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New Methods in Nuclear Structure Calculations*
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Methods for evaluating shell-model matrix elements in the SU3 classification scheme of Elliott are given.
There are no restrictions on the number of particles. The relationship of the SU3 coupling scheme to the
model of a rotating asymmetric nucleus is investigated in detail.

I. INTRODUCTION

HE empirical success of the shell model' combined
with recent theoretical progress' in understanding

the basis of this approach are certainly impressive.
Nevertheless, the mathematical techniques for classify-
ing states and evaluating matrix elements are not yet
suKciently well developed to apply the shell-model

program to most nuclei. In fact, outside the 1p shell,
calculations have been carried out for at most four-
particle configurations. The matrices required to deal
with more than four particles are much too complicated
to construct, even with the aid of modern high-speed
computers. This limitation of the shell-model approach
may be overcome by means of the mathematical tech-
niques for systematically evaluating many-body matrix
elements developed in the present paper. Numerical
calculations and generalizations to various deformed
fields and vibrating systems will be discussed in a 1ater
publication.

Before proceeding to the formal development, a
semiquantitative discussion of the main physical ideas
behind the new approach is in order. Our point of de-
parture is the intermediate coupling shell model, '
which considers the interactions among nucleons mov-

ing in the field of a spherically symmetric core. The
particles outside the core usually are confined to the
lowest unfilled major shell. For example, in 0" and
F", the nucleons outside the 0" core are restricted to
the 2s and 1d orbitals. The radial dependence of the
two-particle interaction generally is expressed in the
form of a Gaussian or a Yukawa, well characterized by
a range and depth consistent with the effective range
and scattering length of nuclear forces. Various com-
binations of exchange mixtures have been used in such
calculations.

Recently, progress toward understanding the struc-
ture of nuclear wave functions has emerged from a
comparison between the intermediate coupling shell
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model and the rotator model of Bohr and Mottelson. '
In the rotator model, the nucleus assumes an axially
symmetric deformation in response to a self-consistent
Hartree field generated by the nucleons in nonspherical
orbitals. The deformed nucleus then rotates like a
quantum-mechanical top. Ni1sson and Mottelson4 pro-
posed a specific form for the potential, consisting of an
axially symmetric deformed harmonic oscillator with
spin-orbit interaction. It has recently been pointed out'
that the rotator model, as well as the shell model, may
be applied to F". In fact, the phenomenological pa-
rameters of a rotator' can be successfully fitted to the
observed spectra throughout the sd oscillator shell. It
is, therefore, natural to ask if the wave functions given
by the rotator model are related in some respect to the
shell-model wave functions. Redlich' noted that such
a relationship indeed exists in the case of 0" and P',
while I&urath and Picman verified that the shell-
model wave functions for the 1p orbital also have a
Nilsson-Mottelson structure to good approximation.
The next step was taken by Elliott, ' who constructed a
shell-model representation for particles in mixed orbital
configurations which gives rise naturally to a rotational
band structure. As an intuitive aid to the mathematical
treatment to follow, we give here a simplified version
of the Elliott treatment.

Ke ask first, what are the properties of a shell-model
Hamiltonian which will yield wave functions corre-
sponding to a rotating system of independent particles
in a deformed well? As in the Nilsson-Mottelson treat-
ment, we assume a deformed harmonic oscillator po-
tential, with spring constants k,=k„but 0 Wk, . The
ith particle in this "intrinsic" deformed well is subject
to a Hamiltonian:
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The first two terms in H; constitute the Hamiltonian
for a spherical harmonic oscillator with spring constant
k, and eigenvalues (rt;+ ss)—Aol, where co= (k/nt)"' and
e~=i, 2, 3, -. labels the various major shells. If we
take

q
'= 2(4or/5)'t'r 'F '(Ql)

where F„2 is the spherical harmonic of order 2, then

go

and the potential energy becomes

V (r,) = skrP+rtqo' (sk ———rt) (x'+y')+ (si'e+2rt)s',

which is the form required. Since we wish to confine the
particles to a single major shell, we impose the condi-
tion that all matrix elements of qo' vanish between
states in different oscillator levels. The Hamiltonian H,
then commutes with qo' as well as with the s component
of the orbital angular momentum L,', but not with the
square of the total angular momentum. Hence, the
eigenstates of H; can be made simultaneously eigen-
states of qe' and L,' but not of L'. Denoting these eigen-
states as $,,K, , we have

H,&,,K, P(n'—+.V ~+-ne'34. ,K;,

qo 4'etK~ ice'c& pe

Lz 4 fjK, —Igt!tKj

The Hamiltonian for N particles moving independently
in the deformed well is

~ ——O'V',~

H=Q +,'kryo +rtQp. -
s=l 2m

The quantity in braces is again the spherical harmonic
oscillator Hamiltonian, which assumes a constant eigen-
value equal to E(rt+ss)Puo for X particles in the rtth
oscillator shell owing to the degeneracy of the orbitals
within the shell. The last term in H is the many-body
quadrupole operator

Q.=2' q. '.

The eigenfunctions of H are products of eigenfunctions
of H, :

H II 0;K;=L&(n+4)&~+a 2 e'] lI 0;K;,

(2 L.') III.;K,=(E &;)III.;K;

In practice, these solutions must be antisymmetrized.
We designate such antisymmetric solutions as C,I;,

where

K= Q; E;, L,C,K=EC.,K,

e=P; e;, HC.K=(1V(rt+ ss)Pi(o-~ $C,K,

—A'V',~

+ ',—kryo -C.,K=rteC. .K.
28$

The last equation follows from the fact that C,~ is an
eigenfunction of the spherical harmonic oscillator and
is, therefore, also an eigenfunction of Qe alone.

The functions C,~ represent the "intrinsic" states of
a deformed nucleus. The true nuclear wave function
corresponds to a spinning intrinsic system, which may
be represented by a superposition of the C,z in various
orientations. We write the nuclear wave function for the
state with angular momentum L and s component M as

O,x™-ttMKL(~, p,Y)(~, p,v)C"K&Y»npdpd~ (I 1)

CeX FLAX (I.2)

This equation simply expands the 4,~ in a set of func-
tions (not normalized) which transform like spherical
harmonics under rotation. PKL is the function obtained
by projecting out of C,~ the component with orbital
angular momentum L As is well known":

@(ot,p,Y)QKL= QM. DM KL(n, p, Y)QM L, (I.3)

where D~ ~ is the rotation matrix:

DM.KL (n,P)Y) =(L3I'
~

e 'oL*e @Lee '&L'~ LZ).

Substituting Eqs. (I.2) and (I.3) into Eq. (I.1), we
obtain

Here the quantum number 3f refers to the projection
of the orbital angular momentum in the laboratory co-
ordinate system, whereas E denotes the projection of
the angular momentum along the symmetry axis of the
deformed nucleus. The rotation operator':

@(o p Y)=e t«ae—tPLoe —tvLN—

rotates the intrinsic function C,~ through the Euler
angles n, P, Y. The amplitude of the rotated functions
in the orienta, tion defined by n, P, 7 is given by the
coefficients a~~L, which we now determine from the
condition that +,~L~ must be a simultaneous eigen-
function of L' and L, with eigenvalues L and 3L

The intrinsic state 4,~ is an eigenstate of I, but not
of L'. We designate a set of simultaneous eigenstates
of I,' and L, as QKL, and write:

VeX = GMK (n&p&'Y) p DM'K (re&p&'Y)'IrM' dY slnpdpAX
L'M'

L'MI
'(~,P,V)D '(~,P,Y)~V»nP~P~~ 4 ' (I 4)

"M. E. Rose. Elementary Theory of Angular Momentnm (John Wiley 8r Sons, Inc. , New York, 1957).
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a~x'(n»») D~.xz'(n», y) dy sinPdPdn

~MK ~LL'~MM')

with the orthonormality relation for the rotation
matrices,

D~xz*(n»»)D~ xz'(n, ,P»)dy sinPdPdn

~LL'~MM'
p

2L+1

and conclude that uMK~ is proportional to DMK~*. The
proportionality constant is, of course, fixed by the
normalization of P~z. Finally, we de6ne the projection
operator:

Dvxz*(n, P,y)
Pjr'= Q St(n», y)dy sinPdPdn.

8x'/(2L+1)

Restating the preceding relations in terms of I'M~,
we have

=+ x' /&~xz=P~ ~"x

The operator I'M~ operating on an eigenstate of L,
with eigenvalue E first projects out the component
which transforms as the spherical harmonic of order L
and then changes E to M.

Equation (I.S) gives the relation between the in-
trinsic states C,K of a system of particles in a deformed
harmonic oscillator and the eigenstates 4,K™of the
rotating system. Since the P,xz~ describe a rotator,
they must be eigenfunctions of a Hamiltonian with
eigenvalues proportional to L(L+1). Designating this
Hamiltonian as 3'., we write

X+,xz~= La(e,K)+bL(L+ j)]%' xzM (I.6)
Since

L'4 zx=L(L+ j)%

we can rewrite Eq. (I.6) as

(X—bL')4' xzx ——a(e K)@,xzx (I.7)

Dividing both sides of Eq. (I.7) by Axxz and summing
over L, we see from Eq. (I.2) that

(X—bL2)4 x= G(E,K)4',x.

Since the operators X—bL' and Qo are both diagonal
in the C,K representation, they must commute

L(X—bL ), Q,]=0. (L8)

Since L and 3I are good quantum numbers for +,K™,
the integral in braces vanishes if L'/L and 3SI'/M.
Hence,

+.x'~= ~~x'4 ~',

where AMK~ is the integral in braces evaluated for
L'=L and JtI'=M. We now compare this integral,

We have also the analogous commutation relations for
the components of angular momentum:

L(X—bL'),L„]=0, @=0,&1 (I.job)

which hold for all scalar Hamiltonians.
The eight commutation relations summarized in

Eqs. (I.10) have been deduced from the conditions
imposed on the Hamiltonian, namely, that it must
represent a deformed harmonic oscillator with eigen-
states corresponding to a rotator. As shown in the main

body of the paper, these commutation relations make it
possible to find new quantum numbers which char-
acterize both the intrinsic states C,K of the deformed
oscillator and the rotational states 4,K~M. We intro-
duce here the Casimir operator

Q.Q-.
C=——+2(—)"

12 ~ 36

which obeys the commutation rules:

Ã,Q.]=o,
t C,L„]=0.

Since C is constructed from the eight components of
L„and Q„, it follows from Eqs. (I.10) that

L(X—bL'), C]=0,

which leads immediately to the desired relation

LX,C]=0,

since the scalar operator C commutes with L2.

We now have three simultaneously diagonal opera-
tors in the "intrinsic" 4 representation —Q0 with eigen-
value e, L, with eigenvalue E, and the Casimir operator
with eigenvalue C. The projected states

P z@' o= (j/&~xz)+c xz~

are also eigenstates of C since the projection operation
depends only on the operators L„, which commute with
C. We have, thus, arrived at a new quantum number C

We now obtain additional commutation relations for
X—bL' by applying the rotation operator to Eq. (I.8).
Rotation of Qo yields the linear combination:

&Q06t '= Z. D.o'(~»») Q'
Since the scalar operator X—bL' is invariant with re-
spect to rotations:

6tt (X—bL') Qo](R-'

=E.C(X—bL') Q.]D.o'(»») =o (I 9)

Multiplying Eq. (I.9) by D„o *(n»»), integrating over
the three Euler angles, and recalling the orthogonality
relation of the rotation matrices, we arrive at the
relations:

((X—bL'), Q„]=0, p=0, ~j, ~2. (I.10a)
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which is a constant of the motion for the intrinsic
states of a deformed harmonic oscillator as well as for
the projected states.

Since a realistic nuclear Hamiltonian does not yield
an exact rotator, it can be expected to conform only
approximately to the conditions prescribed above. In
that event, C is only approximately a good quantum
number. Numerical calculations for the sd oscillator
shell nevertheless confirm that a representation labeled
by C has physical meaning. Ke wish also to call atten-
tion to the flexibility of such a representation. Consider
any scalar operator S, with an inverse S '. Then the
class of transformed Hamiltonians SKS ' with eigen-
states I'~iSC,z~ still yields a rotational spectrum, and
the transformed operator SCS ' still has eigenvalue C.
If S is a product of identical one-body operators,
S=g;S;, the nonspherical term in the transformed
independent-particle Hamiltonian for the intrinsic sys-
tem becomes SQDS '=QPQO'S; '. Thus, we see that
the representation outlined in this section is not re-
stricted to a special form for the intrinsic Hartree field.
A program is now in progress to discover and apply the
scalar transformations S appropriate to various de-
formed 6elds and vibrating systems of physical interest.

II. THE ELLIOTT CLASSIFICATION OF STATES

In a series of two papers, Elliott' has discussed the
classi6cation of the many-particle wave functions of a
degenerate harmonic oscillator level according to irre-
ducible representations of the group SU3. First, the
states are labeled by the partition [Jf, which describes
the symmetry under space permutations. Associated
with [f) are the isotopic spin quantum number T and
the spin quantum number S. Next, the orbital states
belonging to a given partition are classified according
to the irreducible representations of SU3, labeled by the
two numbers (X,p). Finally, three additional quantum
numbers (E,e,h) are introduced which uniquely char-
acterize the states within an irreducible representation
of SU3. This classi6cation scheme applies to the so-
called "intrinsic" states discussed in Sec. I. Although
the intrinsic states comprise a complete orthonormal
set, they have no convenient transformation properties
with respect to rotations. To remedy this situation,
Elliott projects from the intrinsic states a new set of
states for which the total angular momentum is a con-
stant of the motion. The wave functions associated
with the final representation, thus, have I- as a good
quantum number and at the same time refer directly
to the intrinsic system. In Sec. IIA, we show that the
group SU3 is generated by a set of operators which
commute with the harmonic oscillator Hamiltonian. It
follows that the intrinsic states of a degenerate har-
monic oscillator level can be classi6ed according to the
irreducible representations of SU3. Section IIB con-
cerns the characterization of the intrinsic states be-
longing to a given irreducible representation, while
Sec. IIC deals with the projected wave functions.

1
uo= s+—b'p. i,

v2b A,

and operators that create energy quanta:

u+&t =u+&*= W—(x~iy) ——b'(p, +ip„)
2b

where

1
uot ——uo~ —— s b'p, i,

——
v2b A j
l9

p.= .
Bx

pw
z Bp

A 8
p=.

z Bs

These operators have the commutation rules:

[u„,u„t]=8„„,

[u„,u„i= [u„t,u„t]=0.

