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The individual terms inside the curly brackets
correspond to increasing numbers of particles. For the
simple cubic lattice s=6, q3=0, F4=12, for the face-
centered cubic lattice s=12, q3=0, and q4=6. Inspec-
tion of Eqs. (80) and (79) shows that there is noparticu-
lar predominance of any one sort of diagram over

another as was observed in the longer range dipole-
dipole potential problem.

The Curie point has been inferred by Rushbrooke
and Wood" to be proportional to S(5+1).A sufficient
condition for this is that the ring diagrams predominate
in their contributions, for the ring diagram with n
vertices has a factor [5(5+1)j".The results on X3

and X4, however, conirm one's intuitive feeling that for
a very short range potential the cycle diagrams do not
predominate. In contrast to the situation with the
dipolar lattice, it is, therefore, not possible to obtain
a natural explanation for the S(S+1)dependence of the
Curie temperature for an exchange-coupled lattice.
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We use the method of Part I of this series of papers to study the influence of s-d interactions, thus extend-
ing the work by Potapkov and Tyablikov to higher spin values and that of Vonsovskii and Izyumov to
higher temperatures. Expressions are given for the energy shift and damping caused by the s-d interaction,
using the 6rst nontrivial approximation to the Green-functions equations of motion.

1. INTRODUCTION

' 'N the erst two papers of this series' (we use through-
' ~ out the same notations as in I and II and refer to
these papers for the deinition of the various symbols)
we discussed an ideal ferromagnet with a Heisenberg
Hamiltonian, that is, the interaction between the spins
was assumed to be an isotropic exchange interaction. It

* Permanent address: Pakistan Atomic Energy Centre, Fero-
zepur Road, Lahore, Pakistan; Address for 1962j3: Department
of Physics, University of Pennsylvania, Philadelphia 4, Penn-
sylvania.' R. A. Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 88 and
95 (1962). These papers are referred to as I and II and their
equations are quoted as (I3, 5), (II2.11), and so on. We should
like to use this opportunity to rectify an incorrect statement in
Appendix 3 of I and to apologize to Dr. Kawasaki and Dr. Mori
for incorrectly criticizing their work. We have now found that their
theory gives, indeed, the correct high-temperature expansion, at
least up to terms of order 1/v', our misinterpretation was caused
by a misprint in their paper.

is, however, well known' ' that, on the one hand, in
crystals of metals and alloys of the iron group as well as
direct-exchange interaction there is also an indirect
interaction produced through s-d exchange while, on the
other hand, this s-d exchange mechanism may well be
the dominant one in crystals of rare-earth elements and
for the case of solutions of paramagnetic ions in diamag-
netic crystals where the direct exchange is small.
Potapkov and Tyablikov' have used a Green-function
method to discuss this problem for the case where S= ~&,

~ S. V. Vonsovskii, J. Exptl. Theoret. Phys. (U.S.S.R.) 16, 981
(1946).

'S. V. Vonsovskii and E. A. Turov, J. Exptl. Theoret. Phys.
(U.S.S.R.) 24, 419 (1953).

4 J. Owen, M. Browne, %'. D. Knight, and C. Kittel, Phys. Rev.
102, 1501 (1956).

'K. Yosida, Phys. Rev. 106, 893 (1957).' K. Yosida, Phys. Rev. 107, 396 (1957).
7 N. A. Potapkov and S. V. Tyablikov, Fiz. Tverd. Tela 2, 2733

{1960))translation: Soviet Phys. —Solid State 2, 2433 (1961)j.
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using a Hamiltonian involving the so-called Pauli
operators' (also see I). On the other hand, Vonsovskii

and Izyumov' discussed the case of a general spin value

at low temperatures, using spin-wave variables (com-

pare II). In the present paper we shall extend Potapkov
and Tyablikov's work to higher spin values (or,
alternatively, Vonsovskii and Izyumov's work to higher

temperatures).
In the next section we shall introduce the Hamiltonian

for our system. In Sec. 3 we 6nd an expression for the
magnetization of the system, and for the energy shift
and damping of the spin-wave-like boson excitations.
In Sec. 4 we discuss the Green functions involving the
conduction-electron creation and annihilation operators
and the damping of the fermion excitations. Finally, in

Sec. 5 we discuss our results.

