is taken from Bardin et al. , reference 3, that for Al'6*, from Freeman et al. , reference 49.

e Evaluated using Eq. (139) with (r)eh =4R, and R the radius of an equivalent uniform charge distribution as given by Hofstadter, reference
43, R =1.33A»g &10 '3 cm. This model may be inaccurate by 5-10%.

& Evaluated using Eq. (141) with Z replaced by Z+-,', (r)n =-,'R, (r')n =-,'R2, and R given by the electromagnetic radius R =1.33A'f»&10 'g cm. This
procedure may be inaccurate by 10-20%.

«valuated using Eqs. (142)—(146). A diferent evaluation of A used in reference 18 leads to corrections about 30% smaller in magnitude; the probable
uncertainty in these terms is of this order. In addition, those terms in di& which depend on (r')~ were grouped with the "second-forbidden" cprrectipns
in reference 18.

h The radiative corrections for the nuclear transitions are given for the single-particle model of the decay discussed in Sec. IV'A. These corrections are
smaller in magnitude by 0.24% than those obtained from the "elementary particle" model of Sec. IVB. The possible effects of nuclear structure pn the
radiative corrections are as yet unknown, but we would regard the single-particle model of the decay as the more realistic. The electromagnetic structure
cprrections calculated in Sec. IVC using the elementary-particle model are equally applicable to the single-particle model. Use of the radiative corrections
from the elementary-particle model would increase the quoted values of Gy by 0.12%, that is, by 0.0017 &&10 49 erg cm3.

i The "tptal corrections" for 0'4, A126*, and Clg4 do not include the "Coulomb" corrections to the nuclear matrix elements. The magnitude of these
corrections is still uncertain (references 11-14, and footnote 51).

& Evaluated using p =1.25 &0.06, reference 30.

the positron wave function at the nuclear surface. The
indicated matrix elements can then be expressed in
terms of (r')„and (in r) . However, the following
remarks should be made. First, the dominant electro-
magnetic structure correction is given by A,h, Eq. (139).
This correction is in fact roughly equal in magnitude
to the nuclear structure corrections Lcf. Table Ij.
Second, the combined effects of the nuclear and electro-
magnetic structure can first enter d in order Znris, si '(r'),
and are entirely negligible for our purposes. In a strictly
consistent calculation, the quantities (r ) and (ir n r)„
in Eqs. (14) and (142) should, therefore, be evaluated by
calculating the appropriate matrix elements in the form
in which they are given. (It is interesting in this connec-
nection to note that a calculation based on diagrams
such as those of Fig. 5 would yield results unambiguous
in this sense. ) We shall nevertheless make the usual

approximations in the evaluation of A2„, thus,

(irmn. r) ~ gm —1(in, «) rAZngm 2(rs) —(145)

where E is a suitable dined nuclear radius and A is

given by Ahrens and Feenberg4' as

A=1—(Wi—Ws)A'~'Z '. (146)

Although the uncertainties in this procedure are rather
large, the second-forbidden contributions to the decay

4sT. Ahrens and E. Feenberg, Phys. Rev. 86, 64 (1952),
especially Eqs. (20) and (21).

rate are very small, and we require only a rough
estimate of their magnitude. The changes in the nuclear
decay rates associated with 61„and 62„have been
calculated for the 0+ -+0+ transitions 0"(P+)N'4*,
Al"*(P+)Mg" and Cl"(P+)S", and are summarized in
Table I. In this calculation, it was assumed that
(r')„(r'),s ——ssR'; where R is the nuclear electromag-
netic radius as defined by Hofstadter. 4' In addition, we
have replaced Z in Ai„by the average value $Z+ —,j in
the expectation that a proper calculation which took
account of the different Coulomb fields seen by the
positive and negative frequency components of the
wave function would lead to this result, as in the case
of the electromagnetic structure corrections.