The transformation properties of the u„t with respect
to rotations are like those of the 6rst-order spherical
harmonics I"„'.In terms of the N„operators,

H= 2AM+'tuo Q~ u~tu~,

where the eigenstates of H are of the form:

We give here the functions E„i(r) and the constants
E„i for v=1, 2, 3, in terms of the dimensionless pa-
rameter S= (r/b). The functions E„~ are normalized
to 10"R„pdS=1.

~
—»Ill+1

25'
s2/25'1+ii

2l+3)

4S'
3 &-»i2gi+1 +

2l+3 (2l+3) (2l+5)

21+2

~'"(2l+t)!!
2'+'(2l+3)

~'"(2l+ t)!!
2'{2l+3){2l+5)

~»2{2S+i) ~ t

A. Generators of the Group SU3

Consider a single-particle harmonic oscillator Hamil-
tonian

II=p'/2rrl+ ,'euu' -'

where the frequency parameter eo is expressed in terms
of a length parameter b:

&u =A/mb'.

Introduce operators that annihilate energy quanta:

i
u~&

——W—(xWiy)+ —b'(p. Hip„)
2b A
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where (2'+1)!!=—1)(3)CSQ (2'+1).
Note t;hat

N„fr, ——0.

The 1s state, thus, plays the role of "vacuum" with
respect to the operators Q„. We shall henceforth use the
symbol IO) to denote the 1s state. It is easily verified
that

zi„tIO)=Pi„,
and that

0

Racah's notes" on group theory and spectroscopy, in
which the theory of continuous groups is developed
from the point of view of generators. These notes pro-
vide the mathematical foundation of much of the
present work and will prove helpful in elucidating the
discussion.

We now show that the product operators Q„tQ, gen-
erate the group U3. Moreover, since the form of the
commutation rules (IIA.1) is invariant under any linear
transformation of the operators, any nine linear com-
binations of the Q„tQ, also generate the group U3. We
select as generators the following linear combinations:

where
jl j2 j3 is the Clebsch-Gordan coefFicient
m$ m2 m3

for coupling angular momenta j& and j2 with 2' com-
ponents m& and m2 to a resultant j3 and m3. This fol-
lows from the fact that fs, is an eigenstate of H with
E=-,'Ao) and /= m) ——0. Similarly,

H= ssh~+Aa) Q„g„tzz„,

Ily] —W (Ns Nyi+Nyi Ns))

Lp= Qy~Qy —Q ]tQ

Qys = —6

Qyi= —3 ~ (Nstlpi —zzyitQs),

Qe= 2zzs zzo zzitz—zi —zz itN —i.

(IIA.3)

u„tu „t
I 0) ~ /id.

We now form the 9 product operators Q„~Q„. All of
these operators commute with B; hence their matrix
elements vanish between states in diferent oscillator
levels. The commutators of the product operators are

(N~ R, )zzr N~j=lp N~8px N~ zz—„8~~, (IIA.1)

where 8 „is the Kronecker delta symbol.
Equation (IIA.1) is a special case of the standard

form
LX„X.)=P, C,.'X,.

A set of operators X„subject to the commutation rules
(IIA.2) constitute the generators of a Lie group. We
call attention here to two properties of generators which,
together with their simple commutation rules, will
prove extremely useful in the following development.
First, consider a wave function belonging to a given
irreducible representation of a group. A generator of
the group operating on the wave function can change it
only into a linear combination of wave functions be-
longing to the same irreducible representation. Sec-
ondly, by repeated application of a suitable linear
combination of the generators, one can change any
member of the irreducible representation into any other
member. These properties may be illustrated in the
case of R3, the group of rotations in three-dimensional
space generated by the operators L, L„,L,. The irre-
ducible representation in this case is labeled by the
total angular momentum number L. Operation on any
state f~~ by one of the components of L does not
change the total angular momentum, and any state
Psz~ can be transformed into any other state /sr ~ with
—L~&M ~&L by applying the operators L,&iL„which
are linear combinations of the generators. For a formal
discussion of these properties, we refer the reader to

L~.,l' j= 2'"—
)+zi'

LL Q'j= 6 Q+'
n' a+n'

(IIA.4)

2 2
I Q„Q, )=3X10'&' L,„,„..

zi+zi'

Again j' ' ' denotes the Clebsch-Gordan co-
m] m2 m3

e%cient. We note that the commutation rules (IIA.4)
are of the form (IIA.2). The eight operators I.„, Q„,

"G. Racah, "Group Theory and Spectroscopy, " Spring 1951
Lectures at the Institute for Advanced Study, Princeton, New
Jersey (unpublished).

The 6rst of these nine generators is again the harmonic
oscillator Hamiltonian, which commutes with L„and
Q„since it commutes with all the N„tl„. The next three
generators are the components of orbital angular
momentum, which also generate the group R3. Our
group, thus, contains E3 as a subgroup, as it must if
the projected states Pz~C, z are to belong to the same
irreducible representation as the intrinsic states C,~.
The five operators Q„, introduced by Elliott, s are re-
lated to quadrupole distortions. In terms of the opera-
tors r and y, in units of 1/b, we have

Q
—(4~/5)i/2Lr2 P' 2 (Q )+izsp2P' 2 (Qp) j

where I'„' is the second-order spherical harmonic.
Within a major shell, Q„ is equivalent to the operator,

2 (4zr/5)'~'r' Y '(nr)

defined in Sec. I. The commutation rules of the L„
and Q„are:
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therefore, generate a subgroup of the group generated
by the nine operators N„tl, .

Of the generators (IIA.3), only H, L&, and Qe are
Hermitian. We construct Hermitian combinations of
L+i, Q~i, Q+2, denoted by Gi, G2, G&. Then

eiaKeiPLPeiyQPei8GI. . .eiP08=S(~ g ~. . . g J)

where the infinite set of unitary operators S(n,P, .~,)i)
for all values of n, P .,p form a continuous group.
Similarly, we de6ne:

I"zG. 2. Reduction of the
matrix using permutation
symmetry quantum num-
bers Pj.

(I S) N

((p)N
f

f

()d)M (ss)N-M

f

&
' "S(,P,V ' ' )r) = T(—P v '' )'i)

where T(P,y, . ,)i) is a subgroup of S(n,P, .,p). The
development here is analogous to the definition of the
rotation operators ei L'e't'L&e'&L', which form a continu-
ous group generated by the three components of orbital
angular momentum. Carrying this analogy further, we
define matrices S(a,P, ,)i) and T(P,p, ,)i) which
represent the operators 5 and T, just as the matrix
D(rr, P,y) represents the rotation operators. The S
matrices are unitary and depend on nine parameters,
n, P, . , )i. Since an arbitrary unitary matrix of three
dimensions likewise depends on nine arbitrary pa-
rameters, it is evident that the group generated by the
operators (IIA.3) is isomorphic to U3. We note further
that the matrices of the eight operators L„,Q„all have
zero trace. Hence, the T matrices must have deter-
minant unity since:

detT=detei~ ' detei&~p dete'~g' ~ dete'&@6

eip TrLpeiy TrQpei5 TrGI. . .eip, Trg6

The subgroup of U3 generated by the L„,Q„ is, there-
fore, SU3, the group of three-dimensional matrices with
determinant unity. In physical problems, we are not
concerned with the transformations ei K which merely
induce an over-all change of phase. Consequently, we
restrict our attention hereafter to the subgroup SU3
and the corresponding matrices T(P,n, ,)I).

The generalization of the preceding considerations to
many-particle systems is simple. We define the operators

N

Q N~'tg, '
i 1

for a system of E particles, where the generators
I„'tl„' refer to the ith particle. Then,

The E-particle generators corresponding to Eqs.
(IIA.3) are similarly defined as a sum of one-particle
operators, in which case the commutation rules (IIA.4)
hold as well for the E-particle system. Finally, the S-
particle operators T(P,y, . ,p) are constructed from the
X-particle generators.

In a harmonic oscillator representation, the matrices
of T assume the form given in Fig. 1, that is,
the nonvanishing elements of T reduce to square
matrices referring to each major shell of energy
(n+ ', )hei -We .now consider the E-particle submatrices
of T(P,y, ,)i) for all values of P, y, , )i referring to a
given oscillator level. Since the operator T(P,y, ,)r) is
symmetric, all matrix elements of T between states of
diGerent permutation symmetry vanish. The sub-
matrices of T are, therefore, diagonal in the quantum
number Pj, which describes the permutation sym-
metry of the E-particle wave functions, and each sub-
matrix can be factored accordingly as shown in Fig. 2.
The submatrices labeled by I and Lf$ correspond to the
irreducible representations of SU3 only iri the case of
the 1p shell. For e)1, these submatrices can be fac-
tored into still smaller boxes of nonvanishing elements
along the diagonal by applying suitable unitary trans-
formations. When no further factorization is possible,
the representation spanning each box is by definition
irreducible and can be characterized by two numbers

(X,)i) determined by group-theoretical methods. e It is
clear that the matrices of the generators can be fac-
tored in the same manner as the T matrices. Conse-
quently, a generator acting on a state belonging to one
irreducible representation cannot transform it into a
state of another irreducible representation.

B. The Intrinsic (I(.,e,A) Representation
of Elliott

FIG. 1. Reduction of the
matrix using harmonic os-
qigator quantum numbers.

(IS)

()p)N

(I d) (2S)

Our E-particle system is now classi6ed according to
the oscillator level rI,, the permutation symmetry D'1,
and the irreducible representation (X,)i) of SU3 to
which it belongs. The problem remains to distinguish
among states in the same oscillator level with the same
permutation symmetry belonging to the same irre-
ducible representation of SU3. 7Ve note 6rst that the
operators Qe and Le commute with each other and do
not join states of different n, Pj, or (X,)i). Hence, these
operators can be simultaneously diagonalized and their
eigenvalues e, E, used to characterize the states. With
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TABLE I. Commutators (A,B) of the operators H„ tp.

H1
H2
F1

p5
p
p4
p 4

0
0

p
p5
p—2F4

2F 4

0
0—3F1

3F 1—3F5
3F g

0
0

Fl
3F1
0

—,
'

(H& —Ho)
0—F 4

F6
0

F1

—3F 1
sr (—H&+Ho)

0
p4
0
0—F f,

p~
3FS
0
p4
0

$(—Hg —Ho)
0
P1

p-6
3P
p 4

0
k(H4+H2)

0
P—1
0

2F4
0
F~
0
0
p
0—H1

p 4

2P 4

0
0
p
PI
0

0

this choice of representation, it becomes convenient to
consider new linear combinations of L+l, Q+l, Q~2,
which act as step operators with respect to Lp and Qp.
That is, we seek operators which transform simul-
taneous eigenstates of Lp and Qo into different eigen-
states of Lp and Qp. Following the notation of Racah"
we deine:

pVy=lo=ly Ny —I y S y)

H2=Q0=2Sp 240 Nl —244 I l—I
Fl [1/(12)'~'j(—Q—l—v3L,)= —240tN„

F l Fl+ —[——1/(12——)'"](Ql —KBLl) = —Il'240,

Fs [1/(12)'I'——](Q,+v3L,)= 240'I —l,
(IIB.1)

F-0=F0'= —[1/(12)'"j(Q-l+~L-l) = —I l'No,

F4 (1/6'")Q2 —————N, t24, ,

F 4=F4 = (1/6'")-Q 2= —24 l'244.

The commutation rules of the operators (IIB.1) are
summarized in Table I.
We note that:

[+ly+2] O) [+nP p] +apFp) [FpP —p] +1+1++&2)

I Fp Fp]=+Fp+p lf I+f3'=+1, ~4, +3,
[Fp,Fp ]=» 'f P+P'Ww1, W4, a5.

From the commutation rules in Table I, we see that
Ep acts as a step operator with respect to eigenstates
of H& and H2,' that is, F+& and 8+5 change E by one
unit and change e by three units, whereas 8+4 change E
by two units without changing e.

As observed by Klliott, ' the three operators,

', (F4+F 4), si (F4——F4), —,'Lp, (IIB—.2)

have commutation rules identical with those of the
three components of angular momentum, I, I.„,I.,
Denoting the operators (IIB.2) as A, A„, A„we define
a new operator:

A'=A.2+A '+A„'
=-;L0'+2 (F4F 4+F 4F4) = 4L0 +kLO+F 4F4

= 42L02 ——2'Lo+F4F 4. (IIB.3)

The last two equalities in Eq. (IIB.3) follow from the
commutation rule [F4,F 4]=Lp. We note that A' com-

LoC'([fj(Xf4)K0A) =KC ([f](Xp)K0A),

(IIB.4)
QpC'([f 5 (Xfl)K0A) = C(0[v] ()i@)KoA),

(L02/4+2F4F 4+ ,'F 4F4)C([f-](XI4)KoA)
=A.(A+1)C([f]Pp)KeA),

where Fy4, Lp, Qp are the many-particle operators ob-
taining by summing the single-particle operators. %e
have suppressed the quantum number I designating
the oscillator level to which the states belong. The
quantum numbers in the argument of C fail to uniquely
distinguish the states only if an irreducible representa-
tion of given (X,p) occurs more than once for given 24

and [fj.Although such irreducible representations are
encountered in dealing with many-particle configura-
tions, they correspond to states of high energy and may
generally be disregarded in calculations involving low
excited states.

The allowed values of e, K, and A for the various
irreducible representations of SU3 have been deter-
mined by Elliott. For a given (X,y), 0 may assume the
values

0=2X+p, , 2X+p,—3, ,
—X—2p,

while for each value of e, A takes on the values

(IIB.S)

lo
I
» 2f pl y—1, —

min[le (2X+4f4—0), 0 (4K+ 2p,+0)] (IIB.6)

and for given A,

K=-D. 2,&—2 . —2X) ) (IIB.7)

Equation (IIB.7) follows from the definition of A, as

mutes with Lp and Qp, and has no matrix elements
joining states of different [f]or (X,f4). The eigenvalues
of A' can then be used together with the eigenvalues of
Lp and Qp to classify the states spanning an irreducible
representation of SU3. In fact, Elliott has shown that
the states belonging to a given irreducible representa-
tion (X,p) are uniquely characterized by the three
quantum numbers e, E, A.

Following the notation in Sec. I, we designate the
single-particle simultaneous eigenstates of Lp, Qp, A' as
p(Xf4,KoA) and the corresponding many-particle eigen-
states as C ([fj(Xp)K0A). Hence,
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the operator I.o/2. For the maximum and minimum
values of e, the value of A. is unique:

p/2 for e emax 2A+p&

A=A/2 for e=e; = —X—2p,

and, hence, for e=2A+p, we have K =p, . The state
with (e,Z') =(e,Z' ) = (2A+ p, p) is called the state
of highest weight in the irreducible representation (A,p).