2. THE HAMILTONIAN

The Hamiltonian we shall use in the following consists
of three parts,

Eqs. (2.1) to (2.3), we find for the total Hamiltonian"

H= —Q{, I(l,m)(S& S )—(g&psB/A)g{S{*

+pk, (ek P)ck,

ggpBB+k[ck, ck, ck,.ck,+]
—(A/lV) P exp[ —if. (ki—k2)]D(k„k,)

where

X [ckg,—ckg,+St +ck&,+. cko,Mf+

+eke, —ck2,~f cky, + ck +2S{] (2.4)

D(k{,kg) =D*(kg,k{) (2 5)

is the Fourier transform of the s-d exchange integral.
6"hen we introduce our Green functions we must bear

in mind that we are now no longer dealing with boson-
type excitations only, and we shall distinguish —as we
did not do in I and II—between two possible types of
Green functions' "which diGer in the value of Zubarev's
parameter g. The equations of motion for the Green
functions are instead of (I2.9) of the form

II=II,+I'+JI,d. (2.1)
«(~ B)) "=(1/2 )([~ B]-.)

+(&[-4»]- B)) ", (26)
In (2.1) H, is the unperturbed Hamiltonian for the
conduction electrons which we take to be of the form

H, =pk, .(ek- p)ck, .tck,.
g,psB pk [ck, —tck —ck,+tck,+], (2.2)

where e& is the unperturbed single-electron energy of an
electron with wave vector k (we assume ek to be inde-
pendent of the electron spin), the ck,.t(ck,+t) and
ck, (ck +) are the creation and annihilation operators for
electrons with wave vector k and spin a (a=+2 or ——,',
according to whether the orientation of the electron
spin is parallel or antiparallel to the z axis; in indices we
drop the —', and o stands for + or —), and p is the
chemical potential.

For the Hamiltonian, II~, of the localized spins we
use (I3.1), and for the interaction Hamiltonian El,e we
use Vonsovskii and Izyumov's expression9 "

where $A, B]+denotes the anticommutator. In I and II
we only consider the case p =+1, but now it is con-
venient to consider both g=+1 and q= —1 at the same
time.

3. THE MAGNETIZATION; THE BOSON-LIKE
EXCITATION 8

Ke saw in I that, in order to evaluate the mag-
netization, we had to study the Green functions
((S,+; (S& )"(S{+)"')) . From (2.4) and (2.6) we hnd
for them the equation of motion

((S,+; a„))-[B—g.&,B]
8),g

g{"&—2A P I(g f)((S,*S,+ S—*S+ g ))-—

2h2

+pe {s {kl—kk&D(k —k)

H.e= —P{P, D'(I,c)(S{S,), (2 3) X((c,, 'c, , P,*;".))-
where the summation is over all lattice sites of the
localized spins and over all conduction electrons (c).
Introducing in (2.3) the ck, t and ck,. and combining

V. I. Bonch-Bruevich and S. V. Tyablikov, Green Function
Methods in Statistk al Mechanic's {Moscow, 1961}LEnglish transla-
tion: North-Holland Publishing Company, Amsterdam, 1962j.' S.V. Vonsovskii and Ya. A. Izyumov, Fiz. Metal. Metalloved.
Akad. Nauk S.S.S.R. Ural. Filial. 10, 321 (1960}.

'o See also T. Kasuya, Progr. Theoret. Phys. (Kyoto} 16, 45
I'1956};A. H. Mitchell, Phys. Rev. 9}5,1439 (1957}.

h2

+—p p e-*'e'"' "'D(k„k,)

X(([ck,,-tck, ,——ck,+'ck, ,+]Se+,' A.)), (3.1)

where the 6rst term on the right-hand side of (3.1) is the
same as the first term on the right-hand side of (I3.4),
and where

(S{—)a(S +)n—& (3.2)
"D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960} Ltranslatjon:

Soviet Phys. —Usp. 3, 320 (1960}j.
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((ck. ..'ck, .Ps+; A ))-
=: &"..."....)«S;; -4-»-

k, (&'r&) Sk, ,k,f&„.,((Sk+; A „))-, (3.4)

where f'k, (o&) is the average occupation number of
conduction electrons with wave vector ki and spin 0~.

