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Calculation of the Binding Energy of Nuclear Matter by the Method of
Reference Spectrum*
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The binding energy of nuclear matter has been calculated with the Hamada-Johnson potential by the
method of the reference spectrum of Bethe et al. Corrections due to the exclusion principle, diQ'erence
of spectrums, and the motion of the center of mass have not been included, these are believed to be small.
It is found that the binding energy is only —7.8 MeV per particle at a density corresponding to the Fermi
momentum kz= 1.12F '. This result is similar to the result of the calculations by Brueckner and Masterson
with the Breit potential. A discussion of the self-consistency of the method is given.

I. INTRODUCTION

HE recent work of Bethe et a/. ' provides a simple
and accurate method, "the reference spectrum, "

to investigate properties of nuclear matter. Details of
theory and its application to a simple potential are
given in their paper. . The three-body clusters have been
studied within the framework of this method by Rajara-
man. These two papers together form a complete basis
for an accurate numerical work with a realistic two-body
potential. During the past year two sets of such poten-
tials have been proposed by Hamada and Johnson' and

by Breit et ul. ' In this paper we apply the method of the
reference spectrum to calculate the binding energy of
nuclear matter using the Hamada-Johnson potential
for the nucleon-nucleon interaction. While this is an
extensive numerical work, it is by no means complete.
We have neglected the exclusion principle and spectral
corrections to the reference spectrum which according
to the estimates by BBP' is about 6% of the potential
energy. We have not accounted for the motion of the
center of mass. Altogether this may change our result

by one or two MeV from an exact calculation, but
this hardly sects the main features of our result, viz. ,
that the binding energy is only about one-half of the
accepted value and the equilibrium spacing is large
compared to the experimentally observed one. These cal-
culations were first done for kp ——1.5 F ' with reference
spectrum parameters m*=0.8 and 6=0./5 (Sec. IV).
However, the self-consistency requirement on the result
of the erst calculation suggested the use of a larger no*

and a smaller 8, so we repeated the computation using
no*(kF) =1—0.1(kp/1. 5)' and d =0.6, for kr ——1.1, 1.3,
and 1.5 F

In Sec. II we present a method to find the modified

* Supported in part by the joint program of the ofFice of Naval
Research and the U. S. Atomic Energy Commission.

f Present address: Theoretical Physics Institute, University of
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' (a) H. A. Bethe, B. H. Brandow, and A. G. Petschek, Phys,
Rev. 129, 225 (1963); and (b) R. Rajaraman, ibid. 129, 265
(1963).The first of these references will be designated BBP in
the text.'-T. Hamada and I, D. Johnson, Nncl. Phys. 34, 383 (1962).

'K. E. Lassila, M. H. Hull, Jr., H. M. Ruppel, F. A. Mc-
Donald, and G. Hreit, Phys. Rev. 126, 881 (1962).

4 Reference1 (a) Sec.9.—This estimate is for the Gammel-Thaler
potential.

Moszkowski-Scott separation distance and to calculate
the short and long range parts of the reaction matrix.
We use this method to separate 'S and 'S waves only,
where the separation seems to be an important improve-
ment over the integration of the complete reaction
matrix in reducing the corrections due to the exclusion
principle. In Sec. III, we calculate the diagonal elements
of the reaction matrix for the reference spectrum for
S, I', and D waves. The effect of higher partial waves
have been accounted for by using the Born approxima-
tion which is valid for these waves. In Sec. IV, we 6nd
the single-particle energies and the binding energy per
particle, and we also investigate the problem of self-
consistency. In the last section, Sec. V, we compare the
results of this calculation with the work of Brueckner
and Masterson' and discuss the lack of agreement with
experimental observations.

(kp)G ~kp)=4n. qg(kpr)pnPt(kpr)dr

(~2+k P)@P ca

= 4m- pI, (kpr) xg (kpr) dr (2.2).

' K. A. Brueckner and K. S. Masterson, Jr., Phys. Rev. 128,
2267 (1962).

