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Band Structure of White Tin*
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A perturbation calculation of the band structure in white tin is performed using the orthogonalized plane
wave approximation. The energies are determined for several points of high symmetry of the Brillouin
zone for different choices of potential. On the basis of these results the properties of the Fermi surface in

the neighborhood of these points are discussed. It is found that the first two Brillouin zones are comp]etely
filled with electrons.

I. INTRODUCTION

N the last few years, extensive investigations of the
~ - band structure in polyvalent metals have been at-
tempted, both experimentally and theoretically, ' ' in
order to establish the Fermi surface and the electronic
properties of these metals. So far, there has been no
attempt to find the band structure of white tin by
theoretical calculations, though many attempts were
made to establish its Fermi surface from experiment. ' "

Some papers on this subject are particularly im-

portant. One is that of Gold and Priestly' dealing with
the de Haas-van Alphen effect in white tin, where the
authors gave the possible Fermi surface constructed for
the free electron model. The other one is that, of
Alekseevskii ef a/. ,' where the open Fermi surface divas

found by consideration of the tetragonal symmetry and
confirmed by galvanomagnetic measurements. Both
investigations indicate that the Fermi surface is very
complicated. The complexity of the Fermi surface is
also confirmed. by recent cyclotron resonance experi-
ments, ""where 28 effective masses were found for
white tin.

It, therefore, seemed to be of importance to try to
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obtain some information on the band structure and
Fermi surface in white tin from theoretical calculations.
Until recently, it would have been difIicult to perform
any computation because there were no Hartree-Fock
calculations for the tin atom. However, such calcula-
tions have now been performed by Herman and Skill-
man" and quite independently by Mayers. "

From the form of the wave functions for Ss and Sp
electrons, one sees at once that the conduction electrons
in white tin cannot be treated as tightly bound. The Ss
and Sp functions are so extended that the overlap inte-
grals are very large. For example, the overlap integral
(sso) computed for the nearest-neighbor distance has
the value —0.2530 Ry. This corroborates the surmise,
already well established from the studies of the band
structure of the other polyvalent metals, that the band
structure in white tin should not deviate very much
from the free-electron model.

On this presumption it was decided to perform nu-
merical calculations using the perturbation method in
t.he orthogonalized plane wave (OPW) approximation,
which in zero order describes the wave functions for the
conduction electrons by single plane waves. This method
has been described in papers of Bassani and Celli."In
these first calculations on white tin, no attempt is made
to work out the band structure in detail. Instead, by
making some simplifying assumptions, energies at
several points of high symmetry in Brillouin zone are
computed.

II. SYMMETRY OF WHITE TIN

Here, a short description of the crystal structure of
white tin is given. The white tin structure is considered
here as a body-centered tetragonal with the lattice con-
stants a=5.8197 A= 10.9977ao, c=3.1749 A=5.9994ao,
as shown in Fig. 1. It is the only centered tetragonal
structure where the ratio 1/p=c/a=0. 5455 is con-
siderably diferent from unity. The basic primitive trans-
lations are: a& ——(—a/2, a/2, c/2), a2= (a/2, —a/2, c/2),
a& ——(a/2, a/2, —c/2). The unit cell contains two atoms.
The basis vectors for them are assumed to be (0,0,0) and

'~ F. Herman and S. Skillman (private communication)."D. Mayers {private communication)."F. Bassani and V. Celli, Nuovo Cimento 11, 805 (1959);
Studia Ghisleriana 2, 157 (1959); J. Phys. Chem. Solids 20, 64
(1961).
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T.3 at.E I. (."lassification of s, p, and d states in the white tin structure.
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TABLE I (continued) kg
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hs ——2sr(1/a, 1/a, 0), and all the reciprocal lattice vectors
are written as 1r.„=n~b~+n2b2+n313, where n~, n2, n3 are
integers. The Brillouin zone for the white tin structure
is shown in Fig. 2.

Several fundamental distances in the Brillouin zone
are given below:

I'I = (2sr/a) =0.5713(1/ao),
I'X=0.7071(2sr/a) (the minimal boundary distance

from the zone center),
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white tin has been presented earlier. "" Here, in
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Fzo. 2. The Brillouin zone for white tin structure.

Table I, the group theoretical classification for atomic
functions s, p, and d is given. Such a classification is very
useful in band structure calculations. The notation for
the Bloch functions used here is illustrated in the
following example:

~x)=X—'"P; exp(ik r,)p„,~, „=~(r—r,),

~z), =X—'"P; exp(ik. r;)p„,~=, , ~(r—r,—s),

where P ~ (r) are the atomic functions. Where two
signs appear in the formulas, the upper sign refers to the
representation written first, the lower sign to the one
written second.

