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a more coherent picture of these low-energy cross
sections.

With the electron —rare gas atom scattering lengths
apparently well known, it is tempting to offer a simple
model from which they would follow. In a model
previously suggested by Kivel, "the effect of the closed
electron shells on the scattering was taken to vanish
exactly, with the scattering length being determined
entirely by the polarization potential. This potential
was further assumed to start at a very large distance
from the atom. This picture is clearly too simple since
it predicts a negative scattering length for all the rare
gases, in contradiction to the He and Ne results. (At
finite energies it is also inconsistent with the Ramsauer-
Townsend effect. ) However, if the model is modified so
that there is a small positive scattering length of
magnitude 1 to 2 ao contributed by the closed shells in

"B.Kivel, Phys. Rev. 116, 1484 (1959).

each case, while the polarization potential begins at a
distance of 3 to 4 ao (as it does effectively for hydrogen),
then all the scattering lengths are predicted accurately.
The contribution from the closed shells might then be
interpreted as an effectively repulsive core, whose small
radius may be thought of as an effective atomic radius.

Finally, there are a number of things which have
been left undone, such as a more serious analysis of the
drift velocity data, and a detailed study of the differ-
ential cross sections.
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Previous calculations concerning the ground state of two-electron atoms, involving Ritz-Hylleraas expan-
sions with half-integral powers, are continued through expansions involving 31 parameters. As far as can be
judged from a comparison of the energies with those obtained with other expansions, the results continue
to be favorable. Thus, already with 18 parameters, the computed energies for He and 0 vII di6'er from the
best published values by 2 and 0.3 parts per million, respectively. Even better results are obtained for He
with expansions involving both half-integral and negative powers. A few initial results of calculations for
the excited state 2 'S are also presented.

l. INTRODUCTION

HE ground-state solution of the nonrelativistic
Schrodinger equation for two-electron atoms has

recently received considerable attention. Two problems
are of immediate interest: the determination of the
energy eigenvalue (of the nonrelativistic Hamiltonian
for helium) with an accuracy of better than one part
per million (ppm), and the determination of the analytic
behavior of the corresponding eigenfunction near the
singularities of the wave equation.

The significance of having a solution of the first
problem, in view of the recent very careful relevant
measurements of Herzberg, ' is well known. ' In all likeli-

*This work was supported in part by the U. S. Atomic Energy
Commission.

~ G. Herzberg, Proc. Roy. Soc. (London) A248, 309 (1958).
2 For its bearing on the important question of a con6rmation of

the computed 6rst-order radiative corrections in this two-body
problem, see, e.g., reference 1.

hood, the recent very extensive calculational results3
already provide the requisite solution. There still re-
mains a shadow of doubt because the rigorously calcu-
lated lower bound of the energy falls short of providing
together with the more precise upper bounds, limits of
the desired accuracy. 4

The second problem is of interest both in connection
with the first problem (quite obviously so), and also in
connection with the search for practically tractable and
reliable approximations to the ground-state eigen-
functions of two-electron atoms that can serve as
standards of comparison in the current attempts to

e T. Kinoshita, Phys. Rev. 105, 1490 (1957); 115, 366 (1959);
C. L. Pekeris, ibid. 112, 1649 (1958);115, 1216 (1959);W. Kolos,
C. C. J. Rothaan, and R. A. Sack, Rev. Mod. Phys. 32, 178
(1960); G. Munschy and P. Pluvinage, J. Phys. Radium 23, 184
(1962); C. Schwartz, Phys. Rev. 128, 1146 (1962).

4 It is possible, though, to arrive at an adequate lower bound on
the basis of reasoning, which, while falling short of absolute rigor,
can be taken to ossess a high degree of credibility /Bull. Am.
Phys. Soc. 5, 65 1960)g.
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6nd methods of atomic wave function approximation for
the two-electron case admitting of extension to atoms
with many electrons. ' Rigorous analytic results on this
problem have been slow in forthcoming. Interesting
attempts have been made long ago by Bartlett' and
more recently by Pluvinage' and by Fock. ' The analysis
in these publications is however only of a formal char-
acter. An important beginning, though, in a rigorous
analytic approach has been made recently by Kato. '
His results are, however, as yet of limited scope.