P See reference 1(a), Eq. (5.11).
r See reference 1(a), Eqs. (7.7) and (7.14).
P See reference 1(a), Eqs. (5.1) and (5.2).

II. THE SEPARATION METHOD

The fundamental equation of the reference spectrum
method for the 1th partial wave is'

—ds l(3+1)
x,= — * 9, (2.1)

dr' r'

where xq yt rf——t is the di—fference between the free
particle wave function yt ——rj~(kpr) and the perturbed
wave function rf&(kpr). y' is a constant related to 6 byr

2hks' —kp' if kp &kg,

y'=3(hkr'+kp') —0.6k'' if kp) kp

m* and 5 being the parameters of the reference spec-
trum. The matrix element of G~, the reaction matrix for
the reference spectrum is given by'
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TABLE I. The separation distance, the short- and long-range
parts, and the complete reaction matrix for '8 state are given as
functions of relative momentum ko, kg=1.5 F ~.

(0.1)»~ (0.2)1/& (0.3) '~& (0.6)'&

d(&o) (F)
Wo (MeV)
w' {Mev)
Wo+TFt {MeV)
w~ (Mev)

1.076
16.5

-71.2
—54.7
-59.2

1.088
16.5

-48.
-31.5
—34.2

1.107
16.4

—36.5
—20.1
—21.2

1.127
16.4

-29.
-12.6
-12.2

1.198
16.3

—8.4
7.9
7,9

The results of the integration of the differential
equations (2.7), (2.8), and (2.9) together with Eq. (2.13)
enables us to find the matrix elements of 6' and v';

(y'+ko')A' "sinkor
(kol G'I ho)=4, x(k«)«, (2 19)

m*~ o &o

where x= oo
—No and $= —uo, No and No are perturbed

wave functions, and Vi= (8)'love. At r=c, vanishing of
the wave functions implies that

x (c)= y (c),

~(e) =0.

(2.23a)

(2.23b)

We factorize (2.21) and (2.22) into the following six
first-order differential equations:

dYi/dr= —L1+f(r) Vioj (2.24)

dYo/dr= —Vi[f(r) Fo+nz*(o, o&
—Vi))j, (2.25)

dVo/dr= f(r))VoFi+ Vof+'m (o, q&
—V~)), (2.26)

dZi/dr = —L1+g(r)Z&o j, (2.27)

dZo//dr= —ZiLm*V&(q —x)+g(r)Zoj, (2.28)

"sin'kpr
(ko l

o'l ko) =4&r o(r)dr.
kp'

dZo/dr= g(r))ZoZ, +Zo j+m*V~(q x). —(2.29)
(2.20)

Here

It is more convenient to multiply 6' and v' by the
average density p(kr) =2kro/3o', by the statistical
weight Cz, and by a factor 2 for the exchange term, and to
express the final result in MeV. Let W' = (4kr'/3s') CqG'
and W&= (4kr'/3s')Cqo' where Cq=4 for even l and
5/4 for odd l if ko(kr., otherwise Cg= 1 for even l. In
Table I, W'', 8"', and d are given as functions of relative
momentum ko. The result shows that the difference
between W" (the reaction matrix without separation)
and W'+W' decreases as the relative momentum in-
creases, and they are nearly the same above the average
relative momentum ko= (0.3)'"kr.

This same method can be applied in the following
way for separating the tensor force. Consider the
coupled differential equations

d'x(r)/dr'+ f(r)x= rr&*( v, rp+ V—~f), (2.21)

d'&(r)/«'+g(r) &= ~*V (o x), —(2.22)
with

f(r) = —(y'+m*o )
and

g (r) =—$p'+6/r'+m*(o, V,/W2 3ozs 3—ozz) j, — —

x= I'i Vo+ Vo,

$=ZiZo+Zo.