D. The ff Values of the 0+ —+0+ Transitions

The very accurate data available for the 0"(P+)N'4*
transition, '4 and the relatively small uncertainties in
the theoretical calculation of the decay rate, make this
transition especially favorable for the determination of
the vector weak coupling constant for nuclear beta
decay. Data of comparable accuracy are now available
for the Al"*(P+)Mg" transition and may soon be avail-
able also for the transition Cls4(P+) S'4.4' Although some-

' J. M. Freeman, J. H. Montague, D. West, and R. E. White,
Phys. Letters 5, 136 (1962), and (private communication to L. D.
from Miss Freeman). A new measurement of the end-point energy
and half of the Cl~(P+) S~ transition has been undertaken by the
same group.
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what less favorable than the 0"decay from a theoretical
point of view, these 0+ —+ 0+ decays provide a test of
the results obtained from the former, and a comparison
of the three may in addition yield important information
on the Coulomb corrections to the nuclear matrix ele-
ment. The relevant data' ""and the known theoretical
corrections to the ft values for these decays and that of
the neutron are listed in Table I. The corrected value

f, of fwas in each case calculated using for the complete
positron spectrum the form which corresponds to the
single-particle model of the decay discussed in Sec. IVA,
including, however, the various structure corrections.
Thus,

dN(f) =arm, 's. 'Gp'~M'j'(f~ —t)'(1'—1)"'tF+(Z,f)dt

&& L1+A,g+ Ai„+As„+ (n/s) m(t) +(n/8s) (p —1)n (f)].
The coupling constant Gp can be determined from the
equation

Gp'=2m, 's'~M~ '(ln2)(f f) ' (148)

If it is assumed that 0"and N" are components of a
pure T=1 system, hence, that the nuclear wave func-
tions are identical, the nuclear matrix element 3f is
equal to v2. The values of Gp derived on this assumption
are given in Table I.Because of the Coulomb field of the
nucleus, the assumption of strict charge independence is
not valid. Nevertheless, shell-model calculations by
MacDonald" and Weidenmiiller" show that the correc-
tions to

~
M

~

' for the 0" decay are very small

( —0.05%) in the absence of significant configuration
mixing. However, Weidenmuller has suggested that such
mixing could be important, and could lead to a 1—2%
decrease in j M ~

', depending on the excitation energy
of the erst collective breathing mode of the nuclei.
Other estimates based on the nuclear compressibility"
and on the known asymptotic behavior of the nuclear
wave functions" "yield somewhat smaller corrections.

' 0.C. Kistner and B.M. Rustad, Phys. Rev. 114, 1329 (1959).
"The Coulomb corrections to the nuclear matrix element have

been considered by one of the authors (L. D., unpublished) using
a crude single-particle model of the nucleus. In this model, the
decaying nucleon was taken in a P state, and the effect of this
particle on the remaining "N"" core was ignored. Single-particle
neutron and proton wave functions were obtained by matching
the asymptotic wave functions, which depend only on the known
binding energies of the last nucleon in N"* and 0", with square-
well wave functions for the interior region. If the Coulomb field
of the nucleus is ignored in obtaining the exterior proton wave
function, direct calculation of the overlap integration yields a
0.55% reduction in M for a matching radius R = 1.4L(13)"'+11F
~4.7I', the "interaction radius. " The result is essentially un-
changed (—0.57%) if the matching radius is reduced to
R = 1.4(13)'~3F 3.3F, a choice which gives the proper mean square
electromagnetic radius for N'4. In a second model, which has also
been considered by Weidenmuller, reference 14, the exterior proton
wave function is matched in magnitude, but not in slope, to the
interior wave function for the last neutron in N"*, determined as
above. The sudden change in the proton wave function corresponds
to a sharing of the Coulomb energy among all the protons when the
proton in question is inside the nucleus. This model would, there-
fore, appear to be more realistic than that considered above. Using
for the matching radius R =3.3F, one obtains a 0.31% reduction
in M. (This result disagrees with that of reference 14, apparently
because of the use of an incorrect binding energy in the latter
calculation. j For R=4.7F, the correction is reduced to —0.25%.

It has also been suggested by Blin-Stoyle and I.e-
Tourneux" that small deviations from charge inde-
pendence in the nuclear forces could lead to 1—2%
changes in )M~', but Altman and MacDonald" have
shown that such a mechanism is probably incompatible
with the charge dependence of the beta decays of the
remaining members of the C' —N"*—0"triplet to the
ground state of N". It seems unlikely in any case that

~

M
~

' will be found to differ from its charge-independent
value, two, by more than about 1%. The situation is
less clear with respect to the beta decays of Al"* and
Cl'4. The Coulomb corrections to the nuclear matrix
elements have been calculated in part for the latter, "
but no calculations have so far dealt with the former.