We now get from (3.1) to (3.4)

(&S';A.)&
A2

X E—ga nfl ——2 D(k,k)Dk( —).—fk(+)j
g

~&, g
a&.&-» Z I(C-f&«S. S&.-S& S..; A-»-

2' f

2A2

p p e-'s. &»-»&(S )D(k&,k2)
V j»~

Ke now introduce the follov ing decoupling. First of
all, we use (I3.5), and secondly, for the mixed Green
functions we write

((., -'., +S*';A-» =:&S*)((,-'., -;A.&), (33)

To find the mixed Green functions we must write
down their equations of motion which are

((ck,—ck, ,+ A„)) LE—ek, +ek,—2g,&&»8)

h
=—P (D(k,k&)e-"& &k—"'&

Ã ~.~

X((ck,+ ckg, +Sr +ck,—ckQ, +Sl j 4'&)

+D(kk k)e && &k—2-k.)

X ((ckg Ck +—Sf ckg —ck Mf j A )) (3 7)

Using the decoupling (3.3) and (3.4) this equation
reduces to the form

((" .-'c",+' A-» LE-~",++",-j
=' —P .-'«" ~ &D(k, k,)S f

XI f.,(+)-l.,(-)j&(S&;A-»-, (3.g)

fk, ~= (ek —&&)+2(g~&&sB+A(S )D(k~k)]O'

(e=~2). (3 9)
If wc neglect the remaining mixed Green functions

((ck, , tc»,+,' A )), (3.5) differs from (I3.4) only in a
shift in the energies of the boson-like (spin-wave)
excitations, in that Ek' '& of (I3.11) is replaced by Ek
given by

We now have a set of coupled equations for our Green
functions which can be solved in the usual way by using
an inverse-lattice Fourier transformation. If Gk&"&(E~)

E„&s&+ g D(k k)[f„( ) f k(+)] (3 6) is the Fourier transform of ((S,+; A„)) for E=E+z& in
the limit as e tends to zero, we 6nd

Q& "&/2&r
G„&~)(E )= (3.10)

E—Ek—Rk(E) ~griyk(E)
with

2a &S*&D(k",k )D(k,k")D.„„(—)—f,„(+)j&„,„„„,
Rk(E) = &i

X j'.~" 6k',++eg"

2AS

vk(E) " + (s )D(k k )D(k ~k )t f k" ( ) f k( +)j b+k~k k b(E—ek ++ek- )

(3.11)

(3.12)

E—Ek —Rk(E) =0.

4. THE FERMIOÃ-I IKE EXCITATIONS

(3.14)

In the previous section we saw how we can use the
results of I to obtain expressions for the magnetization.

(&P indicates the principal value).
From our discussion in II it follows that Eg and y~

can be considered to give the energy shift and damping
of the boson-like excitations.

If we now compare (3.10) with (I3.10), we see that
we can apply the same reasoning as in I, and the result
is that we can use Kqs. (I3.16), (I3.21) to (13.25), but
with C(S) replaced by 4(S) given by

C'(S) = (1/~V&Zk Lexp(PEk) —1j ', (3.13)

where Ek is the root of the equation

As Ek depends on (S*) we have, as in I, an implicit
equation for (S') which we can solve in the same way as
was done in I. However, Ek also contains the f k, and
we need to know these before we can discuss the final
results. To 6nd the f~ we shall study the Green functions
((ck ., ck,.t&)+. The equation of motion for these
functions is

((ck ., ck,. ))+LE—ek+&&—2&rg,&&sB)

h
=(gk, k &l.../2)r) ——p e "&k k"&D(k,k")

XD(c,-, .S, ; c., .,t»+

—2~(&S&*c', ; c', '))'j (4.1)

We use the decoupling
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((s *, '."'))'=: (s*)(("..; """))', (4 2)

and get from (4.1)

((c« ., c«,.t))+[E—p«, .)