(2.30)

(2.31)

If d is the separation distance, x(d) =x'(d) =0 as before,
and for r) d we put o,= V~ ——0. We can then solve (2.22),
with the result that )=Crho&'&(iver), r) d, where ho&'& is
the spherical Hankel function of the first kind. Assuming
the continuity of $ at r=d, we have

f (d) -d(rho&'&)
(rho&'&) . (2.32)

g(d) dr

Now there are five boundary conditions (2.23a,b),
(2.6a,b), and (2.32), four of them for the system
(2.24) —(2.29) and one for determination of d. To start
integration we need to know $ and for this we use
&=ALe & '& —e e'" '&j with parameters A, n, and p
adjusted so that (—$) represents the D wave of the
deuteron, we integrate (2.24), (2.25), and (2.26) in
exactly the same way as we did for Eqs. (2.7), (2.8),
and (2.9); then from (2.30) we calculate x. Knowing x
we are able to integrate the equations for Z1 and Z2
from c to d. From Eqs. (2.27), (2.28), (2.29), (2.31),
and (2.32) it follows that

t d(rho&'&))
- — t'd(rh, &'&))-

Zo(d) = —Zo(d)l I
rho"'+Zi(r)l

dr J, g E dr j „e
(2.33)

With this value of Zo we can integrate (2.29) from d to
c and 6nd $ from (2.31). Usually two or three itera-
tions are enough to give an accurate value of d, y, and
$. In Table II, the separation distance, the contribu-
tion of the short- and the long-range parts, and the
complete reaction matrix S'~ are given for the '5 state.
Unlike the 'S state, here the difference between the sum
of the leading terms in the separation method and 8'~
is large. This is due to the fact that the tensor force is

strong and has a long tail, so that higher order terms are
not small, and although the separation distance is
reasonable yet this scheme is not very useful, at least
for the potentials with a strong tensor force. It is
interesting to note that the magnitude of the separation
distance d is reasonable both for 'S and 'S (although
somewhat larger than that obtained by Moszkowski
and Scott, ') and that it does not depend strongly on ko.
In Fig. 1 we have shown d(ko) vs ko for 'S and 'S states.



M. RAZAUY

d(k, ) F
1.5—

l.2—

TRlPLET

0.5—F

/rj'r
Ir

er
0.5

I

k=i.5F
Ik=0.82F

~.~~ (.0 1,5 2.0 2S~4.
~aa~m

~ yggye ~ ~ ~ ~ ~~
~~ «0 Oe~+~ 0 Slee ~ eSSS ~ li++

0.9—
1'(F)

FIG. 2. The difference wave function x= q
—rp for the 'S state for

ko (0.3)'~'kr and kr, kr=1.3 F '.

0,3—

t

0.5
k.(F ')

F
A

r
yX (k,r)

d=l.28 Fr 0.5 lO t
I I

f.(kor)

CORE I

2.0
I

2,5
I

FIG. 1. Separation distance d as a function of relative momentum
kp in 'S and 'S states with m*=0.8 and 6=0.75.

IG. CALCULATION OF G"

We modify our method of solving (2.5) for the short-
range part of the reaction matrix in order to apply it
to the differential equation (2.1) with boundary condi-
tions (2.3) and (2.4). If we choose d large enough so
that e(r) d) becomes negligible, then for a fixed r=d,
the boundary condition (2.6) can be replaced by

x'(d) -dLrhi "&(zyr) 1/dr
)

x (d) rhi"'(zyr)

which determines Yz(d):
0)

(3.1)

&ys, r IG I ys, r )
S,M, T,T3

{dr rhi (zyr) ti/dr) Y,
Ys(d) =—

{dLrhi &'I (zyr)]/dr) Yi+rhi "& (ivr)

Similarly for coupled states we have four boundary
conditions (2.23a,b), (2.33), and (3.2). In the numerical
calculation d=10F has been used. For l&2, nearly
all of the contribution to G~ comes from the one-pion
exchange potential (OPEP) part of the potential. We

kp/kJ 0

d(kp) (F) 1.22
(MeV)

W, ' (MeV)
1

2pcg kp Vg'—V]' kp —15,1 —11.3
gR

Sum (MeV)
(MeV)