The presumably accurate values of Gp obtained from
the 0"(P )N"* and the Al"*(P+)Mg" transitions differ

by (0.8+0.5)%. The bare coupling constants should be
equal for a universal Fermi interaction with a conserved
vector current. ' Because the electromagnetic renormali-
zations would be the same for the two nuclei in the single-
particle model of the decay discussed in Sec. IVA, and
would probably not be much different in a more detailed
model, the renormalized coupling constants Gp should
also be essentially equal for 0'4, Al"*, and Cl'4, and
should equal Gz as determined from the decay of the
neutron. The apparent discrepancy between the values
of Gp for 0" and Al"* may reRect, to the extent to
which it is real, the difference between the corrections
to the nuclear matrix elements in the two cases. It is
interesting to note that, because of the smallness of the
negative correction to M expected for 0", the discrep-
ancy suggests that the correction for Al"* is positive.
This in turn implies that the dominant correction must
arise from T=2 isotopic spin impurities in the relevant
states of Al"* and Mg", a result consistent with that
obtained by MacDonald" for Cl'4. A more detailed
study of this problem would be of considerable interest.
Because of the large uncertainties in the ff values for
Cl" and the neutron, and the additional uncertainty in
the value of p= —G~/Gv for the latter, ""it is not
possible to check in detail the expected equality of the
coupling constants for these decays with those discussed
above.

The correction to M arises in both models from the considerably
different asymptotic behavior of the neutron and proton wave
functions associated with the different binding energies. If the
eftects of the nuclear Coulomb field are included in the proton wave
function, the added potential barrier leads to a more rapid de-
crease of that wave function with increasing radius, and to better
overlap with the more tightly bound neutron wave function. Re-
cent calculations by Ian McGee, using WEB Coulomb wave func-
tions, yield correction to M of —0.05% for R =3.3 F, smaller than
that quoted above by a factor of six. A correction of this size is
consistent with the estimates obtained in perturbation theory,
references 11 and 14. Even if some allowance is made for a failure
of the N" core wave functions to overlap perfectly when the extra
nucleon is inside the core, it appears unlikely that the Coulomb
corrections to M could be larger by as much as an order of magni-
tude. We would like to thank Isaac Cole for performing the original
calculations, and Ian McGee for his careful work on the Coulomb
wave function problem.
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V. DISCUSSION

%'e have been concerned in this paper with the calcu-
lation of electromagnetic corrections to weak interac-
tions using the techniques of dispersion theory. The
method, as has been seen, has the advantage that it
yields relatively unambiguous results for the momentum-
dependent corrections to the weak vertex functions,
hence, to the decay spectra and correlation parameters.
However, this desirable feature of our results entails the
use of renormalized rather than bare coupling constants,
with the consequence that we are unable in the end to
make any statements about the universality of the
Fermi interaction without Grst appealing to cutoR
perturbation theory for information about the re-
norrnalization constants. The concept of renormalization
of the weak coupling constant was examined in detail in
the case of the muon; similar arguments apply to the
neutron, but the problem is there complicated by the
presence of strong interactions. The renormalized
coupling constants were in each case defined in terms of
the value of a weak vertex function of an appropriate
subtraction point. The latter was determined by the
requirement that physically signi6cant quantities not be
infrared divergent when calculated including the eRects
of processes in which inner bremsstrahlung is emitted.
The fact that the acceptable subtraction points are
unique (with the exception of s& for the neutron, refer-
ence 36) makes the resulting definitions of the re-
normalized coupling constants much more attractive
than would otherwise be the case. We were also able in
the present method to study the effects on the transition
amplitudes of the finite electromagnetic structure of the
particles in question, without being forced to make any
assumptions about the behavior of form factors oR the
mass shell.