As this restricts k' to a rather narrow range, we
shall replace in (5.1) D(k', k') by its average value D,
say, and we get

(A-'/. V)P'D(k', I')[f'(—)—f«, (+))=:fD~f. (5.7)

1 A

b«,—« f&.,; —P—e "-&« ""—&D(k k")
2r .V fall, f

As long as the normal condition kBT&(p is satisfied, we
have"

At = ', (sV,/-p) [DAi(S*)+g.pnB). (5.8)

From (3.11), (3.9), and (5.1), (5.7) we now get for
8« for the case k=0

&&((c«".—Sr' c« " ))+ (4 3)

AVe discuss the in6uence of the last sum in the
Appendix; it produces both an energy shift and damping
of the fermion-like excitations. For the moment we shall
neglect it. We then get (compare the discussion in

reference 11) for the l « the Fermi distribution

2A'(S*)D'6 f'

Z, =Z, &»+A2a~g+ (5 9)
Ep 2g,its—B z(S*)A—D

If we assume gd
——2g, =gp we get from (5.9) two

(4 4) solutions:
f «(~) = [exp(P...)y 1]-'.

+0 gOP B~y (5.10a)

Ep gpiisB+2——(S*)AD+A'DDg. (5.10b)
If there were no s-d-coupling, i.e., D=o, ~~,+=~k,

and |'«(+)=i«(—). However, if D&0 the system of
conduction electrons is magnetized, and the total mag-
netization M(P) is now given by the relation

The situation is more complicated if k&0 and we
refer to the paper by Vonsovskii and Izyumov' who solve
a similar equation.

It is interesting to note that we get tao boson-excita-
tion branches: one, corresponding to (5.10a) without,
and the other, corresponding to (5.10b) with, an energy
gap." Potapkov and Tyablikov did not find the first
branch, and it is clear from (5.9) how this happens:
At first sight the term arising from E«(E) looks like
being second order in D, but it turns out to be only of
first order for Ep ——2g,iisB which is just the case for the
gapless branch. From this it follows that the magnetiza-
tion will at sufBciently low temperatures again show a
spin-wave behavior, that is,

M(P) = (Vgear&/A)(S')+kg. &i&&df,

~f=(1/'N)Z«2'«( —)—f«(+)).

5. DISCUSSION

where
(4.6)

Ke saw that the magnetization will contain the
energies 8« for which we have the equation [cf. Eqs.
(3.14) and (3.6)]

E«—E«( s&

A2

+—Z' D(k', k')[f'( —)—f «(+))+~«(E«) (5 1)
g M(P) =M(~)[1—~TP&P+" ], (5.11)

and not
The difference 1«(—)—f«(+) will be nonzero only if
k' lies suSciently close to the Fermi surface. If k&' and
k2' are defined by the equations

M(P)=M(~)[1 ae e~TPi'+ . ], —(5.12)

= ~), ~ +.—0

as found by Potapkov and Tyablikov.
From (4.5) and (5.8) we get for the magnetization

(5 2) the expression

we have, first of all,

(5.3)

3 iV, (S')
M(p) =- gpli»B+N p-*,

p h
(5.13)

where kF is the wave number on the Fermi surface. This
follows from the fact that

2g,iisB+2A(S*)D
)&F],

where the chemical potential p, follows from the usual
equation

Z«[f «(+)+f «( —))=-'& ' (5 5)

(N, : total number of conduction electrons. )
Secondly, we may assume that f«( —)—f «(+)

vanishes unless

(5.6)

'~ See, for instance, A. J. Dekker, Solid Skate Physics (Prentice-
Hall, Inc. , Englewood Cliffs, New Jersey, 1957},p. 2j.9.