Since the Fp operators cannot change (A,p), and since
states with e&e, and E&K,„do not exist, we have
the following relations involving the step-up operators
p] ps p4

FpC(e .„,K,„)=0 if P)0,
FpC(e,„,K)=0 if /=1, 5.

Equations (IIB.8) are analogous to the relation

(L,+iL„)/sr, 1,~=0,

for the angular momentum operators in the (L,M)
representation.

tA'e return now to the Casimir operator C, introduced
in Sec. I:

Ls 1 L2 Q2
C=—+—Q Q= + +o ZFsF s-

12 36 12 36

TABLE II. The allo@red values of L and E for the irreducible
representation (A,p) (10,6).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

6 X X X X X X X X X X X
4 X X X X X X X X X X X
2 X X X X X X X X X X X
0 x x x x x x

1 0 2 1 3 2 4 3 4 3 4 3 3 2 2 1 1

we conclude that the eigenvalue of C associated with an
irreducible representation (A,p) of SU3 is

p'+2p, (2)&.+p)'+6(2A+ p)

12 36

(A+p) (A+p+3) —Ap,

(IIB.11)

It follows from (IIB.11) that

Q QC([f](Ap)KeA)=36(C ——,', L') C([f](Ap) KeA)
= [4P +p) ('A+ p+3) —Q.p —3L']

XC([f](Ap)K~).
The operator Q. Q is, therefore, an example of a Hamil-
tonian which yields a pure rotator spectrum.

where

Lo'+2Lo Qo'+6Qo
+ +s Q F pFp, (IIB.9)

12 36 P&0

[C,Lo]= [C,Qo] = [C,Fp] =0. (IIB.10)

36

The last equality in (IIB.9) and the commutation rules
(IIB.10) follow from the commutation properties of
the H and Fp. In general, a Casimir operator, C, which
commutes with all the generators of any group can be
formed from a bilinear combination of the generators.
It follows that the matrix of C within an irreducible
representation of the group is a constant. For example,
the Casimir operator for the group E3 of rotations is
the square of the total-angular momentum, L', which
has the same eigenvalue for all states /sr~ belonging
to a given irreducible representation of E3. Similarly,
all states 4([f]('Ap&)KeA) belonging to a given irre-
ducible representation (A,p) of SU3 must be eigen-
states of C with the same eigenvalues. This eigenvalue
is readily determined from Eqs. (IIB.S), (IIB.6) and
(IIB.7), (IIB.S), and (IIB.9). Since

CC([f](Ap)K . ,e . ,A)

Kmax +2Kmsx emsx +6emax

E=p) p 2) 0 01 1)

L=K, K+1, K+2, , (K+))
l=) 'A —2) —4 . 0)

If p&X,

if KW0, (IIC.1)

if E=0.

E=), ) —2, , 0 or 1,
L=E K+1 K+2 (K+p) if ICAO (ITC 2)

C. The Projected (L,M) Representation

Consider the degenerate states of a harmonic oscil-
lator belonging to a given partition [f] and to a given
irreducible representation (A,p). We have seen in Sec.
IIB that these states are uniquely characterized by the
three quantum numbers (E,e,A). Alternatively, the
operators L' and L, may be diagonalized within each
irreducible representation and the states characterized
by the quantum numbers (L,M). In this case, however,
the classification is not complete, as the same values of
I., M may occur more than once in the same irreducible
representation.

Elliott has shown that the allowed values of I. for
given (A,p) are just those of a series of rotational bands
based on states with L,=A". , where E assumes all values
consistent with ~= e,„, that is,

If A~~ p)

&&4([f](Ap) K„.. .e„, ,A.), I.=p, p —2 p.—4 ~ 0 or 1 if E=0.

Kmax= JI4& emax= 2K+ p& An example of the rule (IIC.1) is given in Table II,
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which shows the allowed values of L and E for the irre-
ducible representation ()t,p) = (10,6). The last row of
the table indicates the number of states of each L
value in the representation. It is noteworthy that each
value of L up to L= 6 occurs the same number of times
in the irreducible representation (10,6) as in an asym-
metric rotator" made up of even numbers of neutrons
and protons. This suggests that the various states in an
irreducible representation can be associated with the
states of motion of an asymmetric rotator, in which case
different ()t,p) symmetries may correspond to different
states of intrinsic excitation. Support for such an in-
terpretation is provided by the discussion in Sec. IIIC.

It remains to determine the transformation from the
(K,e,A) to the (L,3II) scheme. For this purpose we

introduce the operator P~ which projects out of an
arbitrary function that part which transforms as the
spherical harmonic of order L. In general, P~ can be
expressed in terms of the rotation operators as dis-
cussed in Sec. I. If the function under consideration
contains angular momenta only up to some maximum
value, L, the operator I'~ becomes simply a poly-
nomial in L' which vanishes for all L&L' and equals
unity for L=L'. In any event, the P~ operator com-
mutes with all components of the angular momentum
operator and with any scalar. It is always possible to
combine I'~ with the step operators L,+iL„which
change the eigenvalue of L,. In the following we denote
as I'~~ the combination of operators that first projects
out the part of a function with angular momentum L
and next changes the eigenvalue of L, to M.

Since no angular momenta greater than L=)+p
occur in the ()t,p) irreducible representation, the opera-
tor Psr~ acting on the states C(LfjP p)KeA) can be
expressed as a polynomial in Ls multiplied by an appro-
priate linear combination of L, and L„.Recalling that
L„L„,L, are among the generators of SU3, we con-
clude that I'~~ does not change the irreducible repre-
sentation ()t,p). The projected states can then be
written as a linear combination of the C:

+jr~($fj()p)Keh) =Psr ~C ((fj(zp—)Keg)

= 2 &(Ke'A')C((fi(Xp)Me A')'(IIC, .3)

where the functions 0'~~ are unnormalized eigenfunc-
tions of L' and L, with eigenvalues L and M. The
quantum numbers (K,e,A) in the argument of %~~
refer to the intrinsic state from which the projected
state is derived.

It is obvious that equations of the form (IIC.3) for
all allowed values of L, SI, E, e, A, will yield many more
functions 0' than C. These functions cannot all be
linearly independent since the 4 are s'mply linear com-
binations of the C. The problem is to 6nd a complete,

'~ A. S. Davydov and G. F. Filippov, Zh. Eksperim. i Teor. Fix.
35. 440 (1958) Ltranlsation: Soviet Phys. —JETP S, 303 (1959)j.

linearly independent set of functions 4~~ which span
the same space as the C and constitute the basis vectors
of the L, M representation. Elliott has shown that this
is accomplished by choosing

+sr~([f)(Xp)Ke, ) if

+~~([jj()tp)Ke;„) if p) It.
(IIC.4)

The quantum number A has been suppressed in Eqs.
(IIC.4) and the following as it is uniquely determined
for the extreme values of e. The allowed values of L
and K are given by the rules (IIC.1) and (IIC.2).

The physical interpretation of the functions (IIC.4)
is clear. The quantum numbers Lfj, ()t,p) describe the
intrinsic state of an axially symmetric rotator composed
of independent particles in a deformed well. Both e and
K also refer to the intrinsic system; the former relates
to the quadrupole distortion of the well, whereas the
latter is the projection of the angular momenta on the
symmetry axis. For any given state of internal motion,
states with different values of K Lmin(X, y), min(X, p) —2,

.0 or 1) can be mixed to form an asymmetric rotator.
Finally, the quantum numbers L and M give the total
angular momentum and its s component in the labora-

tory coordinate system. It shouM be noted that states
with diferent quantum number E are not necessarily
orthogonal in the LM representation. This causes no

special problems in principle or in practice provided
that the nonorthogonality of the representation is duly
considered in carrying out calculations.

III. MATRIX ELEMENTS FOR THE 2s, Id
OSCILLATOR LEVEL

In Sec. IIIA, the single-particle states q~ for the sd

oscillator level are considered and a set of operators
convenient for dealing with these states is introduced.
Section IIIB concerns the matrix elements of the Hamil-

tonian in the intrinsic (K,e,A) representation. Finally,
in IIIC we apply the projection operator and arrive at
a general expression for the matrix elements of the
Hamiltonian in the projected (L,3II) scheme. The dis-

cussion in Sec. III is limited to the 2s, 1d oscillator
level in order to facilitate presentation and is readily

extended to other oscillator levels and to states with

X (p.

A. Single-Particle States

The single-particle states for the 2s, id oscillator
level are derived from the shell-model states Ps„Pw,
by simultaneously diagonalizing the matrices of Lo and

In this section we restrict our attention to the 2s, 1d

oscillator level with m=2, E=-',Sar. Ke assume further
that P ~&p, in which case the representation of interest
is spanned by the states:

+sr~([f]()p)Ke .„)=Psr~g(ttf](hjj)Ke, ).
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Pro. 3. Single-
particle states. See
text for further ex-
planation.

2
I

42-2-—

~K
I 0

I

4o

~i& P Fo
I

-t
I

Fg

-2
l

Qp. Designating the simultaneous eigenstates of Lo and
Qp as y(hp, %oh), we find that:

4o 4i 4 i
4o '0 —v2 0

0 0 0
0 0 0
0 0 0

Pp 0 0 0
0 0 0

A 4o 42
0 0 0

—v2 0 0
0 —1 0
0 0 0
0 0 0
0 0 0

(IIIA.3)

and, hence,

combinations, the matrices of the H, Fp are evaluated
in the y~ representation using shell-model methods.
For example, the matrix of the single-particle operator
Fy ls

() p, ,EpA)

iF(20, 0 4

(p(20, 1 1

(p(20, —1 1

rp(20, 2 —2

po(20, 0 —2

p2(20, —2 —2

0)= &, =(1yvz)( P„+—
1%
2) 0'2 Pld, ll

2) tip—i 4'id, —1)

1)= 02 =Ad, 2~

1)= ~ p = (1/~3)(~26.+lid..),
1) 'P 24 id, ——2.

Fi= [v2xp xi+x i xpi+v2xi x2). (IIIA.4a)

Similarly, we arrive at expressions for the remaining
operators:

F i —[v2x——itxo+xo tx-i+v2x2 xi), (IIIA.4b)

Fo ———[xitx i+v2xo tx 2+v2xotxo j, (IIIA.4c)

F 4= —[x itxi+v2x 2 xp +v2xp xoj~ (IIIA.4d)

F = —[&2X tx +X. txp +v2x, tx,j, (IIIA.4e)
The allowed eigenvalues E, p, A, for (X,p) = (2,0) follow
from Eqs. (IIB.S)—(IIB.7).

It is convenient to regard the states q~ as levels in
a E—e plane, as shown in Fig. 3. The arrows in the
diagram indicate the directions in which the step
operators F4, F~, F~ change the eigenvalues K and e.
The Hermitian conjugate operators change the eigen-
values in the opposite directions; that is, F 4 decreases
E by 2 units and leaves e unchanged, F & increases E
by 1 unit and decreases e by 3 units, F 5 decreases E
by 1 unit and decreases e by 3 units. Many-particle
states C are constructed by filling the single-particle
levels in accordance with the Pauli principle. For ) ~&p,,
the many-particle state of lowest energy is generally
the state of highest weight; that is, the state with
a=e, , E=E, . This coupling scheme may be com-
pared with the Nilsson4 scheme in the limit of large de-
formation. Since the qx states are eigenfunctions of Qo,
they are equivalent to the asymptotic states in the
Nilsson scheme if mixing of major shells is neglected.
The two schemes differ inasmuch as Elliott considers
an intrinsic Hartree field given by Qp alone, whereas
Nilsson includes also a spin-orbit force and an L' force.

AVe next introduce a set of operators X„~, X„, with
p, , v=0, &1, &2, 0', which create and annihilate the
q~ states. The commutation rules of the X„~, X, are:

[X„,X, j=8„„[x„,x„j=0, [x„t,x„t]=0. (IIIA.2)

From the X„t, X„, 36 product operators X„tX„may be
formed which generate the group U6 just as the nine
N„tl„generate U3. The eight operators H, Fp, can be
expressed as linear combinations of the X„~X„which
generate SU3. In order to find the appropriate linear

F o= —[VZx i xo+xo. xi+v2x 2 x ij, (IIIA.4f)

Hi ——Lp ——xitxi —x itx i+2xotx2 —2x 2tx 2, (IIIA.4g)

jV, =Q =4X,tX,+XitXi+X itX i—2X2tX2
—2xp txp. —2X 2 X 2. (IIIA.4h)

L~ —L,
L~ ( \)3dg L

(IIIA.S)

The 6ve operators Q„behave like 7'„2 and the Fd
operators can be expressed in terms of L and Q. Hence,
the transformation properties under time reversal of all
the operators (IIIA.4) follow from (IIIA.S). The trans-
formations of interest are:

Q. (—1)"Q-.,
L„~(—1)o+'L „,
L+ —+ —L,

I —+ —L+.,

Fgj ~ —Fys, Xo ~ Xo,

F 5~ F~~

Fy4 + F/4) x2 &-+ x 2, (IIIA.6)

Xo ~Xo)
C ~C.

Ke also need the transformation properties under time
reversal of the Elliott wave functions C([fj(hii)«A).
In the absence of spin, the time-reversal transformation
is simply complex conjugation. Therefore

C ([f$(Xp)Koh) —+ C*([fj(lilp)«&).

The eigenvalue equations for I.p, Qp, and h.' transform

In the next section we shall see that calculations in-

volving the operators (IIIA.4) can be simplified by
invoking the time-reversal transformation, under which
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under time reversal as follows:

(L04'= &4') —+ (L 04'*= —&4'*),

(g,4 = ~4) (g,4*=u'),
t-A4=A(A+1)4] PA4*=A(A+1)~*].

Since the generators of SU3 transform into each other
under time reversal, the transformed functions must
span an irreducible representation of SU3. Moreover,
the transformed functions must span the same irre-
ducible representation as the 4 since they have the
same values of t, and K, . Hence, under the time
reversal,

4 ([j]P p)E'eA) ~ e'W(g](Ap) —EeA),

where e is a real phase.