(0 ] )liz (0 2)1/2

1.24 1.26
19.6 19.4—23.4 —15.9

—8,7

—32.8 —15.1 —5,2—50.4 —26.5 —13.2

(0 3)l/2

1.28
19.4—11.4

—6.6

1.4—6.2

extend this part of the potential all the way to the
origin. This will not change the results appreciably since
rjI&s(k&r) is very small in the range 0(r(c. The Iir I,

t f the potential has a long range, but since its
existence for the high-energy regions (k 2kr) in w ic
we are interested is doubtful, we neglect it completely.
The statistical average for the diagonal elements of G~
for all values of l is"

1 (F)

Fio. 3. x and k, the solutions of Eqs. (2.21) and (2.22), are
plotted as functions of r for kp

——0.821 F '. d is the separation
distance.

TAm, E II. The leading terms of the reaction matrix in the 'S
state for diferent relative momenta. TV~ is the reaction matrix
for the complete potential. kg ——1.5 F &.

=Szr —,', Q (2l+1)
odd l

rjit(S=O, T=O)gidr+1sx P (23+1) rj rv(S=O, T=1)lidr
even l 0

+r's Z Z (2~+1)
even l, l' J

rj Itki&~&(S=1, ,
=T)Ozzie"' rd+ sss P P (2J+1)

» See reference 1(a), Eq. (6.14a).

rjism, , &» (S=1, T1) , I,«& rd. (3.3)
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.-d h. -ll.l'--",.- ., "--g
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left is over /. From this we sub-d ne lecte vL, g . owa ~. N w the only summation e is ovhe central potential (we have alrea y g
tract corresponding values o =, , a

-6 P (ps, z
I
G

I FB,r )
$,3E,T, 1'3

= Szr —,', Q (2l+1)
odd l&2

Or ~opgp —,= ' —' 2l+1)jP(kor)eopgp'(5=0, T=O)r dr+ ,'6— jP (kor)eopzp'(5 =0, T= 1)

'(5=1, T=O)r'dr+ ,', P—(2l+1)Xr dr+/~ Q (2l+1) jP(kor)eopEP ~5=
even l&2

S=1 T=1)r'dr =3~Vok&(p, ko) P(—ko (3.4)jP (kor) voppp 5=, = r

and of the oddl states:where o. gives e coth ntribution of the even an P

4kp'
1I1+ —15 1+

4kz2 ' 2p, p' 4ko') 4ko'p, 2 2ko'

1 — pz ) ( 4ko'
+ I I+

(p'+4k ') 4k 'p 5 2ko'i

(3.5)

(3 6)

(3.7)
l&2

V is the strength, and p, is the ranget/"opzp= T'oe 4"/pr, o is e s
of OPEP. S" for ko&k& is given by

2k''
Q Wi= Vo(n —p).

e results are obtained with the reference
=1—01(k /15)' (k,

'
spectrum parameters no*= 1—0.1 kg

e even angular momenta
only, "and the statistical factor CJ will be 1 instea o
4'. Hence

Q Wz (ko) = (8kr'/3zr) Voa. (3.S)
L&2

In Table III, values of W(ko) for average relative
= '03~'~'kp and for different states aremomentum ko ——

~ . ,

IO—

0.5
I

!.0
I

t waves to W" for theIII. Contribution of diBeren w

p = ,'0.3)'l'2k'. Only the 'S contribu-average relative momentum ko —— . y.
tion has been calculated by the separation me o .
units are in MeV.

kz (F ')
ko (P ')
lS0
'S1
1p
3P

3p2
1D2
3D3
'D1
'D.

L&2

1.1
0.602—13.1—28.7
34—4.4
9.9—5.5—2.3—0.1
1.4—3.7
1.1

'2 See reference 1(b), Sec. 5.