The electromagnetic corrections to the decay, and the
renormalization problem, appear to be well understood
in the case of the muon. No other significant corrections
to the decay rate are known. The status of the theory of
the 0+ -+0+ nuclear transitions is less clear. Aside
from the still-outstanding uncertainties with respect to
the magnitude of the Coulomb corrections to the nuclear
matrix elements, """there remains the question of
the possible inRuence of the structure of the nucleus on
the electromagnetic corrections. We have considered two
models, in one of which the nucleon directly involved in
the beta transition was treated as a free particle (Sec.
IUA), and in the other of which the nuclear structure
was disregarded altogether, the nuclei being treated as
elementary particles with spin 0+ (Sec. IUB). The sub-
traction point in the second model is somewhat artificial,
and it is probable that the single-particle model is to be
preferred. Some support for this view may be found in
the work of Gell-Mann and Herman, ' and Chem. "The
difference between the results obtained with the two
models is fortunately quite small ( 0.24%%uo in the decay
rates). The known theoretical corrections to the decay

rates of the 0+ —+ 0+ transitions 0'4(P+) N'4*,
AP'*(P+)Mg", and CP'(P+) S" are summarized in
Table I. The as yet uncertain Coulomb corrections to
the nuclear matrix elements" ""are not included.

The theoretical results of the present paper have been
used in conjunction with the very accurate results of
recent experiments on the beta decays of the muon, '
0","and Al"*,"to derive values for the reeormalised
weak coupling constants G„and Gp. These values, and
the less accurate value of Gy obtained from the decay
if the neutron, "are summarized in Table II. As noted
previously, there is a discrepancy of (0.8&0.5)%%uo be-
tween the values of Gp obtained from the data on 0'4
and Al"*. This may disappear when the Coulomb cor-
rections to the nuclear matrix elements are known. Be-
cause the theoretical uncertainties are probably less in
the case of 0", we will use the value of Gp obtained
from that decay in the following discussion. With this
choice, the "discrepancy" between G„and Gp is seen to
be (1.0&0.2)%%uo (there is in fact no reason to expect the
renorrnalized coupling constants to be equal). The re-
normalization factors obtained by comparing our results
with those of perturbation theory, ' and choosing for the
ultraviolet cutoR in the case of the neutron and the
nuclear beta decays the value A=m„„are listed in the
third column of Table II. The extent to which one can
rely upon the cutoff theory is essentially unknown. '~ If
the results are accepted, one obtains for the bare coupling
constants the values listed in the fourth column of Table
II,"and a discrepancy between G„,b„,and Gp, b„, (0")
of (1.9&0.2(+0.5))%%uo, where thefinaluncertaintyis theo-
retical. ' A part of the discrepancy may be removed when
the Coulomb corrections to the nuclear matrix element
for 0" are better known, but it seems unlikely that it
will be removed altogether. " However, it should be
recalled, erst, that Gp b„, as defined above is actually
renormalized with respect to the strong interactions,
and that the renormalization constant need not be
unity' ' if electromagnetic corrections to the strong
interactions are considered; and second, that the effect
on the decay rate of diagrams such as that in Fig. 2(d)
have been ignored altogether. Although such effects

"The expressions in Eqs. (118) and (119) relate the completely
renormalized coupling constants Gv(1+p) and Gv(1 —p) to the
partially renormalized coupling constants G'(1+p') and G'(1—p')
introduced in Sec. IIIA. If we write Gv(1&p) =Z+G'(1 &p'), we can
solve for Gy and p as follows: Gy= —', (Z++Z )G'+~(Z+ —Z )G'p',
Gvp= 2(Z++Z )G'p'+~(Z+ —Z )G'. The diiIerence (Z+—Z ) is
of order a, as are the differences between GI, Gyp and G', G'p'. We
may, therefore, replace the partially renormalized quantities by
the renormalized quantities in the second terms on the right-hand
sides of the equation, and obtain at once the desired relations,
correct to order n, G'=2Gv(Z++2 ) 'L1——',p(Z+ —Z )g,
p'=p+z(Z+ —Z )(p —1). These expressions relate the partially
renormalized quantities to the measureable, renormalized quanti-
ties G~ and p. H electromagnetic corrections to the strong interac-
tions do not signi6cantly affect the strong renormalization, then
G' G, where G is the bare coupling constant of the universal
Fermi interaction. Using a cutoff 4=m„, we obtain from Kqs.
(118) and (119) the values Z+=1.0112 and Z =1.0102 for the
renormalization constants, thus, assuming that Gy=1.42XTO
erg cm' and p=1.25, the ratios of renormalized to partially re-
normalized coupling constants Gv/G'=1. 0120 and p/p'=0. 9996.
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TwsLE II. Values for the vector coupling constant.