B.Matrix Elements in the Intrinsic (X,e,A.) Scheme

Ke write the Hamiltonian for a system of S particles
in the 2s, id oscillator level as a general sum of one-body
and two-body operators:

N

K=+ Q a x t&')x "'
i=1 p, v

+ p p b„„,.x„t(')x„t(r)x,(*)x.~r), (IIIB.1)

where the X.~('&, X,(" create and annihilate the states
err(r, ) of the ith particle. The restriction to one-body
and two-body forces is made for convenience only and
is not essential to the following development. Since K
is a scalar symmetric in particles, the partition (f] is
a good quantum number. Then the function 3CC

X(p](hp)E, e, ) can be expanded in the complete
orthonormal set of 4's:

K4

(Lf](leap)E,

e,.)
C, , ""'x4(Lf](X'p')Z "A'). (IIIB.2)

pl ~1eI +r

Since a suitable combination of generators can change
any member of an irreducible representation into any
other member, we have

C,., "'"&4(P](X'&')Z.'A')

=E;g "'&'x (H.,Fp}C(Q](X'p') E,e... ), (IIIB.3)

where F;q "'"'x(H,Fp) is a sum of products of the
eight generators of SU3 which changes e from e, to
e' and changes h. from p/2 to A' without changing E.
Substituting (IIIB.3) into (IIIB.2), we obtain

~4'(Lf](~p)Z, ~ ..)
= Z &"~"" 4'((f]0 p)&,~--)

+Q Q 8, g
"'&'x4 ($f](X'p')E,e,.).

(IIIB.4)

The term in (IIIB.4) with (X',p') 4 (X,p,) is small com-
pared with the erst sum if the classification of states
according to irreducible representations of SU3 is a
good zero-order scheme. We, therefore, deal first with the
oPerators F;q "I'x(H,Fs)

Referring to the diagram (IIIA.3) of the yx states,
we note that a Hamiltonian composed of one-body and
two-body operators can change the eigenvalue ~ by
three, six, nine, or twelve units. For example, a twelve-
unit transition would be obtained by operating with
Xp ~(')Xp( )Xp ~(~')Xp(~'). Ke also note that hE is odd if
de is odd, whereas DK is even if 5e is even. Since K
is a scalar, it cannot change E. Hence, the first sum on
the right in (IIIB.4) includes only terms with e= e, ,
e,„—6, and e,„—12. For c=~, , the sum over A.

'

reduces to a single term with A'= p/2 and

(IIIB.S)

For fixed E and e= e,.„—6, there are three allowed
values of A.'. The corresponding three operators
F-, .„6,q""x(H,Fp) are sums of products of H, Fp,
which change e by six units without changing E. Since

Fr4'(Q]Pp)&, e . )=Fg4'([f](Xp)E,~ .)=0, (IIIB.6)

the operators P» and Ps may be eliminated from the
argument of the E's by commuting them to the right
where they annihilate the wave function. This can be
accomplished regardless of the form of the E's by re-

peatedly writing:

FsFr =L~s,Fr ]+FsFs

FpH =[Fp,H ]+H Fp,
(IIIB.7)

=far"&xF rF „+a2"& F rF rF 4+a3"" F 5F 5F4]

X4 (ff](~p)&. ,),

where the ap"x are constants for 6xed (X,p) and K.
For fixed E and e=e, —12, h.' can assume five

values. Again the Ave operators E, . »2, jt,
"I' are de-

termined by eliminating II», H2, P», Ps, and requiring
that the remaining generators change e by twelve units
without changing K. The only 6ve products meeting

where P=1, 5, and using the rules in Table I to evaluate
the commutators. In the same manner, H» and H2 can
be commuted to the right where they are replaced with
their eigenvalues, K, and e,„=2X+p. The only corn-

binations of the remaining four operators capable of
changing e by six units without changing E are

F rF r„F rF rF 4, F rF SF4, (IIIB.S)

and, hence,

PZ,„„„,~."~ 4(r f]Pp)Ze ..)
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the requirements are

f1 P 1p l—p s—p 5-—fs=p 1F 1F 1F Q 4,

f3 F sp -sp —sp —lp4 -y f4 F lp lp-lp---lp-4F-4&— —

fs=p sp -sp -sp op4F-4, (IIIB.9)

and, hence, there exists a set of 6ve constants b;~&~ such
that

L& ~.-*-».s "" )C'(Lf)(»)«- )

= LE b'"" f (P~))c'(Lf)(»)«--)

pl P 1p 1p —5P 5—+b—s —F 1p 1p —1p —sp 4— — —

+b 3 F sp sp sp—1F-4+-b 4 —F 1p 1p 1p—1p—4F—4— — —

+b55I'KF sp sp sp spspsj4(/f)(Xp)K5 ).

In the rest of this paper, we suppress the parti-
tion quantum number D'), and denote the state
C(Lf)(»)E,5,„) simply as C,K"I' or as !»5E&, with
the understanding that 5= 5, = (2X+II4), A= p/2. Using
this notation and substituting (IIIB.S), (IIIB.S), and
(III8.9) into (III8.4), we have

The next step is to obtain expressions for the con-
stants C,"&~, u;"~~, b,"~~. This is easily accomplished
owing to the orthonormality of the set of functions
C,z"I'. Multiplying (III8.10) on the left with (»5E!
and integrating, we obtain

(xpoI6!Gc
I
~I55E&=c ""K. (III8.11)

All matrix elements on the right with coeKcients a;, b;,
vanish because they involve operators that change ~,

while all matrix elements in the sum over (X'p, ') W (»)
vanish because the operators H, Pp, cannot change
(»).

We now write (III8.10) three times and multiply
each equation from the left with the Hermitian conju-
gate of one of the operators (III8.8). Multiplying again
on the left with (XI45E I

and integrating, we obtain a set
of linear equations for the a;:

K I »«)
(Q 'ApK+a xyK(F p )+a xyK(P p p )

+as""K(P sp s-p4)-+bll"K(p lp l-p P-s-)+

+bsl K(P @ 5F sp sp4F4)}!»5E&

+g P E;s "I'(H,ps) I
X'll'5'K&. (III8.10)

c'k' (X'p)Q(Xp)

(»5K IP»& I »«) = (»«I I:al"" P»P-lp-5+as"" Psplp lp lp 4+as -"4 P-»-P & &4) I 4 «-&-

( I 5K
I P4pl plX-I &~«&

=(»5K!)al"" F4F1FlF 1F 5+as"" F4F1F1F lp 1F 4+as"" F4F1F1F sp sp4)IkysE&, (III8.12)

(»5K
I
F 4pspsX I 75psK&

=(»5K
I
Lal"" P &spsp lp 5+-as"" P -&&-sp lp lp -4+as""-P -&&-& & &-4)1~~5K-&-

The matrix elements on the right of (III8.12) are
diagonal in all quantum numbers and involve only
products of the Fp, whereas the matrix elements on the
left also involve X. We hereafter refer to matrix ele-

ments such as those on the right as "homogeneous"
and we call those on the left "inhomogeneous. " All

other matrix elements vanish because they are oG-

diagonal either in 5 or in (Xp).
In order to evaluate the homogeneous matrix elements

on the right of (III8.12), we apply the commutation
rules in Table I and the relations (III8.6) and (III8.7).
First, the operators Fj and P5 are commuted to the
right, while F ~ and F 5 are commuted to the left
where they annihilate the wave function. Next, H& and

H2 are commuted to the right or left and replaced with

their eigenvalues. There remain the product operators

F~4F~4, which satisfy the eigenvalue equations:

( I o' Lo
FP' 417 g«&=

I
ce +—Il»5E—&2)

~(~+2)—E(E—2)
I xp«&,

(III8.13)
P 4F41»«)=(PP-4+I F 4,F4)}I) y«&

P (II4+2) —E(E+2)-
I »«),

1
al"" =-(41:(~—5+2) (v+5)+2(5+E) (5—K))bl

v
+2t.(K+~)(K-~-2) (+E))~.

+2L(K—P) (K+@+2)(5—E))hs}, (III8.14)
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TasLz III. Expressions for the matrix elements Ch (lip»E). The notation Z';; (Xp»Z) =C;; (Ape, E—) is used.

'C„=C„=', (p+-E) (p E+—2) (p+E 2) (—p E+—4)+x»(e E—4) (—e E—6) (—e+E) (e+E 2)+—(p+E) (p Z+—2) (»+K 2) —(» E—4)—
Cis= Les=as(p E)—(p+E+2) (p+E) (p E+—2) (e Z —2)+—ss(p+E) (p E+—2) (c E)—(e—E—2) (e+E 6}—
Cis ——Css=-*, (p+Z) (p —E+2) (p—K) (p+E+2) (e+E—2)+as(p —K) (p+E+2) (e+E) (e+E—2) (»—E—6}
Css = 2'ss= s (p+E) (p K+—2) (p+E 2) (—p E+—4) (e E)—(e E —2)—
Cle —C14—s (p, K) (—p+E+2) (p—Z —2) (p+K+4) (e+E)(e+E—2)

Css = Css ——s L (p—E) (p+K+2) (e—E—2)+ (e—E) (e—E—2) (e+E—6}j
Cs, = Css = s (e—K) (e—E—2) (e Z 4—) (e+—K 2)+ (—9/8) (p+E 2) (p—K+4—) (e K) (»—E —2)—
Css = Css = ss (p —K) (p+K+2) f(p—K—2) (p+E+4)+3 (e+K 4) (e —K 2—)j-
Css ——Css= ', (p+E-2) (p —K+4)—(» E) (e —K 2)—(c —E+2)—
C,s

—C,s = -', (p —Z) (p+Z+2) (p—K—2) (p+Z+4) (e+E 2)—
C„=Css ———,*L(p+E) (p—E+2)(e+E—2)+ (e+E)(e+E—2) (c—K—6)g

Css ——0'ss ——s(p+K) (p —E+2)L(p+E—2) (p—K+4)+3(»—E—4) (e+E 2) j—
C„=C„=—;(e+E)(e+E—2) (»+K 4) (e E 2—)+ (9—/8) (—p —K—2) (p+K+4) (e+E)(»+K—2)

Css= Css= »(p+E) (p K+2) (p+K 2) ('p K+4) (e K 2)

Css= Css=-'(p —K—2) (p+E+4) (e+K) (e+K—2) (»+K+2)
C„=2'si ——6(e—E) (e—E—2)

Css= Cs»=3(e —E)(e—E—2)(e—E+2)
Css = 2'ss =3(p —K) (p+K+2) (e—K—2)

Css= Css= ,*(e E) (e-E—2) (e—Z—+2) (e—E+4)—
Cs s= C»4 = s (p K) (p+E+—2) (p E 2) (p+—K+—4)

Csi= Csi=6(e+E) (e+Z —2)

Css ——Cs»=3(p+K) (p —E+2)(e+K—2)

Css Ccs =3 (»+E)(e+E 2) (»+Z+—2)

Css= Pcs= ss(p+E) (p E-+2) (p+E—2) (p K+4)— —
Css= Ps» =s (e+E)(e+E 2) (e+E+—2) (»+K+4)

g,i'px =—(—48 (e+E)hi+ 12(»+E) (c+K 2)hs-
6y —12(E—is) (is+K+2)hs},

equations:

t;(»»K) = Q bs."PxC;, (Xls»K), (IIIB.15)

1
ps' pir = ( 4g (e —E)h—i 12 (—E+is) (—E—is —2)hs

6y
+12(e—:E)(e—E—2)hs},

where

»=2'A+is,

v= (e—u) (»+~+2) (e+~) (e—~—2)

where the C;; (Xyert) are the homogeneous matrix
elements

(»»K I
fst f; I »»E)

Cssi (»»E) =
(}p»EI g;l»»E)

g& & g2 ~4—4& gs ~—44 g4 44—4—4 gS ~—4—444

=16}(}i+p,) (}+i+1)(}i—1), and we adopt the notation for the inhomogeneous
terms:hi —(»»K I F&i3('I»«»

(}I «I F4FiFi3('-I }u«&
It2— )

()1»EIF4F 4I}p«)
() p»KI F,F~»I }I«&

ha=
(Ap»EI F 4F»IXp»E&

pppp —p p

(».E IF„„,3e l».E&
&i= (»« I F»»3('l»»K&s

(Xp»KIF» 4I}IJ,«)
(»«I F-4»»3C I»«& ( p« I

F4»»»3('-I »»E&
t4=

(»«I F 44I»«) (}

p-«IF»~~»I�}

p«&

(IIIB.16)

The constants b,"&~ are dealt with in the same manner
as the ap"x. Multiplying (IIIB.10) on the left with

(his»KI fst, j=1, 5, where the f; are the five opera-
tors (IIIB.9), we obtain upon integration a set of five (»«IF ~444I»»K&
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E4(Apse —E)=Ps(XIssE),

ki(hats& K) =3i(ApsK)
&

(IIIB.19)

where we have used the fact that the t s are real.
The matrix C;; (XpsE) is given in Table III, in which

we use the notation:

C;; (XpsK) =Cyp (Kiss) E). —
The equalities between the various C; s listed in the

table follow from time-reversal considerations similar
to those discussed above.

Finally, we consider the terms in (IIIB.10) with
(Vp') & (Xp). We note first that p—p' must be an even
integer since IC and p are either both even or both odd
and 3'. cannot change E. This restriction limits the
possible values of e' to ~, ', e

'—6, e
'—12, and

s, '—18, where s '=2K'+p, '. In practice, the terms
with e'=e ~'—18 are negligible for Hamiltonians of
the type generally used in intermediate shell-model
calculations. We, therefore, drop these terms and re-
write (IIIB.10):

K& ( g xgcCx'y'K++ xyg x'P'Kf (Fp). .