III. METHOD AND RESULTS OF CALCULATIONS

The wave functions of electrons in the conduction
band are assumed to be orthogonalized plane waves:

par (k. r) =par(k' r) —p (II af gal)II, ai(k. r) (1)

Here, g(k; r) is taken as a linear combination of the
symmetrized plane waves; f, are the Bloch functions for
core states. The index n; denotes a row of the irreducible
representation. The index is later omitted; it must be
remembered that the basis functions of the given
irreducible representations are used exclusively in the
following.

The Schrodinger equation for the conduction elec-
trons in crystal is Hf=Ef, where H=Hs+V and
Hs T+ V (0) is the fre——e-electron Hamiltonian. V(0) is
the space average of the crystal potential; t/'= V,

Fro. 1. The white tin structure.

' S. Mase, J. Phys. Soc. Japan 14, 1538 (1959)."M. Miasek and M. SuGczynski, Bull. Acad. Polon. Sci., Ser.
Math. Astron. Phys. 9, 477 (1961);we point out that matrices for
representations P~ and E~ have to be taken as the complex

conjugate of the matrices listed there; 9, 483 {1961);we point out
that matrices for B; operations must be multiplied by p*.~ M. SuGczynski, Bull. Acad. Polon. Sci., Ser. Math. Astron.
Phys. 9, 489 (1961).

~' M. Miasek, Bull. Acad. Polon. Sci., Ser. Math. Astron. Phys.
10, 39 (1962).
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—V(0), where V, is the total crystal potential. We can
write

where
(~o+ V+ V.)@=&, (2)

V'4 =Z.(E E—) (O'.A)f'. (3)

Vg is treated as the repulsive potential obtained as a
consequence of the orthogonalization of the plane waves
to the functions of core states. ~="

The choice of V& is made by a variational procedure
in such a way that the uniquely determined function p
consists, hopefully, of only a few plane waves. Then,
V+Vg is treated as the perturbatio'n. The energy to
second order is given by

E=w, +L&s, l Vlso&+Z. (lv, —E.) I&4.ls,&I'j
x[1+K,l&y, ls,&lz]—P, '(w,—w, )-il&s

I
UIs &

+z.(wo —E)Q Is,)&s, I4.&l'-. (4)

So and 5, are the symmetrized plane waves in the ex-
pansion of p(k; r)

Sz= (ÃQo)
—"'g, a, &&'& exp[i(k+k, ~») rj (5)

where Qo is the volume of the unit cell; a,&" are obtained
by group theoretical considerations; k, &&) are the recip-
rocal lattice vectors given by the symmetry group for
given k k+h, &&) are of the same length for every s.
W;= V(0)+(Az/2m) Ik+k, &z&l' is the free-electron en-

ergy corresponding to the symmetrized plane wave 5;.
The P, are the functions of core states assumed to be of
the form

4.=0-&=~' '"Z Z-c-(~)
XP;exp(ik r~)p„& (r r, —t), (6—)

where/„z are the atomic functions; the t„are two ba, sis
vectors in the unit cell; and c (co) are obtained from
group theoretical considerations. The functions P, are
assumed orthogonal and normalized; they describe the
states from 1s to 4d in white tin.

The matrix elements between symmetrized plane
waves and core functions are given hy

&s lk.&= [4 /(2f+1)1"
XP.P a, '"*[c "'+c "'exp( —zk,"'')]

x~ &(Ik,"&l)*v& (8"„y",). (&)

V.(k)=00 ' exp(ik r)V, (r)dr. (10)

The calculations have been performed for diQerent
choices of potential. In the first instance V, (r) con-
sisted of the Coulomb part for all electronic states in tin
and the exchange part as given by Slater free-electron
approximation. '~' Both in obtaining the potential, and
in the 6nal formula for the energy, we have used the core
eigenfunctions and eigenvalues given by Herman and
Skillman. The Fourier coefljcients of the atomic po-
tential as given by (10) are tabulated in the second
column of the Table II. U(0) was inferred from the
renormalization of V(0) for grey tin and it is equal to
—2.63 Rv."In this hrst approximation, the results ob-
tained did not in fact conhrm the supposition that the
conduction electrons should be nearly free. The energy
gaps between levels which were degenerate in free-
electron model, were very large (up to 0.65 Ry). The
convergence of the method was poor but one must point
out here that the large energy gaps are mainly de-
te™nedby 6rst-order contribution to the energy E&')

and the second-order term E"'p. l(SOIQ.) I'. The nega, —

tive second-order contributions have negligible influence
on the energy gaps.

In our second treatment, the potential is chosen in
such a way that the exchange part of the potential
contains screening. " The new Fourier coefficients of
potential are tabulated in the third column of the
Table II. V(0) was calculated and its value is —2.39 Ry.

Considering the new potential one must take into

Tmr.z II. Fourier coefficients of atomic potential
(in rydbergs); p. =a/c.