1.3
0.712—15.7—30.7
6.—7

18.1—11.2—4.9—0.3
3.—7,7
2.2

15
0.821

—15—25.7
10.2—9.6
30.2—20—9.2—0.6
. 5.5

—13.8
4.1

-50

k, (F ')

ents of G+ for 'S as a function of ko. W'
hort- and the long-range parts ofand 8' are proportional to the short- an e o

the reaction matrix.



of F ') and 6=0.6. Figures 4, 5, 6, and 7 show W'(kp) as
function of ko for different waves. For comparison the
results of using the separation method for 'S and '5
are shown in Figs. 4 and 5. Note that for the computa-
tion of these numbers we have used m~=0.8, 6=0.75,
and kg=1.5 F '

It is interesting to compare the relative magnitude
of the various contributions to the reaction matrix
(Table III). The 'S state gives a much larger contribu-
tion than 'S, in spite of the fact that the tensor force
tends to decrease 'S. Each of the 'I' states gives sub-
stantial contribution, but the sum of the contribution
is always zero for all values of kp. On the other hand,
the D states give a strong negative contribution, while
the sum of the contributions of all other states (l&2)
is small and positive.

The variation of (W'' and Wi) for the 'S and Wn for
the 'S as functions of kg show that both of these states
saturate, but because of the tensor force effect the 'S
saturates at a lower density than 'S. On the contrary
Wn for I' and D waves tend to increase with k» (Figs.
4 and 5).

l6

-l6

IV. THE PARTICLE ENERGIES
k(Fi)

FIG. 6. Diagonal elements of W" for I' waves.
Our detailed calculation with 6=0.75, m*=0.8, and

k»=1.5 F ' shows that W (kp)=Pi P Wi(kp) can be
well fitted with

W„(kp) =8+C/(D'+ kp'),

MeV

20

where 8, C, and D are constants. (We use subscript m
for particles in the Fermi sea and b for particles in the

(4 1) intermediate states. ) We assume that the same function
with different constants can also 6t kg=1.1, 1.3, and
1.5 F ' with different d and an* values. To 6nd 8, C,
and D we need to know W„(kp) for three values of kp,

for which we choose kp/k» ——0, (0.3)'", 1. For relative
momenta ko& kp, 8"& is a quadratic function of ko.

Wp(kp)=/$ W (ki)=pa +8 kp, kp)k». (4.2)

0.5 This is strictly true only for large values of ko, so that
S'& may have a different dependence on ko for ko kp.
Since we have calculated W&(kp) for only two points,
(kp/k» ——1.5, 2), we will still use (4.2), but more accurate

-20
TABLE IV. Various constants defined by Eqs. (4.1) and (4.2).

—STATE

ky (F 1)
A' (MeV)
B' (MeV F')
B (MeV)
C (MeV F ')
D(F ')

1.1—20.1
10.4—6.5—30.3
0.7

1.3
6.7
9.7

11—65.9
0.78

1.5
45.3
11
45.3—124.2
0.85

-60

FIG. 5. The leading terms of the reaction matrix for the separa-
tion method in the 'S state. Since p(r)d) AO the additional term
Cqpeg'(1/e+)et' should be added to W, ' and 8'~'. W~ for this state
is also showa,

calculation is needed for the determination of the exact
shape of Ws(kp). Numerical values of 8, C, D, A', and
8' are given in Table IV. The single-particle potential
energy U(k ) can be obtained from W (kp) by first
substituting kp ——&s(k —k„) in (4.1), then integrating
over the coordinates of k„, and Q.nally to preserve the
norma1ization of W (kp), dividing the result by J'dk .
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B+
4D'+(k~ —k„)'

t' k"' 2D') 4D'+(k"+4)'
+2k' k'] 4D'+(k —kp)'

2k 4k D
arctan

4D'+k„' —kg'
(4.3)

k dk however, it is easier tor article U„ is defined as U„=J U(k")d "/J'
1'ner " "t"1'" ' '" b "lti 1 '" S' k

k d k+dko di
the range of ko. Denoting the unnormalized proba c sty is ri u

'

P(kp) =kp'(1 —3kp/2kp+kp'/2kp'),
then

W„(kp)P(kp)dkp
jg2

D'+k"

F
(4.4)

gy

E=T+'U =— kp'+, U—~.
10M

A2k 2

E(k )= +U(k )
2M

(4 7)(4.5)

PPk' 0.6k' B ) Akp'(k) nbecalculatedinthesamewayas U k, and
( )

p

U(k) ~,+
.