+P "~b"'~' f (Fp)) (Xp's'E),

where the operators f;(Fp), f; (Fp) are given in (IIIB.8)
and (IIIB.9). Multiplying (IIIB.16) on the left suc-
cessively with (O'Is" s"K~, with (X"p"s"K~f;+(Fp), and
with (9'p"s"K

~
f;+(Fp), we obtain the sets of equations:

(X"Is"s"E
~
Se

~
XpsE) = "&C.""I'"K,

() "I "s"Eif;+(Pp)aeizpsE&'
=Q "I'uP"I'"K(X"p"s"K

i
f;+fp I Y'p "s"E),

i=1, 2, 3, (IIIB.20)

(Z~.K
~
P~4

~
Xp.E&=-,'Q(p+2) —E(E—2)j,

(X~sE~P «~z~sE&=-.'Q(p+2) —E(K+2)$,
(),I.sK

~
F4~~4~ xl .K&

= i'pL(u+K)(u —E+2)( +K—2)(~—E+4)j,
(XysE~F s 444~XpsK)

=—'p L(~—E)( +K+2) (p —E—2) (~+K+4)]
Consider now tp(XpsE). Applying the time-reversal

operator, we have

(Xys, —E
~

P 4isss
~
Xps, E)—

ts*(P psE) = . (IIIB.1'/)
(Xps, E)F—44tzps, —K&

Setting the variable E equal to —E on both sides of
(IIIB.17) and comparing with the definition (IIIB.16)
of ts, we conclude that

(Aps, —K)= fs(X+s, —E)=ks(ApsK). (IIIB.18)

Similarly,

(X"Is"s"E
t f,+(Fp)X i) IssE&

xpb.x y K(all II /IK~ f+f ~ply tl IIK)

C. Matrix Elements in the Projected (L,M)
Representation

In this section, we first find a set of "equivalence
relations" such that

f.(F „P s,P~4)C,K'~=g. (L~,A~)C, K"~, (IIIC.1)

where the eight operators f, are given in (IIIB.8) and
(IIIB.9), and

L+=L,+il.„=—V2(Fs+F i),
(IIIC.2)L =L, iL„=—V2(F—s+Fi),

p4

A =F4. (IIIC.3)

As shown by Klliott, A~ play the role of step operators
with respect to eigenstates of cV and Ap ——Lp/2, just as
L+ serve as step operators with respect to eigenstates
of L' and Lo. The nonvanishing matrix elements of
A+ are

(X&.K(lt+~ X~., E—2)
=(Xps, E 2(A (XpsE&—
=L(X+-;K)(A——',E+ 1)J&P. (IIIC.4)

We note that A+ step E up or down by two units and
leave all other quantum numbers unchanged. These
operators are associated with the part of the Hamil-
tonian that connects different E bands and destroys
axial symmetry.

In order to illustrate the techniques involved, we
derive the equivalence relation for P 1' &. Since

L+L =2(F+F,)(F +P,)
=2(FsP s+P iP s+PsPi+F—iFi),

P—iP—s=kL+L= FsF—s—FsPi —F iPi. (IIIC.S)

J~ j 0 ~

Again, all oG-diagonal elements on the right vanish
because of the orthogonality of the C,z"l". We see that
the expressions for the ~l'C, ""~"~, the ~l"u,""l""~ and
the "I'b;~"I""~ are the same as those for the C,"I"~, the
o;s&K and the baal'K with the eigenvalues (V',p") sub-
stituted for (X,p) throughout the equations except on
the right side of the inhomogeneous matrix elements.
If terms with e'=e '—18 were included, we would
obtain an additional set of seven equations of the
form (IIIB.20) involving seven operators fs which
could be determined in the same manner as the f; and
f;. The general problem of calculating matrix elements
in the intrinsic (E,s) scheme thus reduces to the evalua-
tion of inhomogeneous matrix elements of the type on
the left of (IIIB.20).
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TAnLE IV. Equivalence relations. Operators equivalent to F FsF „~when operating on states @,z"&.

F 1F5.
~-1F-1F-4.
F 5P 5P4.

F-1F-lF-5F-5
F 1F IP IF-5~ 4'.

F—5P-5F-5F-1F4 ~

F—1F-1F-1F—1F-4F-4 ~

F 5P 5P 5F 5P4F4.

$(L'—E'—4)

~L+I+A. —-'(IJ+X) (p,—E'+2)
AL LM+ 4(p —K) (p—+K+2)
-', L4 —44(E'+24 —5)L'—14(L~L~ +L L~+)+14 L44(44+2)+Es(E'+44 —10)+24(4—4))
-', L'L+L+A —-'(a+E) (44

—K+2)L' —ALK(K —2)+34—6jL+L+A +-', (44+ E}(44—E+2}(4+K'—2)
-'UL LM+ —44(44 —E)(44+K+2)L'—-'LE(E+2)+34—6jL LM++s'(44 —E)(@+K+2)(4+K'—2)

,'L+L+L+L—+AM ,'(@+K——2)(14 K—+4—}L+L+A +~~ (I4+K) (I4 K+2—) (@+K 2) (44 —E+4—)
',L L L -LM+A+ 4(14 K—2—) (P+—K+4)LMM++~gg (I4 E) (14—+K+2) (P—K—2) (I4+E+4)

But

FsF 4=[F4-F s]+F -Ps= s-(Lo+Qo)+F sFs (I-IIC 6)

where we have used the commutation rule in Table I.
Substituting (IIIC.6) into (IIIC.S) and recalling that
F1, Fs annihilate C,K» while Le and Qs are eigen-
operators with eigenvalues E and e

F 1F sC,K""=[-',L+L=-,'(E+e))C,K». (IIIC.'I)

Now

The methods described above can be used to obtain
equivalence relations for all the operators (IIIB.8) and
(IIIB.9). Inspecting the list of relations in Table IV,
we note a symmetry among the operators. For example,
the equivalent operator for F ~P ~F 4 is obtained from
the equivalent operator for F sF sF 4 by changing L+
to I. , A to A.+, and EC to —E. This symmetry is a
consequence of the time-reversal transformations
(IIIA.7). Consider the relation:

L+L = —[—L'+Le' —Ls)

so, 6nally, we obtain

(IIIC.8) f.(F 1,F s,F4,F 4)C,K"&=g.(L~,L,F4,F 4,K)C,K"",

(IIIC.13)

L+L~ C,K"I'=2(F4[F4,F 4]+[F4,F 1]F 4

+F 1[F5F 4)+F—4[F4 F -4)—
+F—1F—1F—4}c'eK

= 2(F4F 4+F 1F' 1F 4}@.K-"".--(IIIC.11)

The second equality in (IIIC.11) follows from the com-
mutation rules and the fact that P~ also annihilates the
wave function. Substituting the eigenvalues (IIIB.13)
of F4F 4 into (IIIC.11), we arrive at the equivalence
relation:

F 1F sC,K1"=[-',(L'—E'—e)C,K»). (IIIC.9)

Next, consider F ~P ~P 4. Starting with

L~L~=2(Fs+F,)(Fs+F,)F 4, (IIIC.10)

we commute all F5's to the right where they annihilate
C,~"~. Then

which changes under time reversal to

f.( Fs, F1—F 4, F4—)C, ,
K"&

=g.( L, L+, F—4, F4—, —E)C,,
K"I'.

Since this relation holds for all values of E, we can
change the sign of E to obtain

f.( Fs, F1,F—4, F4)—C,K"&

=g.(—L, L+, F 4, F4, K—)C,K»

The operators f, (Fs) change e by six or twelve units
and therefore involve products of even numbers of Pp's
with P= —1, —5. Hence, in general,

f ( F—s F—1 F—4 F4) f (F-s F—1 F—4 F4) ~

(IIIC.14)

F gF gF 4C,~"I" Returning to Eq. (IIIB.16), we substitute the equiva-
= (&L+L+A 4(i4+E) (i4—E+—2))C,K"&. (IIIC.12) lent operators (gL+, ~A) for the f,(Fs) and obtain:

XC»=(C»K+ra»Kl, s+144 "~KL L+ y '444»KL L~-
1.

11 xyK(E2+4) 1g xpK(~+K) (i4 E+2) 1g»K(i4 E) (i4+K. +2)
+41[br"&KI4+bs""KL'L-+L+A +bshe""L'L LMp+b4"&KL+L+L+L~ +bs""KL L L L~+]
—[b," &(K'+2 5)+ b"" (I4+K)(—14 K+—2)+ 'b "" (i4 ——E)(i4+E+-2)]L'

[1she'&K+ 4bs"I—'K(K' 2K+3e 6)+—4b4""K (p+—K 2) (I4 E+4)]—L+L+A-
Pb, 1 &K+,'bs»K(E—'+2K+34 -6)+,'bs»K(i E——2) (&+-K+ 4)]L—Mm+

+14b11sK[js(I4+2)+K'(E'+44 10)+24(e—4)7+sb—s»K[(i4+E) (i4—E+2)(4+E'—2)]
+:b:"[(F-K)(v+E+-2)(.+K 2)]+Ab " "L(~+E-)(. K+2) (.+K 2) ( -K+4))—-

+—,ssbs»K[(p —E') (@+K+2)(p —E—2) (44+K+4)]}C,K»+terms with (X'p, ') W (Xp). (IIIC.15)
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TAsLE V. Projection relations derived in Sec. IIIC.

P L+L+A. ~K) =2/(L+E) (L K+—1)(L+K 1)—(L E+—2) (y+E) (p—E+2)]'~'P~~
~
K—2)

Pv~L L Ii+~ K)= ', P(L-E)—(L+E+1)(L K —1)(—L+K+2) (il K) (y—+K+2)]'~'P~~
~
K+2)

Pu~L~+L+L+Ii 4 ~K)
', P(L+-E) (L K+—1)(L+K 1)(I—,—K+2) (L+K 2) (L—K+—3)(L+K 3) (L—E+4—)

X (IJ+E 2) (p—K+—4) (p+K) (p K+—2)g'~'P~l
i

E'—4)
PM'L L LM~~ lE)

', L(L E-) (L+—K+1)(L K 1)—(L+—K+2) (L—K—2) (L+E+3)(L—E—3) (I+K+4)
X (iI. K 2—) (p+—E+4) (p —K) (@+K+2)]'i'P~i

i K+4)
P I

i E)—( 1)1+x+ P I ~K)

If transitions with he= 18 are neglected, the terms with (X'p )& (») are obtained from the sum in brackets simply
by substituting ) ', p, ', for X, p, .

We now apply the projection operator to (IIIC.15). It is clear that

P~~Bc
l xyeK) =3cP~ l »eK),

P,pL'l ) I eK) =I.(I.+1)P~'l ) I.eK),

(IIIC.16)

(IIIC.17)

since K and L' both commute with PM~. In order to evaluate operators of the form P~~g, (L+,A+), we require
the matrix elements of h.+ and L+.

(~p&) K+2 l~l»&K)= (»@Klieg. l»& K+2)=-,'l (@+K+2)(p,—K)g'", (IIIC.18)

(L, M+1lL+lL, M)=(L, M lL lL, M+1)=P(L+M+1)(L M)j". — (IIIC.19)

In Eq. (IIIC.18) the symbol l»eK) designates an intrinsic state P,z"&. In Eq. (IIIC.19) the symbol
l
I.,M)

designates the projected state %~~ P~~C,x"", wh——ich is an eigenstate of L' and t., with eigenvalues L(L+1)
and M, respectively. Comparing (IIIC.18) with (IIIC.19), we see that p/2 plays the role of L and K/2 plays the
role of M. This is a consequence of the fact that A transforms like the angular momentum operator and has eigen-
value p/2 for e= e,„.We note that the matrix elements of L~ cannot be easily evaluated in the C,z"& representa-
tion since L is not a good quantum number. Operators such as P~ L~ can nevertheless be dealt with by writing

P =P P
P~~L~

l
XpeK') =P~~L~Px

l
XpeK')

(IIIC.20)

(IIIC.21)

Equation (IIIC.20) follows directly from the definition that P~~ projects out L, and changes the eigenvalue of Lo
to M. This operation is performed whether one applies P~~Pz~ or P~~ alone. In Eq. (IIIC.21), P~ ~ is a poly-
nomial in L that projects out L without changing K . Hence it commutes with L~, and (IIIC.21) is simply a
special case of (IIIC.20).

The evaluation of P~~L+L+Ii l ) IjeK) is now carried out with the aid of (IIIC.18)—(IIIC.21):

P~ L L~l XyeK)= ', $(P+K) (y K+-2)ji"P~~L—~L+l X1ie, K—2),

P~'L+L+l»~ K 2)=P~'L+L+P—x 2'l)1~, K 2)=-P~'L+Px —i'(L, K—llL+l-L, K—2)l»~, K—2)
=P~ Px (L, KlL/lL, K 1)(L, K—1lLy—lL) K—2)l»~, K—2)

= f(L+K) (L K+1)(L+K 1) (L— K+2)]"'—P I
l
) pE, K——2). (IIIC.23)

Combining (IIIC.22) and (IIIC.23), we have

Pp+L+L+Ii l),A&K)

,'$(L+K) (I. K+-1)(I.+K 1)—(I=K+2) (p+—K) (p K+2)]"'l',il'l Xp—e, K'—2)). (IIIC.24)
Similarly,

Pm L LW~I) p~K)
=-',

l (L—K) (L+K+1)(L K 1)(L+IC+2) (y —K) (p—+K+2)]"P—~~ l)pe, K+2). (IIIC.25)

We note the appearance of Pir~l»e, K—2) in Eq. (IIIC.22). The projected functions P~~l »eK) are defined
only for E&~0. Negative values of E are dealt with hy means of the relation given by Klliott:

P~~l) pe, —K)= ( )+"+&P~~l)peK)—. (IIIC.26)
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The relation between the states P~~g, (L~,A~) l
lipeE& and the states %~~—PM—~

l
XpeE) for any combination of

L+, A.+, is immediately apparent from (IIIC.24) and (IIIC.25). For example,

P~'L~L+L~L~
l
ZpeK)

={(L,KIL+IL K—»(L K—1IL+IL K—2&(L K—2IL+IL K—3)(L K—3IL+IL, K—4&

X(Aye, E—4lA
l
lip&, K—2&(P pe, E 2 lA—l Ape, K))P~

l Aye, E—4).

e are now in a position to investigate the mixing of diQ'erent E bands by the operators A~. Applying the pro-
jection operator to (IIIC.15) and considering only terms with De=0, 6, we have

P Ly X»

= ga„"» L(L+1)+C,"» 2ai"»—(E'+ e) ~a,"»—(q+E) (Ij E+—2)—,' g,"»(q—E)(q—+K+2))P»i'e«»
+~a,"»x[(L+K)(L E+1)—(L+E 1)(L —K+2—) (IJ+E)(p K+2—)j'i'P~ C, ,x 2"»

+,'gP»x[-(L K) (L—+K+1)(L K 1—) (L+—K+2) (p K) (p—+K+2)j"'P~~C x 2"». (IIIC.27)

We compare (IIIC.27) with the matrix elements of an asymmetric rotator":

(LME
l
H, ., l

LM K)=
~ (1/I»+ 1/Iii) [L(L+L) K')+K'—/2Ig,

(IIIC.28)
(LM, E+2

l
P, „ l

LEEK)=»8(1/Ig 1/I») [(—L K) (L —E—1)(L+—E+1)(L+E+2)g",

where the eigenstates lI.ME& are th'e standard top
vrave functions and

In the limit of large values of p/E and with a~"»x
=u3"~~ we can identify corresponding terms in

(IIIC.27) and (IIIC.28):
'aa""x= '(1/-I» 1/I-ii), —
-', 02"»= -', (1/I»+ 1/Is),

i (g i»x+g i,»K) —]/21

If the term in (IIIC.27) are evaluated for a typical
force such as that considered in Sec. IVA, we find that
a2"& and as"~ are much smaller than a&~&. The 6~=12
terms also are very small. It thus appears that E is

approximately a good quantum number and asymmetry
effects are small in the sd oscillator level. For the forces
considered, however, the a;"~~ are quite E-dependent
and consequently an exact analogy cannot be drawn
between these constants and the parameters of an
asymmetric rotator.