Particle

Muon
P14
Al26*

Neutron

G, uncorrected'
(10 4' erg cm')

1.428&0.001
1.416~0.002
1.428~0.002
1.352&0.068

G, correctedb
(10 4' erg cme)

1.436
1.419
1.430
1.356

Renormalization
factor, Geen/Gbsre

(%)

+0 32c
1.20 (%0.50)d

1.20 (&0.50)~

1.20 (+0.50)~

Rare
(10 4' erg cm')

1.431&0.001
1.402&0.002 (&0.007)
1.413&0.002 (&0.007)
1.340&0.068 (+0.007)

a Uncorrected values for G for the muon and 0'4 from Bardin et al. , reference 3. Uncorrected value of G for A@6*from Freeman e~ a)., reference 49,b Total corrections for the neutron, 0'4 and Al~g~ from Table I.
e Calculated using the result of perturbation theory, Eq. (43).

Calculated using the result of perturbation theory for the neutron, Eqs. (118) and (119),with the cutoff chosen as A =mp. The method is discussed in
footnote 52. The indicated uncertainty in the renormalization factor is the estimated uncertainty in the value of the cut off given in reference 9.

e The values of G given for the neutron, 0'4, and Alms" are "bare" values only if the effect of electromagnetic interactions on the strong renormalization
factor, equal to unity in the absence af such effects, can be neglected. See, for example, the discussion in Sec. IIIA.

might account for the remaining discrepancy between
the "bare" coupling constants, they are dificult to
estimate in any reliable fashion.

It is interesting to note that the discrepancy between
G„.b„, and Gs b„, (0") could be eliminated if the weak
interaction is mediated by a charged vector meson. ""
Lee and Yang'5 have considered this possibility, and
Gnd that the decay rate for the muon in the absence of
electromagnetic corrections is given by

I'„(LF')= (G'/192)s 'm„'$1—+ ', (m„/M-w)' j, (149)

where M~ is the mass of the intermediate boson. The
radiative corrections to this expression have been
studied by Lee" on the basis of the theory of the
electromagnetic interactions of charged vector mesons
developed by Lee and Yang. "The results are essentially
those of perturbation theory, ' except for the appearance
of the extra factor in Eq. (149) and some additional
terms which depend on the anomalous magnetic moment
x of the meson and diverge for x —+0. An analogous
calculation leads to results for the neutron similar to
those of perturbation theory, with the ultraviolet cutoG
A replaced in the leading correction by M~. Because of
the small momentum transfer in this decay, the non-
locality of the interaction does not lead to any significant
change in the uncorrected matrix element. Lee" Ands
that the discrepancy between the values of G„and Gp
(which now have the significance of effective coupling
constants for a local four-fermion interaction) would

disappear for a meson mass on the order of 500-600
MeV, but the result cannot be regarded as decisive
pending the discovery of the intermediate vector meson,
and a more careful consideration of nuclear and electro-
magnetic corrections which have so far been omitted.
The intermediate meson approach nevertheless appears
to be the most promising, if one is to insist on the uni-
versality of the Fermi interaction.

It may be noted finally that, to the extent to which
the nonlocality of the interaction may be ignored (cf.
Sec. IVC), the momentum-dependent radiative correc-
tions are given correctly by our calculation even if the
intermediate vector meson exists. (The effect of the
meson on the uncorrected matrix element may be
treated in the usual fashion. ) Our results are in this
sense universal. The precise relation of the effective
coupling constants G„, Gy, and Gp to more fundamental
quantities of course depends on the details of the under-
lying interaction, but the determination of this relation
is a separate problem, and need be considered only in
connection with questions concerning the universality
of the basic weak interactions.
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