4 msince bl, 0~ is assum

E is the sum of the The single-particle energies in the Fermi sea, E(k ),'" ' g ""gy p p
rgy and one-half of the average an a ove eaverage kinetic energy an

potential ener

kp'dk dk„= -', (kp —k )'dk„ respectively, where

Hence,

hjleV

l2—

= piLk p'+0.6k ''j.
m*=--

1+8'M/2A'
(4 9)

0.6kp'B' B'
U(k, ) =i ~+ +—kpP.

est ee ecivh 6 t e mass parameter of the reference spec-
(4.6) trum. Similarly, we can 6nd the energy gap w

'

roportiona to e i1 th difference of the particle energies
d t t t and in the Fermi sea for thein the interme ia e s a e

average momentum k'=k = (0.6)ilPkF, i.e.,

m*M
LZ(k p) —E(k„)j

A&F2

LU(kp) —U(k„)j. (4.10)
A2kF2

The self-consistency may be checked yc ed b evaluating 6
and m* from (4.9) and (4.10) and comparing it to the

at the be inning. Numerical
results&or U, E, and U(k ) are givenin Table Van

-l2

TABLE V. Single-particle potentia g'ial ener ies and the binding
energy E All unmarked units are in MeV.

-l6

k,(F ~)

I'ro. 7. Diagonal elements of P'~ for g7 ~yves,

kz(F ')
U~
E
U(k =0)
U {k~)
V(k =kg)
A'(k =kg)

1.1—44.8

—52.6
—44.7—40.9—15.9

1.3—54.5—6.2—66.8
—52.8
--45.8—10.8

1.5—55.4
0.31—74.7

—51.5—40.6
5.9
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V. DISCUSSION

Our separation method in 'S is satisfactory, while in
'S, because of the cancellation between rather large
8"and S",we have a small first-order term. The tensor
contribution comes mainly in the forms vi'(Q/e~) vi' and
this is much larger than v, '(Q/e~) v, '; for this reason the
convergence of the series is not fast. Ke have considered
an alternative method of separating the potential in

TABLE Vl. Reference spectrum parameters. Subscript i refers
to the initial and f to the final values. The final values of a indicate
a strong dependence on kg, and the diGerence between d y and d;
is large for kJ =1 5 F '

ks (F ')
m.*

my~

1.1
0.96
0.6
0.89
0.46

1.3
0.935
0.6
0.90
0,7'1

1.5
0.9
0.6
0.88
0.95

the S wave only, leaving the whole potential to act.
in the D wave, in this way increasing the first-order
terms. However, higher order terms are difFicult to
calculate for the reason that the operators are no longer
Hermitian. Besides devising a better method of separa-
tion for the tensor force, one can think of other im-

portant improvements on the present calculation, The

kFt'. F )

FIG. 8. The average single particle potential energy U(k ), the
single particle potential energy for average momentum U(k ),
and binding energy per particle E, is shown as a function of kz'.
For comparison we have also plotted Brueckner's results for the
Breit potential.

following are some of the important changes that
should be made in a more accurate computation. (1)
To make the second-order terms as small as possible„
it seems that instead of using a 6 independent of kp,
one should allow for its dependence on kp as our results
suggest. These indicate that 6 increases with kJ, but
they do not clearly show the variation of rn* with kp.
This is due to the form of Ws(ke), and it is doubtful
that the quadratic form of (4.2) is a good approxima-
tion, especially for ko kp. It should be pointed out
that m* is nearly 1, and its exact value is not very
important. Therefore, it is also unimportant how m*
varies with kp. However, to obtain the spectral correc-
tion it would be necessary to get accurate values of
U& for smaller kz. (2) The work of Rajaraman shows
that for the states outside the Fermi sea, to calculate
V& one should consider even states only with the
statistical factor equal to one (as we have calculated
Us here). This has been proved for spin-independent,
isotropic interactions, however tensor forces may give
a somewhat different result. In this calculation tensor
forces have been treated in the same way as the central
forces. (3) Another factor which should be treated more
consistently is the z«part of the potential. While we
have included it in evaluating G for S, I', and D
waves we have neglected it for higher partial waves.
Although this force is not very important for small ko,
it plays an important role in the states above the Fermi
sea. Thus, it is an important factor in the determination
of 6 and m*.