Finally, the development in Secs. IIIB and IIIC
has led to an expression for the matrix elements of X,
in the projected (L,M) representation:

~P~~.x"»= 2 [(71)El
L

I
(~'~')E'1

() C~l )+I
XP»roc .x."'»'. (IIIC.29)

The coefficients [(Xp)K l
L

l
('A'p')E'j, which, in general,

are not symmetric, incorporate the "l"a,"'~'~, "~b;"'~'~

of Sec. IIIC together with matrix elements of L+, A+,
introduced by projection relations such as (IIIC.24)
and (IIIC.25). We note that these coefficients have
been expressed in a form such that only the inhomo-

» L. D. Landau and E. M. Lifschitl', Queller 3Achaeics Eoe-
relctivistic Theory (Addison-Wesley Publishing Company, Inc. ,
Reading, Massachusetts), p. 37'3 R.

geneous matrix elements of K in the intrinsic (E,~,g)
representation remain to be determined.

The coefficients [(l~p)Kl L
l (VIJ,')E'j are here defined

as the matrix elements of 3'.. Since the representation
spanned by the I'~~4, z"I' is not orthogonal, the matrix
elements so defined are not, in general, equal to the
expression:

(P~ 4,»"»
l
3C

l

PM~C;x. "'»'&.

We can, nevertheless, write an eigenvector of K as

4» = Q A (X'p'K')P»r C, x~" "', (IIIC.30)

where the I'~~C, ~"'&' form a complete set. From
(IIIC.29) and (IIIC.30), the amplitude Al (Vp', K')
must satisfy the equation:

A ~(lp~', E') [(X'p,')E'
l
L

l (l~p)E)
X'y'X'

=EAi(X,p, ,E). (IIIC.31)

Hence, the secular equation for the eigenvalues E
assumes the usual form

D t{[e(Vp')E'l I,
l (Xp)E]—Eli, g 8„„.8»x )=0.

IV. INHOMOGENEOUS MATRIX ELEMENTS
NEGLECTING SPIN

In this section, we express a generalized Hamil-
tonian for the sd oscillator level without spin as a sum
of ten scalar operators X .We then tabulate the matrix
elements of the X in the

l li,4,L) representation as well

as the inhomogeneous matrix elements

(&I «lf+(Pp)x l&I «)
for each of the eight operators f;, f; defined in Sec. III.

A. The Operators X

Let lli, l2,L) be the wave function of two particles
in the sd oscillator shell with angular momenta l~ and
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Ta»LE VI. Matrix elements M„as defmed in (IVA.1) of operators X&'&, as defmed in (IVA.8).'

1

5
6

8
9

10

20

18
24

2
14
28
16
16
16

6
20

2
6

12

12
6

12
12
12
6

12

X(6)

1
1—1—1—1

36
400

4
36

144

144/5

288/35
8/35—96/5

—72/35

144
36

144
144
144
36

144

—168/5

96/5
12/5

—12

112
25

112
20

-75/14
50/7
25/2—112—100/7

a Blank spaces denote vanishing matrix elements.

l~ coupled to a total angular momentum L. If l~= l~, the
wave function is symmetric under space exchange for
even values of L and antisymmetric for odd L. If l&&l2,
both symmetric and antisymmetric combinations are
possible and these are distinguished by setting the sub-
script x equal to s or u. A two-body scalar symmetric
Hamiltonian in the space of the sd shell without spin
is then defi.ned by its ten matrix elements M, :
Mt —=(s',0IX Is',0),
M's—= (1/5'&')(ss, O

) X (
d', 0&,

M,=—&ds 0)X~ds O&

M4—=(sd 2IXlsd, 2&„

M,=—PI/(14)tlsj&sd, 2 ~X ]d,2&.,

M, —=&ds, 2[X)ds,2&,

M, =—&ds,4[X[ds,4),

M, =(ds, 1[X[ds,1&,

Mg =—(sd, 2
) X f sd, 2).,

M„—=&ds,3)X[ds,3&.

(IVA. 1)

P, Sp'Xp&"&=5... (IVA.4)

It is convenient to construct the X;;& ) from the
operators L„and Q„. For this purpose we need the
relations:

-2 2 E
(QXQ), &x& —=Z Q„Q, (IVA.5)

(QXL),&"=Z Q.L. (IVA.6)

Q, (—1)'T,&x&A,&x&=—T& & A& &, (IVA.7)

Alternatively, we may express an arbitrary two-body
Hamiltonian for the sd shell without spin in terms of ten
linearly independent scalar two-body operators X;;( ',
such that

M, =g„g.X,&', (IVA.2)

where the X,( ' are matrix elements defined by sub-
stituting the operators X;;&'& for X in (IVA. 1).The co-
efficients g, in (IVA.2) depend linearly on the M, :

g.=Q, Sp'M, . (IVA.3)

Comparing (IVA.2) and (IVA.3), we see that

tor of rank E.The ten scalar two-body operators X;;&'&

are defined as follows:

X;;("=—9C;;; nine times the Casimir operator of par-
ticlesi and j.

X;;&'& = (L;;)'= (l;+l;)'; the square of the total angular
momentum of particles i and j.

X@&s& =is+i/; —the sum of the squares of the single-

particle angular momenta.

X@&'& =—P;; the space exchange operator of particles
i and j.

X"(') =—1; unity.
X@&'& =—(L;;)'; the square of X;;&".
X;;&'& =——'L(QXQ);&" (QXQ);&'&]; one-ninth of the

scalar product of the rank-4 tensors (QXQ)
for the ith and jth particles.

X;;& & =—(lP+/P)' the square of X;;&'&. (IVA.S)

X . .&ts&= (Q XL),&s&. (Q XL),&3&

X;;&"&=(QXQ),"'(QXQ),"'.
(The number 4 is reserved for the one-body spin-orbit
operator discussed in Sec. V.)

By means of standard Racah techniques, all matrix
elements X~&'& involving the operators L„and Q„can
be expressed in terms of the reduced single-particIe
matrix elements (l)(L[[l'), (l[[Q[il'). For a harmonic os-
cillator, the reduced matrix elements are:

(dllQlld) = —(vo) &, (dllLlld) = (3o) f,
Qlls) = (sllQlld) = —2(10)»s, (sllLlls) =O.

(IVA.9)

With the aid of (IVA.9) and the standard Racah for-
mulas, we evaluate the matrix elements X„(') to obtain
the array given in Table VI. The S, are obtained by
inverting this and they are given in Table VII.

As an example of the expansion of a Hamiltonian in
the operators X;;& ), we consider the Yukawa potential
with a Serber exchange:

where the symbol in brackets is the vector coupling
coe%cient and T(~), A(~), are irreducible tensor opera-

v= v. (1+~*). (IVA. 10)
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TAnLE VII. S,~, as defined in (IVA.3). The superscript labels the columns and the subscript labels the rows.

+8 +10

—977

3360

47

420

241

336

33

980

—99

1225

3360

149

2100

69

420

—317

336

—178

2940

369

4900

—140

13

672

168

336

392

490

1

16

1

80

1120

1

72

—157

10080

2520

1008

9800

120

560

36

10

420

23

105

2100

71

420

—589

2100

1

168

105

40

1

32

700

4200 48

Following Elliott and Flowers, we chose Vo ———45
MeV, a=i.37&(10 " cm, and the harmonic oscillator
length parameter b= l.64&10 '3 cm for the sd shell.
The matrix elements M, defined by (IVA. 1) can then
be calculated and the coeKcients g, determined with
the aid of the results in Table VII. We find the results
given in Table VIII. The coefFicient g~ is su%ciently

TABLE VIII. Matrix elements M„as defined in (IVA. I), g„as
defined in (IVA.2) and X&'&, as defined in (IVA.S) for the poten-
tial given by (IVA.9).

large that eigenstates of the Casimir operator comprise
a good zero-order scheme. That this is true for various
potentials used in intermediate shell-model calculations
can easily be verided and will be demonstrated in a
subsequent paper reporting numerical results for the sd
shell. In general, the usefulness of the Klliott scheme for
the sd shell is a consequence of the fact that eigen-
states of K are approximate eigenstates of C.

We must now analyze the structure of the operators

M, (MeV) g, (MeV)

g1 = —0.21121
g2 =0.17730
g8 =0.18560
gs = —1.05288
g6 =1.03674
gv = —0.0016949
gs = —0.083167
g9 =—o.0200182
g10=0.0071742
gII =0.000899

~1 ———4.24035
M, = —0.74420
m, = -7.09785
~4 ———3.59415
~s = —0.40455
~6 = —3.18/80
~7 ———3.72330
3I8 —-0
Mg =0
~10

9C'z
(l,+l;)'
(lP+l&s)
P 0

1
(I'&)'
(QxQ) (QxQ) y9
(l.2+l.s)2

(Qx~);& (QxL)
(QxQ)" (QxQ)P

PQX,, & i

for a system of E particles in the sd shell. Considering
first X&&&, from the de6nition (IIB.9) of the Casimir
operator, we have
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Hence,

QX, ())
i(j

The various tensor products (/Xl) of rank E are given
by

(/( X/() (K) l, 'l, '. (IVA. 21)
P 0 g

(1V—1) N
=x' P $6/,"/;+2Q,"Q;g+ Q (3/; /~+Q,"Q,) A

/j/„'= Q (/*X/')„+„". (IVA.22)
x )( p p+ p(N —2) N

=l 2 (3/' l +Q' Q )+ & (3/' /'+Q' Q').

(IVA. 12)
Substituting (IVA.22) into (IVA.20) and noting that

(lXl)00= /2/~— ; (lXl) '= —l /V2, (IVA.23)

we obtain the factored form:
But nine times the Casimir operator of E particles is

3L L+Q Q
9C=-', g (3/; l;+Q,"Q,)=, (IVA. 13) (/, /,.) =P. /g;(/, l,.)

+ L(l'X l') "' (l'X l') "'j+b(,/;/g. (IVA.24)

Q=Z Q'.
Returning to

=~ P $3/, /~+"6/; l, +3l; l,+Q; Q;+2Q,"Q,+Q;.Q;) It follows from (IVA.21) and the unitary property of
the vector coupling coefFicients that

Combining (IVA.12) and (IVA. 13), we have

(X—2) &(

P X;;('&=9C+ P (3/; l,+Q,"Q;). (IVA. 14)
i&j

The wave function of a single particle in the sd shell
belongs to the irreducible representation (X,p)= (2,0).
Hence, the single-particle Casimir operator,

1
C;—=—(3l"l +Q"Q )

36

can be equated to its eigenvalue of 10/9, in accordance
with Eq. (IIB.11).So

(l; l;) =-,'(/~+/. )'—/P —/Pj. (IVA.27)

Substituting (IVA.27) into (IVA.26) we obtain

(/;+/g)4=/;4+/)4+4(/; l;)'
+4 (/('/)) (/P+/P)+2/ 2/ & iN j (IVA.25)

we note that the operator l;4 is equivalent to 61,& for
the sd shell since only s and d orbitals are present.
Similarly, the expression (l;.l;) (/P+/P) is equivalent to
12(l,'l;). So, in the s(/ she11,

(l,+l;)4= 6(/P+/P)+4(/ "l )'
+48(l; /g)+2/P/P. (IVA.26)

Write

Next,

Q X "&')=9C+10/)/'(X —2).
i(j

(IVA. 15) (/(+/~)4= 18(/'2+/P)+24(/'+/
+4(l; /;)'+2/P/P. (IVA.28)

For the sd shell, we have

P X"(»=Q (l;+/)'= L L+ (E—2) Q /P, (IVA. 16) 2 /'V= (Z l')' —6 Z /". (IVA.29)

P X;;(')=P (l,'+l,')=(N —1) P l,',

Z Xv")=2 («+4)'.

Summing (IVA.28) over i (j and using (IVA.24),
(IVA.29), and (IVA. 16), we obtain

(IVA.18)
(l,+l,.)'

(IVA. 19)
=P X"(')=23L.L+(6X—46) Q /P+(5/3)(g l')'

The operator (IVA.19) can be manipulated into a fac-
tored form which is much more convenient for computa-
tion. De6ne l„' as the p,th spherical component of the
orbital angular momentum operator for the ith par-
ticle. Then

(l; l,)'= Q l„'L 'l 'L„'( )&+" (IV—A.20.)

+2 P L(/'X/')(» (PX/&')(')g (IVA.30)

We now have a factored form for P;&;X;;("consisting
of sums and products of symmetric one-body operators.
The new operator which appears is Q;(/'X/')„(').

The operators X(8& X("& and X("& are already fac-
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tored. For X&'&, we note that

N

Q X;;' =Q (/P+/, )'

= (Q l ~)'+6(N —2) Q /P. (IVA.31)

The total Hamiltonian for N particles in the sd shell,

X=+ Qg X;;& &,

can now be written as

Bc=9g1c+ (go+23gr)L L+[(go+6gp)(N —2)+go(N —1)]Q /p+gg(Q /p)'+g7[Q x;11'—23L.Lj

gs+—'Z[(exe), (e&&e), j+g.or, [(QUAL), (QxL) j+g.Z[(exe); (exe); j
9 (j i(j' i(j

N(N —1)
+go p p "x+ 10g1N(N —2)+go 1. (IVA.32)

2

40
Po
41

0
0

o& p. 2v2
0

4—1

0 0
6 0
0 6
0 0
0 0
0 0

A
0
0
0
6
0
0

40
2v2 0
0 0

(IVB.1)

2 0
0 6

B. Inhomogeneous Forms

In Sec. III, we expressed the matrix elements of 3.'
in terms of homogeneous matrix elements which could
be calculated immediately, and inhomogeneous matrix
elements which explicitly involve the Hamiltonian.
These inhomogeneous forms can now be dealt with by
means of the expansion (IVA.32). Consider first the
operator p; p/, x. The matrix of /;0 in the &to repre-
sentation is:

Qp ——P Qp&" =4np+n1+n 1,

LQ=Z Lo"'=n1—n 1.