The crystal potential can be written as

V, =Q; [V,(r—r,)+V, (r—r,—~)j,
where V is the potential in one atomic cell. The matrix
elements of the V potential between symmetrized plane
waves are given by

(S, l VI So)=P, P& a&&" a,"&*[1+exp{i(kz&' —k&' &) ~}]
X V.(k,&'&—k, &~&) —V(0)h;„(9)

and

Here, A „t are the orthogonalization coeScients, "
A«(k) =Qo '&zz'[~(21+1))'z' rj z(kr)P„z(r)dr, (8) (a/2x}k„

V (k„)
unscreened exchange

v. (k„)
screened exchange

where j&(kr) is a spherical Bessel function.
~ E.Antoncik, Czechoslov. J.Phys. 4, 439 (1954);10, 22 (1960);

J. Phys. Chem. Solids 10, 314 (1959)."J.C. Phillips, Phys. Rev. 112, 685 (1958).~ J. C. Phillips and L. Kleinman, Phys. Rev. 116, 287, 880
(1959); 117, 460 (1960); 118, 1153 (1960)."M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961)."B.J. Austin, V. Heine, and L. J. Sham, Phys. Rev. 12?, 276
(1962).

~' T. O. Woodru6, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , Neo; York, 1955), Vol. 4,
p, 3)4,

2, 0, 0
1, 0, p,

2, 2, 0
2, 1, y
3, 0, p.
0, 0, 2p

—0.5051—0,4859—0.3651—0.3573—0.2920—0.2779

—0.4533—0.4388—0.3403—0.3335—0.2763—0.2637

' J. C. Slater, Phys. Rev. 81 385 (1951).
2' T. O. %'oodruB, Phys. Rev. 103, 1159 (1956).~ F. Herman, Phys. Rev. 93, 1214 (1954}."F. Bassani (private communication)."J.E. Robinson, F. Bassani, R. S. Knox, and J. R. Schrieffer,

Phys. Rev. Letters 9, 215 (1962).
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account that the core eigenvalues and eigenfunctions
should be computed in this potential, At the present
stage we did not perform the laborious recalculations of
the core eigenvalues and eigenfunctions, but in order to
obtain the final results, which would approximate the
results given by self-consistent treatment, we used the
following considerations. %e may assume that the core
eigenfunctions are not really seriously changed by the
change of potential, so we may still work with the same
orthogonalization coefFicients as for the first choice of
potential. But we must not neglect the changes of
eigenvalues of the core states. The effect of screening is
that the new negative core eigenvalues are I:,'=I:,.
+lU:„where dE, is a positive correction. In the
formula for the energy the core eigenvalues appear in
expressions

&I'o—E,= V (0)+To I-,. —

XVhen we now put the new energies into these expres-
sions we get

V(0)+ To E, DE,=—LU—(0)—AE,]+To—E,. (12)

()n the average, the effect of the new core eigenvalues Is
such as to make V(0) larger in magnitude and leave the
E, the same as before. The new U(0) should be larger in
magnitude than 2.39.

To establish this new V(0) we used the following
procedure. AVe found the energies of the levels I'i+, Fi,
I'4, I'o+ as a function of V(0). The appropriate curves
giving the energies of I'i, F4, I'~+ states relative to I'&+

energy are shown in Fig. 3.
Ke may expect the Fermi energy in white tin nearly

to be the same as in free-electron approximation, i.e.,
Er, =2.31(2n)u)'=0. 754 Ry relative to the lowest F&+

level. We assumed also that the existence of electrons
a,round the zone center in the fifth Brillouin zone, as it
was predicted by free-electron model, is really well con-
firmed by the de Haas-van Alphen experiment. From

E(rj)- E(F) }

0,80-

0.70-

0.60-

0.50
-2.40 -2,50

I
I
I

I
i
I
I

1 n

-. 2.60 -2.TO

Y (0)
-2.80 -2.90 -3.00

FIG. 3. The dependence E{F;}—E(rI+} on V{0};F; corresponds
to FI, F4, Fg+.

Fig. 3 we see that the second assumption is true only if
V(0) is in the limited interval between —2.71 and
—2.90 Ry. From this semiempirical fitting we obtain a
possible value of V(0) really larger than 2.39.

Unfortunately, by this procedure, we could not find a
unique value of V(0). For the calculations with screened
potential, two values of V(0) were chosen for discussion.
One is V(0) = —2.72 Ry, from the region where E(I'4 )
(E(I'& ); the other one is —2.80 Ry, where E(1'4—

)
)F(pg ).