"The presence of the second branch is connected with the
possibility of the conduction electron gas supporting spin-density
(Quctuation) waves. These spin-density waves are through the s-d
coupling coupled with the usual ferromagnetic spin waves; this
renormalizes both the energies of the spin waves and those of the
spin-density waves. The renormalization of the spin waves is seen
in the second branch. It is clear from the physical nature of the
spin-density waves that the case with '%&0 differs from that with
R=O: In the former case, the spontaneous magnetization of the
system as a whole will not be changed, as regions with a higher
spin-polarization density will be balanced by those with a smaller
density. However, in the R=O case the spin-polarization density
will uniformly be lowered or increased.

This problem is at the moment studied by Dr. H. B. Callen and
one of us (R.A.T.-K.) and we should like to express our thanks to
Dr. H. 3. Callen for pointing out that this point needs further
dIscussIon.
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with p*, the effective magnetic moment of the
d-electrons, given by

y =ps[1+)(N,/Np)DA']. (5.14)

With p 1 to 10 eV, N~A'/N 10 '4 10—" erg, we
find that p~ is a few percent larger than pg„ in order of
magnitude agreement with experiment.

A discussion of the behavior of yq(E), especially near
the Curie temperature, has been given by one of us."
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APPENDIX

In this Appendix we study the solution of Eq. (4.3)
taking the terms involving the mixed Green functions
into account. We use the notation

&(",Pr+; « ..'))'= T", . '(f) (A1)

If we look at the equations of motion for these functions,
we find that even after making the following de-
couplings,

((Sr*St+c~,., cg,.'))+
=: (S*&((Ss+cg... cg,."))+, fop, (A2)

((Sr S,+c~,„cq,, t))+=:((cq,„cq,;t))+(Sr S~+), (A3)

«cki, ~ cke, gckm, —rrSp q ck', ~' ))
=: ( ~ ..' ...)&S*)(( .,—.; ",.'))', (A4)

and writing
(S '&=0, (A6)

(S,-S,+)= V—' P&- P(k")e'"" &~-'& (A7)

Tk; k', , +(p) = N ' P~" Tz. z', , +(k")e"&'""&, (Ag)

we cannot solve these equations. We And a relation
between T+ and the inverse lattice sum Z given by the
equation

Z=.V ' Q D(k, kg)Tg, , g. .+(k—kg+k"). (A9)
&I(W&)

The terms involving this particular sum were dropped
by Potapkov and Tyablikov and as a result their
energy shifts and damping coefficients are diferent from
ours.

Although we cannot solve for the 1+, it is possible to
solve for the double sums A+ given by the relation

A~ ——N 'Qg pre""" "& D(k,k")Tg, g .."(f). (A10)

These are actually the sums occurring in Eq. (4.3)
after a few transformations. %'e can then finally solve
for the ((c& „c~,, t))+ and find

((c~ ., c~,.t))+[Ep—W~+(o)]= ha, p h. ../2s, (A11)

where

&(cy, , cg, cg, ,+f+, cg, ))
=. ( —...,)p.,() ....«".. ';",.'))'

-1.,(.)h.....«"..S', '..'))'], (A3)

neglecting terms of relative order N ' (compare the
discussion in II), using the approximation

A(T ~D(k,k") ~'hg. ), g"(2A'(S*)[f'g (—e') —-', —e']—2oAF( —k'))
Wg+(o.)=eg, ,—2—Q Q (A12)

N ~' ~" E~—ek-, .—2(rEk'+ (A'/N)Pg, (~g-) [D(k,kg)D(kg, k")/D(k, k")]f'g, (e)

From (A10) to (A12) we find that the excitation-
energies are "renormalized" and are found from (A12)
by putting 5'+=8+——~j, ,„and taking the principal
part of the double sum. The damping is obtained by
taking the modulus of the double sum in (A12) and
replacing the denominator by a delta function and E+
by the value ~~, found for the excitation energies.

"R.A. Tahir-Kheli, Phys. Letters (to be published). g(o)=: [1'+exp/ g, e] '. (A13)

As long as the damping is small compared to the
energy shift, we may regard the averages of the conduc-
tion-electron occupation number as being given by a
Fermi distribution, smeared out over a region of the
order of the damping, and we can put [compare
Eq. (4.4)]