(IVB.7)

(IVB.S)

simply as ~XpQE), and we define the many-particle
operator n =p; n, &o. —

We now restrict the analysis to states in which
&t 0, p ., $0, are not occupied; that is,

Xa&' ~/&jj, oE)=0; a=&2, 0'. (IVB.5)

Equation (IVB.5) holds for most of the bands of in-
terest in the first half of the sd shell. If other bands
must be considered, they are generated from the bands
with Q+&, Qp unoccupied by applying suitable creation
and annihilation operators. Then

N=P n. &O=np+n, +n 1,

Hence, in terms of the operators X„t(",X„('), we have

l '=2[2no&'&+3n &'&+3n "'+n "'+3no&'&+3n
+v2xo&&'&xp &'&+vlxo t&'&xp&'&$ (IVB.2)

where n (')—=X t('&X ('). Referring to the diagram in
Fig. 3 of the &t x states, we see that Xpt&'&Xp &'& increases

by six units whereas Xo t&') Xo&" decreases e by six
units. By definition, the operators n &'& leave ~ un-
changed. The nonvanishing inhomogeneous matrix ele-
ments involving P;/;0 for the case (X'I«')=(») are,
therefore,

2[(»QK (
2np+3n1+3n 1+no

+3no+3n 0 i »QE)j, (IVB.3)

2V2ppoK(IFQF&p Xp t&1XQ 1~»QE)j)

2&2[(»QE (F4F1F1Zi X0' t X0 ( XpoE)g (IVB.4)

2%2[(»QE[F 4FQFQ g; xQ t&'&xo&'& [»QE)j.

Again, we have denoted the N-particle state

C ([[1/(l&,p)E, Q )

Equations (IVB.7) and (IVB.S) follow from (IIIA.4)
with no =n2 ——n ~

——0. Hence,

np
——-', (Qp —N), (IVB.9)

n =-'(-N —-'Qp+ Lo), (IVB.10)

n 1
———,

' (-";N—-,'Qp —Lp). (IVB.11)

Since ~»QK) is an eigenvector of Lp, Qp, and N, with
eigenvalues E, 2X+/&, and N, it is also an eigenvector
of the operators no, n~, n ~. We shall designate the eigen-
values of the operators n also as n . The matrix ele-
ments (IVB.3) can then be evaluated immediately:

2[(»QE
~ Q; /P

~
»QE)$=4no+6(n1+n 1). (IVB.12)

The matrix elements (IVB.4) are evaluated with the
aid of (IIIA.4) and the commutation rules (IIIA.2).
For example,

K IF,F, &.x,, t«»0&' l»,E
=242(»0K~F0[F1 Qg Xo't XQ j~7&I10E)

+2%2(7&I10KtFQ Q; Xo "'Xo "F1~»QK). (IVB.13}
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Fs(Q;—V2xp i&4&x &'&+X t&"Xp&'& ~)t/40K)

= —v2(Q; X t&'&X &'& —X t&"X

—x, t&'&x &'&+xp. t&'&x .&'&) ~}&/ eK)
&2—(lp &s

—
1 tst—) ~

h/40K). (IVB.15)

Combining (IVB.15), (IVB.14), and (IVB.13), we have

(}&/40K i
p DPt Qi /;0 i)&&&40K)

=12v2)4/DDK~pspi P' xp t& &xp& & ~}&&apK)

=4 (tsp —et —&s,) . (IVB.16)

As an example of the treatment of a two-body operator,

The second term on the right vanishes since Fj anni-
hilates ~)&/40K). Substituting for Fi the first of Eqs.
(IIIA.4), we evaluate the commutator

[P Q x.t&'&x &'&)

= —Q;(—V2xp 1&"xi&"&+x it&'&xp&'&) (IVB.14)

Since Fs also annihilates ~)&&|40K), we use the same
technique to obtain

consider

Q (QxQ), &" (QxQ);"&

=-:Lz (exe),"&rz (Qxe);&"j
——; P (QxQ), '. (QxQ), &'. (IVB.17)

The one-body operator (QXQ);&4& can be expanded in
terms of the generators Q„:

-2 2 4
(exe).;&"=z

Pp P 0 P
Q, 'Q.'. (IV8.18)

For p, =0, we have

(exe) .""
(Ig/35)l/se iQ 4 +t 6/( 70)1/s](P iP 4+P iP i)

3X8'"
L(p *—F ')(F,"—F ')

(35)'"
+(F 1'—Fs')(Ft"—F 0')j, (IVB.19)

Ts&&rz IX. Inhomogeneous forms involving the operators in (IVA.35) for the case (&1'/4') = (X/4).

Z (lXQ)4&'& (lxQ);&" &.(QXQ) f&D' (QXQ) "' & (QXQ), &'& (QXQ);&4&

24—E'—8(n,1+n 1)
5

1
(44np+Snl+Sn 1) (44np+Snl+5'n —1 44}

28

1407 75
(n1+n-1)+—4 (n+2) —E']

28 28

576 144
(f' np) + —4(/4+—2) E'j—

7

3456
(n1+n 1)

35

32 72—Q (/4+2) —Epg ——E'
5 5

3 1728 36
(44np+Snl+Sn 1+16$)(44np+Snr+Sn 1 44) —— (p—np) ——/4(/4+2)

56 35 7
(F10H)

(F 400H)

p'-44}

(P411H)

&F4-4)

32 8
+—(p—np) ——(n1+n 1}

5 5

—()+12E—8)
5

4
—(5—12E—8)
5

2139 645 1878
(nr+n 1)+ / (/+2)+ E'

28 56 56

3
(452np—+—185ni+185n 1 1220+25—E)

14

3
(452np—+—185n1+185n 1 1220—25—E)

14

180 2232
+ E'+ (n1+n 1)

7 35

288
(12P+5X+8~

35

288
(12&—SE+8)

35

(pllppH)
576 936—32(P—np+/4++2) —2E } (f —np)+72/4(/4+2) — E

7 7

576—P9 (P—np)+7/4(/4+2) —12ED)
35

&p 44111H)

&p4 4)

(P 44)

—96()+1—E)

-96(S+1+E)

432
— (4q+3 —3E)

7

432
(4]+3+3E)

7

1728
(9f+5—SE)

35

1728
(9p+ 5-//-SE)

35

(+441111H )
0

(P4a 4-4)

(&-4-40000H)
0

(F 4 444)

13 824

13,824

35
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T1usLz IX (coe/Azssed)

(F 455H&

(&-44&

(+411')

(ts 4)

(~1155J7&

(~45111+)

(~4-4&

(+-41555+)

(~-44)

(P441111+)

(P44 4 4)

(&-4-455557I)

(~-4-444&

ZL; —23L L
i)i

56np +148ep(es+e 1)—148eo+99(n1+e 1)—

2—59(e1+n 1)+9LSs(p+2) K—'5

233
801&o'— (e1+n 1)'+12no(e1+n 1)+169(n1+n 1)

2

57——
44 (44+2) +41E'—172np

2

2t52 e+p127( n+sn 1)—9K—208j

2L52ep+127(n1+n 5)+9E—208j

&92«' —&o)+&28~(~+2) —&92&'

192(3p—E+1)

768

768

E=RP+tlI+Q

4np+6(e1+n 1)

p=eP —nI —n I

(Z I;5)o

(6'—2n 5)'+8np

4soL8np+12 (e1+e 1) —2g

8L8ep+12(es+e 1)—2j

8l 8no+12 (n,+n, ) 2j-

32L2$5 —2ep+&4(44+ 2) —Eoj

384

where the Q„'s are expressed in terms of the F&& accord-
ing to (IIB.1). A product of two one-body operators
which operate on the same particle can be reduced by
writing out the expression in terms of the x's. For
example,

Fi'F 44('AyoE)

= (x 1('&x ('&+v2xo. t('&x ('&+&2X «')x, ('))

&4,'(X 1&"&Xs")+&2X ot('&Xo. &'&

+%2xo &('&Xo('&) ~)ils E). (IVB.20)'
Kith the aid of (IVB.5), the right side of (IVB.20)
reduces to

(X t(4&X (4)X $(i)X (4)+~X,t(4)x 5(4)x Zt(4)X&(4)

+v2xot('&xo &'&x, &(4&xs('&)
~
X&soE). (IVB.21)

Now, X "'X&&"'~)(poE)=0 because particle 5 cannot be
in two states at the same time. Commuting the second
operator in each term of (IVB.21) to the right, we then
obtain:

F4'F 4 ~)sJ45E)
—(x «4)/x (4) x t(4)jx (4)

+v2X .1(')(x,('& x «'& jx ('&

ya2x, t('&L-X,, ('& x, t( jx, ) ~) „E)
= x, t('&x, ( & ~)(poE)=n, ( & ~)(poE). (IVB.22)

Equivalently, one could simply multiply the matrices
for F4' and F 4".

0
1

2
pf

0 1 —1 2 0' —2
0

X—1
2

0 1 —1 2 0' —2
0
1

2
/

—2

0 1 —1 2 0' —2

= (ns+2no+2no. ) =n),
where the last equality again follows from (IVB.S).
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The techniques illustrated above can be used to
evaluate all inhomogeneous forms involving the opera-
tors in (IVA.35) for the case (X',p)=P. ,p), e2=e 2

=eo =0. These forms are given in Table IX. Terms
with (X'p, ')A(Xp) or with sos, must be handled by
means of special techniques which are developed in a
later paper as various cases arise.

V. SPIN

In the preceding section, we have been dealing with
states with given space symmetry 4f]. There exist in
general several such states, corresponding to the dif-
ferent members of the irreducible representation labeled
by I fj. If we take certain linear combinations of these
functions multiplied by appropriate spin functions, we
can form totally antisymmetric wave functions. The
new wave functions are characterized by the above
quantum numbers and in addition by 5, the spin quan-
tum number, and by 0-, the s component of S. We now
consider the totally antisymmetric functions:

C(Ijj()p,)Keh. :So),

and the new representation

@~~~ s=P~~C ([—f](hp)Ks, ,„:So),

where P~J now projects out the part of 4 with total
angular momentum J and changes the eigenvalue of
J, toM.

A. The (JLS,M) Representation

In analogy with the notation of Secs. III and IV, we
designate the state C([ff(Xy)Ks: So) as IXpsK0).
We erst show that a complete set can be formed if one
takes all states P~~I) ysKo)with E+'0.&~0.

'

Consider a product of an orbital function fx~ with
fixed. L, and E, and spin function X,8 with Axed 5 and 0.
We wish to evaluate

or, equivalently,

P Jp res
-L 5 J

K 0 K+0 x'" K' O' M

Q s'Lsfx xa
LS

(VA.6)

But any arbitrary function of space and spin with
E, r, good quantum numbers can be written in the
form (VA.6). Hence, we conclude that

7~~I)ys, K, —0)=-
IiML, M8 —Q —0 —Q—0

5 J
XPw 'Pu '

M», M8 M

X
I Xps, K) —0.). (V—A.7)

Considering the right side of (VA. 7), we note that

P~s Imps, —K, o)=P~~S —IXy. s, —K, a), (VA.S)

since S is a good quantum number for the state
I) ps, K, —0). W—ith the aid of Elliott's relation
(IIIC.26), we then have

P~~'P~s'I ) ~s —K —~)
1)~'+"Psri'Psr '

I
~&«0). (VA.9)

Now

XPx P ~ fx' &. s, (VA.S)

where we have substituted (VA.2) into (VA.4). In
fact, if a sum is carried out over L, S as well as over
K', 0', we have an operator which projects J out of
any linear combination

PJQ LX s

Clearly, we can construct eigenstates of J:
JI S

E 0 p

(VA. 1)
—( ) JS+J- (VA. 10)

K 0 K+0.
Substuting (VA.9) and (VA. 10) on the right side of
(VA.7), we see that

Then
-L 5 J

LX S @ JLS
K 0 p,

(VA.3)
Imps~

—K, —0')

( 1)J—s+x+y
&err

jets

K 0 E+0

Pry IX s JLS%+a )

Applying the projection operators PJ and P~J to
(VA.3) yields

XPMz, PMs I) psE~)
M», ~8

J
Psr'fx'&. s= JLS

K a E+0

(VA.4) 1)z s+x+"P~z
I Xp«~). -

(VA. 11)

It is, thus, clear that no new states are formed by chang-
ing the sign of K+0.. From (VA.11), we have the
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TABLE X. Allowed values of E and J for given S= 1., P p) = (8,4).

~=0 ('
5, 6, 7 7, 8, 93, 4, 5123

10

5, 6, 7 7, 8, 96, 7, 83, 4, 52, 3, 4 4, 5, 6

7

8, 9, 10123 9, 10, 11

10

6, 7, 85, 6, 7 7, 8, 94) 5, 6 8, 9, 10 9, 10, 11 10, 11, 12 11 12 13

relation:

PsI~ l )Ip», 0,0)= (—1)~ s+"+&Pje~ l) p», 0,0). (UA. 12)

number of states. That these states are linearly inde-
pendent can be shown using methods similar to those
employed by Elliott to demonstrate the linear inde-
pendence of the states Ps» C([f]()p)K» ).Hence,

l Xp»,0,0) contains only even or only odd angular
momenta, depending on whether (—1)"+& s is even
or odd.

In our new representation, then, K+o &~r is the
"band" quantum number corresponding to the pro-
jection of J on the body-fixed axis. The quantum
number, r, assumes all values consistent with E+a&0
where

TABLE XI. States listed in Table X regrouped into
bands labeled by E, 0, and v.

3 5 7
3 4 5 6 7 8 9
3 4 5 6 7 8 9
3 4 5 6 7 8 9 10
3 4 5 6 7 8 9 10 11
3 4 5 6 7 8 9 10 11

4 5 6 7 8 9 10 11 12
5 6 7 8 9 10 11 12 13

6 6 8 7 8 7 7 5 4 2 1

0 0
0 1
2 —1
2 0
2 1
4
4 0
4 1

Total

0 1
1 1 2
1 1 2
2 2
3
3

5

3 3

WE=min()b, ,p), min(X, p) —2 0 or 1,

+a=5, s—1, , 0 or 1/2.