The results of the calculations for the points of high
symmetry in Brillouin zone are given in Table III; the

TALK III. Energies at symmetry points (in rydbergs).

r+
r,—

r;
+

I~
L3
L cp

XII I
I'2
B,(»
a,(»
H2
H)
Wg&»

g 5(2)

E{h)
V(0) = —2.72

—1.672—0.928—0.930—1.100—1.342—1.355—0.559—1.523—0.926—0.756—1.224—1.256—1.230—1.184—1.205—1.223—0.837—0.985

E{&}
V(0) = —2.80

—1.763—1.030—1.016—1.186—1.440—1.440—0.649—1.615—1.014—0.851—1.323—1.341—1.315—1.286—1.303—1.308—0.923—1.072

Eg }—E(r,')
V(0) = —2.72

0.000
0.744
0.742
0,572
0.330
0.317
1.113
0.149
0.746
0.916
0.448
0.416
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0.488
0.467
0.449
0.835
0.687

E(k) —E(r,+)
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0.000
0.733
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0.323
0.323
1.114
0.148
0.749
0.932
0.440
0.422
0.448
0.477
0.460
0.455
0.840
0.691

E(h) —E(l I+)
free-electrons

0.000
0.653
0.653
0.653
0.326
0.326
1.097
O.f63
0.816
0.816
0.437
0.437
0.458
0.458
0.458
0.458
0.788
0.788
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FIG. 4. The energy bands in empty lattice for t001] direction;
the dashed curves show expected behavior of the bands; Ep-
Fermi level.

energies are in rydbergs. The new results show that the
deviation from the free-electron model is not very large.
The maximal energy gap is about 0.17 Ry. In this case
the convergence of the method is also very good. In the
formula for the energy all symmetrized plane waves 5;
with the energies up to 13.44(2n./a)' have been included.
The negative second-order contributions were, in mag-
nitude, less than 0.04 Ry. It is possible that in our first
approximation the use of a long-range (unscreened)
potential was responsible for the large energy gaps. The
use of screened exchange seems to solve the problem for
the present but we wish to notice here that even it
may be overscreened. ~ The screened exchange appears
to give reasonable results for substances with large
dielectric constant, as for example, Agcl."It is also of
interest to note that in calculations with unscreened
exchange, the arrangement of the F levels is such that
the lowest level is F~+ of pure s symmetry, then Fi of s
and d symmetry, Fq+ of p symmetry and I'4 of d
symmetry. In the calculations with screened exchange
the next level to the lowest F&+ is now Fs+, which is quite
distinctly separated from F& and F4 . Such an arrange-
ment of levels seems to be quite reasonable as we re-
member that the valence electrons in the atomic tin are
just Ss and Sp electrons.

free-electron model. Furthermore, a very important
implication may be obtained for the second Brillouin
zone. In the free-electron model a region of holes existed
close to the point W' along the L001) direction. But even

from this model one can conclude that the holes may not
exist there. In Fig. 4 the band structure for the empty
lattice is shown for the L001j direction. It is seen that
two crossing lines I and II both belong to the same
representations (I"H)2 and (I'H)q. As a result of the
repulsion of the states belonging to the same repre-
sentation, the bands should have a form similar to the
one shown by the dashed curve. It is obvious that the
possibility exists of having one of these curves below the
Fermi level.

The results of the calculations are that the first line
in the FH direction is a line joining Fi+ and the lowest
H-level Hj "&. The next possible line, according to syrn-

metry considerations, is the line joining F~+ and H~. F&+

is now about 0.08 Ry lower relative to the same free-
electron level, so the line joining F&+ with Hs should lie
lower relative to the Fermi level. This is confirmed by a
calculation of the energy for the 5"5 representation. The
lower energy of the S'& level relative to F&+ is about
0.69 Ry. It is about 0.06 Ry below the Fermi energy.
This provides strong confirmation of the fact that the
two first Brillouin zones for white tin structure are
completely occupied by electrons.

For the direction [110]the calculations confirm the
Gold and Priestley supposition that at point X in the
fourth Brillouin zone a region of holes may not exist. .
This problem must be very carefully checked because
the calculated level for the X2 representation really lies
below the free-electron Fermi energy but very close to it.

For the other points of high symmetry agreement
exists between the prediction of a free-electron model
and the calculations.

To obtain the whole picture of the Fermi surface one
must calculate the energy at many other points in the
Brillouin zone. From the results given above, one may
find the state-independent lowest Fourier coefFicients of
the pseudopotential. Then, using the pseudopotential
method with only a few OP% s it should, in principle, be
possible to find the whole Fermi surface for white tin.

IV. DISCUSSION AND FINAL REMARKS

The above results cannot yet explain all the details of
the Fermi surface in white tin, but some indications
concerning the Fermi surface close to the points of high

symmetry can be inferred. In the following discussion it
is assumed that the Fermi energy is the same as in the
free-electron model. As established in the case of the
other polyvalent metals, such an assumption is reason-
able. By f'itting V(0), the problem of existence of elec-
trons at the zone center is already solved according to

~F. Bassani, VV. B. Fooler, and R. S. Knox {private com-
munication).
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