The first-order terms (i.e. , the reaction matrix for the
reference spectrum without Pauli and the spectral
corrections) as we have calculated here show saturation
with an energy minimum E=—7.8 MeV at a Fermi
momentum kp= 1.12 F ', which corresponds to an
equilibrium spacing ro ——1.35 F. For k~ ——1.5 F ' we do
not get a bound system, rather E=0.3 MeV, if we in-
clude all partial waves; however, if we take just the
even states, i.e., S and D waves, then E=—6.3 MeV.
It should be pointed out that the difference between
6; and hr (subscript i for initial and f for final values)
is largest for kp ——1.5 F ' (Table VI). Therefore, correc-
tion terms here are more important than for kg=1. i.

and 1.3 F '. The second-order terms would change the
above results by 2 or 3 MeV.

Rather similar results are reported by Brueckner
and Masterson. They found that for the Breit potential
the minimum energy is E=—8.3 MeV at ro ——1.28 2,
while at k+ = 1.52 F ' they obtained a very small binding
of —0.3 MeV for all partial waves, and —9.2 MeV for
S and D waves alone. Although Brueckner's formalism
is diferent from ours, and the potentials used are not
exactly the same, yet it would be dificult to believe
that the similarity between these cakulations is purely
accidental, Moreover, Blatt et u/. ,

"have calculated the

» J. M. Blatt, G. H. Derrick and J. N. Lyness, Phys. Rev,
Letters 8, 323 (1962).
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TAnz E VII. Parameters of Hamada-Johnson potential as defmed in the Appendix.

Singlet even
Triplet odd
Triplet even
Singlet odd

+8.7—9.07
+6.0—8.0

b„.

10.6
+3.48—1.0

+12.0

—1.29—0.5

~ ~ ~

+0.55
+0.2

~ ~ ~

Gl.s
~ ~ ~

+0.1961
+0.0743

~ ~ ~

—7.12—0.1

—0.000891—0.000891
+0.00267
—0.00267

+0.2—7.26
+1.8
+2.0

—0.2
+6.92—0.4
+6.0

binding energy of the triton, using both the Hamada-
Johnson and Breit potentials. They have found similar
results for both potentials, namely, —2.6 MeV for the
6rst and —2.5 MeV for the second. These values are,
of course, much higher than the experimental value
of —8.49 MeV.

In the Hamada-Johnson potential we have the
following features which, according to Brueckner, are
responsible for the low equilibrium density and the
small binding energy: (a) larger core radius, (b) strong
odd-state repulsion, (c) quadratic spin-orbit terms, and
(d) weaker even-triplet central force. As Brueckner has
pointed out, the results of all these calculations indicate
the need for further studies on the nature of nucleon-
nucleon interactions.

APPENDIX

The Hamada-Johnson potential is of the form

&a+ s6 l2+&LS(~ ' s)+eLL+ 12'

where c, t, LS, and LL, refer to central, tensor, linear
L S and quadratic L S potentials, respectively. Lrs is
the operator defined by

v„v&, v1.8, and vz, z, are given by

s, =0.08(y/3)(~r ~s)(er es)Y(x)[1+a,Y(x)+b, Y (x)j.
e(——0.08(g/3)(~r ~2)(er es)Z(x)[1+a,Y(x)+by Y'(x)$,

er,s= pGl. sY'(x)L1+bzs Y(x)J,
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sr I. fJGI zx 'Z——(x)[1+arr,Y(x)+brr, Y'(x)j.
Here p, is the pion mass (p= 139.4 MeV), x is measured
in p ', Y(x)=e */x, and Z(x)=(1+3/x+3/x')Y(x).
For numerical values of the parameters used in these
potentials see Table VII. The hard-core radius is
cp=0.343 in all states.