As an example of the (JLS,M) representation, consider
a triplet band with (X,p)=(8,4), 5=1. The possible
values of J=L+S for each of the allowed E's are
listed in Table X. From Table X, we see that there
are 67 states with J ranging from 1 to 13. The states
are grouped into bands characterized by the quantum
number ~, as shown in Table XI. The number of
states of given J is shown in the last line of Table X.
If we assume J= r, r+1, , r+max(X, p), with the re-
striction that J must be odd or even if (—1)"+& s
equals —or + for E=a =0, we arrive a't the correct

The projection relations for the functions l) p», K,o)
are constructed in the same manner as those for the
spin-independent, case. We shall need the matrix ele-
ments of S~.
() p»K, a+1lS, l) p»K, a)

=(Xp»K, a lS l) p»E, a.+1)
=[(S+a+1)(5 a)]"—(VA..13)

Then, for I,', we have

Psr~L'l) p»K, a)
=Psr (J' 2J S+S') l) peE a)—=[J(J+1)+S(S+1)]Psr lip»K o) 2P~ [Jpso—+J+S /2+ J S+/2]l Xp»E)o)
=[J(J+1)+$(S+1) 2(K+rr) o']Ps»~

l
) p»K—,o')

[(5+g) (5 a+1)—(I E a+—1)(J+K+—a))—'"Psr~
l
)p»K, a—1)

—[(5—a) (5+a+1)(J+E+a+1)(J—E—a)]'~'Psr
l
Xp»E) a'+1). (VA. 14)

The projection relations for the spin-dependent case are given in Table XII. Again the time-reversal symmetry
is apparent. We note that S + —S and l) p», K-o) —+ e'slXpe, —E—a) under time reversal, where p is a real phase
depending on S.

Similarly,

P~~L+L& l) p»K, a)=Ps»'(J~ S+)(J~ $~—)& l) p»K—,a)
=-', [(p+E) (p,—K'+2)]' '([(J—K—a+2) (J+E+a 1)(J K a+1)—(J+E+o))'r—'Ps»—~

l )pe, E 2,g)—
—2[(5—a)(5+a+1)(J—E—a+1)(J+E+ )]"a'P ~l)spec, E 2, a+1)—

+[(S—g) (5+a+1) (S—a-—1) (5+a+2)]I'P~~ I ) pe, E 2, a+2)), (VA.15)—
Psr L LM~l) p»K, »r)=P~ (J=S )(J S)Apl) p»K,a)—

= &[(p—E)(p+K+2))'"([(I+K+a+2)(J—E—a—1)(J+K+a+ 1)(J—E—a)y 'P~
l
) pe, E+2, a)—2[(5+a) (5 a+1) (J+—E+a+ 1)(I E rr)]"sP~i l )%pe,—E+—2, g —1)

+[(5+a)(S—a+1)($+a 1)($—a)]—~sPsr l)pe E+2, er —2)). (VA. 16)
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TABLE XII. Projection relations including spin.

P~~L4
I E,a)

= {[j(J+1)+S(S+1)—2(E+o)a]'+2(E+o)o+2I J(J+1)—(E+a)')LS($+1)—o']}P~~IE,o)
+2I (E+a) (o —1)+o(E+'o 1)—+1—J(J+1)—. S(S+1))I (8+a) (S—a+1)(j+X+o') (J K—o+—1)')c~P~~ E o —1)
+2L(K+a) (o+1)+o(E+a+1)+1—J(J+1)—$($+1))I (8—o) (S+o+1)(J—K—o) (J+K+o+1))c"Prrc~ X a+1)
+ I (5+K+a) (J E —o+1—)(J+E+o 1)(J—E—a+—2) (S+o 1)—(S o+—2) (S+a) (S—a+1))c"P~~

I E, a —2)
+L(j—K—o) (J+K+o+1)(J E-—o 1) (J—+E+o+2) (S—o —1)(8+a+2) (8 a) (—8+a+1})"P~'r

I K, o+2)
P~~L'L~L+jc.

I Ka) = —',
I (p+Z) (Icc K+2—)]"P~~L'L+L+

I
K 2, o)—

Png~L2L+L+ I E 2, o)—
= —

I (8+a)i($—a+1)]'"I (1+K+a)(I—E—o+1)(J+E+cr 1)(I—E cr+2) (I+E+cr—2) (J E a—+3)—]' aPm
I E 2o-—1}

—
I (8+a+3) (S—o —2) (S+o+2) (S a —1)(S+o+1)(S o) (I+K+a+1)(I E a—)g"'P—w I Z 2o+—3)

+Lj(j+1)+3$($+1)—2 ( +1)—2o (K+ —2)]L(j+K+ ) (J E +1—) (I+—X+a —1)(J K o+—2))—c"P ~IX 2, )—
+f(8+a+1) (S—cr) (J+E+o') (J—E—a+1))cCaI —3J(J+1)—3S(S+1)+(E+o)(5o'+'Z+1)+o'(a' —1))Pm~ I Z —2, o+1)

+I„(8+a+2)(S—o —1)(S+a+1)(S—a))ccaL3J(j+1)+$(S+1)—2(E+o) (2a+E+1))P~ r
I

K'—2, o+2)
P~~L2L LM+IE )a= Ico(p —E)(y+K+2))"'P~~L~L L IX+2, o)
P~'LaL L IK+2, a)

= —L(8—o) (S+o+1)(J—K—o) (J+E+o+1)(J—X—o —1)(J+E+o+2)(J—'K —o —2) (I+K+a+3]' PM I K+2, a+1)
—

I (8—a+3) (S+o—2) (8—o+2) (S+o—1) (S—o+1)(S+o)(J E o+1—)(J—+Z+o))"PM~ I X+2, o —3}
+L(j(j+1)+3$($+1)—2a (o —1)—2o (K+a+2)7$(j X a) (J—+K—+a+1)(I K'a+—1)('I—+K+a+2))ccmPm~

I X+2, o)
+I (S—cr+1) (8+o)(I E o) (I—+Z—+a+1)]"P 3J(j—+1) 3S(5+—1)+(Z+o) (So+E 1)+o—(o+1)]Par I E+2, o —1)

+L($—o+2) (8+o —1)(S—a+1)(S+o))"'ISJ(J+1)+S(J+1) 2(E+o) (2a+—E 1))P~r
I
X+—2, a —2)

P~~L+cIcm
I
Z o) =-'L(p+E —2) (y E+4) (p+K)—(Icc K+2))c"—P~~L+c

I
X 4, o)—

P~~L+'I E 4,o)—
= P(I+E+o) (I E o+1)(—I+—K+a —1)(I—E—o+2) (I+E+o —2) (j'—X—a+3) (I+K+o—3)(J—K—o+4) )ccaPrcr~

I
K
' —4, a)—4I (8+a+1)(S—o) (J+Z+o) (J—E—o'+1)(J+E+o1)(J E '—o+2) (—J+Z—+'o' —2) (J K o+3)] P—M I E—'4, o+1)—

+6/(S+o+2) (S—o —1)(S+o+1)(S—o) (J+E+o)(J Ka+1) (J+K—+'c—r 1)(J K —a+2))craPM—~
I
K—

'
4, a+2}—

—4I (8+a+3) (S—o —2) (S+o+2) (S—o —1)(S+o+1)(S—o) (I+E+o)(J E o+ 1)]—"P~—I K 4i a+3)—
+I.(S+o+4) (S—a —3) (8+o+3) (S o 2) (S+—a+—2) (8 a 1)(S—+o—+1)(8 o))"P~—~

I
K 4, a+4—)

P~~L cIc+Ic+IKa) = 'P(p K 2) (pt+-K/—4)(lc—K)(@+K+—2))"'Pcrr~j 'I K+ 4, IT)

P~~L 4IK+4, a)
=

I (J—K—a) (I+K+a+1)(j E o 1) (j+—E+—o+—2) (j X o —2) (j—+E—+a+3) (j—E—o —3)(I+X+a+4)]"P~r
I E+4,a)—4L($—o+1)(S+'o) (j—K o) (J+E+a+—1)(J E a 1)(J+—E+—a+—2)(J E o —2) (J+E+—a+—3)) aPJrr IX+4, o —1}

+6I (8—o+2) (S+o—1)(S—o+1)(S+o)(I—K—o) (I+K+o+1)(I—E—o —'1) (J+X+o+2))craPM r
I E+4, o —2}

4$($ a—+3)(8—+o 2) (S o—+2) (8—+o 1)(8 o—+1)(8—+o) (J E o) (I+K+—o+—1}g"'P~~
I E+4, a—3}

+P(S o+4) (S+o——3) (S—a+3) (S+o—2) (S o+2) (S—+o—1)(S—o+1)(S+o)]"2Pm~
I K+4, a—4)

B. Matrix Elements of the Spin-Orbit Potential

The spin-orbit operator can be written as

1+.'S ' O'S+'
fi. S' + +.{cS c

2 2

f(F i'+F5')S —'+—(F r,'+Fi')Sp'j-
+lo'So'. (VB.1) F.=Q; F.', S=g;S'. (VB.3)

%e proceed as in Sec. III and consider first

P; 1' S'e([j)(zp)Ke, . :So)
= fa(K,o)+b(K,o)F 5S++C(K,a)F ~S

+d(K,o)F rF4S +e(K,a)F gF 4S+$

&&4 ([jf(Xp)Ke,„.So )+x, (VB.2)
where

TABLE XIII. Homogeneous matrix elements for treating the spin-orbit force.

S F4Fj.

k(K+a)
XI $(S+1)—o (a+1)]

-', Q (Ic+2)—X(E—2)]
XI $($+1)—a (o+1)]

F jS

k(—K+a)
XI 8(8+1)—o (o —1))

ab (~+2)—K(K+2)]
XI:$(8+1)—a(a—1)]

aG (c +2)—K(K+2)]
X I $(8+1) o'(o' 1)]

(K+a+2)
Xkb (c +2)—K(K+2)]
XI.S($+1)—a(a —1)]

F ~F Q

K (u+2) —K(K—2)]
XLS($+1)-a(a+1)]

(—K+a+2)
Xkrp( +2) K(K—2)]—
X I.S(S+1)—o (a+1)]
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The symbol x denotes a sum over states

C'([ f']P'p')E: S' )
with P'7HP$, (X'p')W (lIp), or 5'QS. We note that
g; I' S' operating on C(gj(Xp)Ee,„:Sa.) changes e

by 0 or 3 units and leaves r=E+a unchanged. The
most general operator meeting these two conditions and
leaving [Lff, (Xp), and 5 unchanged is the sum in
brackets on the right of (VB.2).

The coeKcients a(E,o), b(K,a), , e(E,a) are evalu-
ated in the same manner as the corresponding coeK-

cients for the spin-independent case. For the homo-
geneous forms, the relations

SM+= S'—Sp' —Sp,

5~5 = S'—Sp'+Sp,
(VB.4)

eliminate the 5 operator from the problem. The homo-
geneous matrix elements are given in Table XIII.

Finally, we arrive at two sets of simultaneous equa-
tions, one for b(E,a) and e(E,o), the 'o.ther for c(E,o).
and d(E,a):

(E+e -p(p+2) —E'(E—2)-
(),yeKo imp P I'S'ihpE~)= b(E,o)i +e(E,o) )5(5+1)—a (a.+1)j,

(VB.S)
(—E+e+2) -p(p+2) —E(E—2)-

(XpeKo'~SM4Fq g I' ~ S'~XpeEo)= b(E,a)+e(K,o) LS(5+1)—a (v+1)g'
2

E+e) — -p, (p+2) —E(E+2)-
(XpeKo ~5+Fg Q I'S ~XpeEa) C('E. ,—a) ~+d(E,a). LS(5+&)—a(~—&)l,

2
(VB.6)

(E+e+2) p(p+2) K-(K+2)-—
(hpeKo ~S~F 4Fp Q I'S'jhpeKo)= C(K,o)+d(K, a) CS(5+1)—.(.—l)j.

2

In fact, only one set of equations must be solved since

a(E,a)=a( K, —a); b—(—E, a)=c(K,a);—d( K, a)=e(—E,o). — (VB.7)

To see this, apply the time-reversal transformation to Eq. (VB.2) and note that the u(E,o), , e(E,o)are real. .

Relations (VB.7) are also evident from inspection of equations (VB.S) and (VB.6) when it is recognized that

P,peKo )5 Fp Q; I' S')lw, peEa)=(Ape, E, o~S+F—g —P; I" S'(Ape, E, a), ——.

Smg', P;I'S l),p.K )=(lI.pe, —K, aIS+F,F, P;I*—S I),p., —E, —)
(VB.S)

That is, the matrix elements of the time-reversed operators in the time-reversed representation are equal to the
complex conjugates of the original matrix elements.

The equivalence relations for the operators in (VB.2) are quite simple:

i
F pS+ihpeEa. )=— (J $)5+ihpeKo), —

2

i
F &5 IX&eEa')= — (J+ S+)S IX—pe—Ka'), —

2
(VB.9)

F P45 ~zpeK'~)= (J —5—)s~—j,zpeKa),

F gF e5 ~XpeKa)= (J+ 5+)5+A I) p—eE—a). —
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From (VB.9) it follows that

PM'F p+[),I eKo)

—(—[(S+o+1)(S o—)(J+K+o+1)(J K—o—)]"P~~~'ApeK& o+1)—(S' o'—o)—P~~
~
XyeKo)),

V2

PM I' gS ~XpeKo)

1
(—[—(S o+—1)(S+o)(J K —o+—1).(2+K+a)]'"P~~

~

XpeK, o—1)—(S' o'+—o)P~~
~
XpeKo)), .

V2

P 'F,F,S I&,I K )= [—(&+K+2)(&—K)]'"
2

X ([(S+o)(S a+—1)(I+K+a+1)(J K —o)]"—'P~
~
Ape) K+2) 0' 1)

—[(S+a—1)(S—o+2)(S+o)($—o'+1)]' P~ ~Ape, E+2, o —2)},

P,~~P,P 4S+
~
gpeKo) = — [(p K+2) (p—+K)]"

2

&({[(S—a) (S+a+1)(J E o+ 1—) (J+—K+o)]' 'P~
~ Ape K—2, a+1)

[(S a—1)(—S+—o+2) (S o) (S+—o+1)]"P~~I~pe, E 2, o+2))—

Using the expression (VB.1) for P; 1' S', the in-
homogeneous matrix elements on the left of (VB.S)
and (VB.6) are easily evaluated by the methods dis-
cussed in Sec. IV. Again, for matrix elements between
states of different ()p) symmetry, special operators
must be developed which generate excited con6gura-
tions from the ground state. Examples are given in the
next paper.

C. Spin-Dependent Two-Body Force

The remaining type of operator of interest has the
form (oq o2) V(r»), where V(r») may contain a space-
exchange component. In order to handle such opera-
tors, we need to consider tensors which combine space
and spin; for example:

E E
(SXg i, (SXL)iqi' kgi

A total of 20 matrix elements is required to define the
spin-dependent two-body Hamiltonian for the sd shell.

We might think of these as comprising 10 singlet and
10 triplet terms. The detailed tables for the spin-
dependent matrix elements are given elsewhere.
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