It is owing to the present status of the two problems
in question that further exploration of a purely compu-
tational character in this field appears to be still justified.
It is this consideration which prompted a resumption
of the computational work involving Hylleraas expan-
sions with half-integral exponents. "If such expansions
continue to be relatively successful as the number of
terms is increased, they may possibly lead to improved
convergence in the high-precision approximations. "At
the same time, these investigations could be of some sug-
gestive value in the purely theoretical analysis of our
problem. A possible illustration of this point is provided
by our results with expansions involving mixed negative
and half-integral exponents (Sec.3).It appeared of some
interest to examine also the effectiveness of the sug-
gested expansions in determining the energies for the
excited state 2 '5. Initial results for He and Li Iz are
discussed in Sec. 5.

2. EXPANSIONS INVOLVING POSITIVE
HALF-INTEGRAL POWERS. Z=2

The new results involving half-integral exponents
are presented in Table I. These were obtained with the
aid of a double-precision program for computing deter-
minants on the IBM 650. Since the eigenvalues are
already closely known, a small number of linear inter-
polations is sufhcient to insure the desired accuracy in
the solution. The computational cost in determining
the energies is thus relatively small. Finding the as-
sociated eigenfunctions, however, entails an added com-
puter program and increased cost, and the work was
therefore not undertaken at this time.

'See, e.g., L. C. Green, S. Matsushima, C. Stephens, et al. ,
Phys. Rev. 112, 1187 (1958); C. C. J. Roothaan and A. W.
Weiss, Rev. Mod. Phys. 32, 194 (1960);A. W. Weiss, Phys. Rev.
122, 1826 (1961);and the references given in these papers.

s J. H. Bartlett, Phys. Rev. 51, 661 (1937).This work is based
on earlier investigations of T. H. Gronwall, Ann. Math. BB, 279
(1932);Phys. Rev. Sl, 655 (1937).' P. Pluvinage, I. Phys. Radium 16, 675 (1955). Much of this
work has been done in collaboration with G. Munschy. See, e.g.,
Munschy, thesis, University of Strasbourg, 1958 (unpublished)
and the references contained in it. For a detailed discussion of the
correlation between the theoretical ideas (including the rigorous
results of Kato, reference 9) and calculational results, see Munschy
and Pluvinage, reference 3.

V. Fock, Izv. Akad. Nauk S.S.S.R., Ser. Fix. 18, 161 (1954).' T. Kato, Comm. Pure Appl. Math. 10, 151 (1957).IH. M. Schwartz, Phys. Rev. 120, 483 (1960).This paper will
be referred to as A.

"Such expectation appears to be now confirmed, at least in
part, by the published results of C. Schwartz (reference 3).

TmLE I. Energies corresponding to approximate solutions of
the nonrelativistic Schrodinger equation for He, of the form
e s&"~+"»~'Z Ci~„(ri+rm)'~'(ri-rs)'~ris"~' with non-negative in-
tegral l, m, e.

Item

1
2
3

5
6
7
8
9

10

Number of (l,ns, n)
parameters set

18 1
18 1
18 1
18 1
18 2
24 3
24 3
24 4
31 5
31 6
31 6

3.5
3.7
3.75
3.8
3.75
3.5
3.75
3.75
3.75
3.75
3.7

—Z (a.u.)

2.9037148
2.9037187
2.9037190
2.9037189
2.9037194
2.9037192
2.9037204
2.9037206
2.90372159
2.90372158
2.90372144

i=0001 01 000002 3 4 1 2 2 4
aSet1: m=0 0 1 0 1 1 0 0 1 1 0 0 0 0 0 0 1 0.

'„n =0 2 0 0 1 0 3 4 2 3 6 0 0 0 2 2 0 2

Set 2 =set 1 with the exponent triplet (l,m, 7g) =(1,0,0) replaced by (6,0,0).
Set 3 =set 1 together with the triplets (0,0,5), (2,0,3), (0,1,4), (1,0,4),
(0,0,8), (2,1,4). Set 4=set 2 together with the triplets (3,1,0), (0,1,4),
(0,0,8), (2,0,6), (4,0,4), (2,0,8). Set 5 =set 3 together with the triplets
(3,1,0), (3,0,2), (4,1,2), (6,0,0), (4 0,4), (2,0,6), (2,0,8). Set 6 =set 5 with
(1,0,0) replaced by (0,1,6).

All the expansions included in Tables I, II, and III
correspond to functions which yield a finite value of
(B'), the expectation value of the square of our Hamil-
tonian. Comparison of the items 1—4 of Table I with
the energy results discussed in Sec. 2 of A, confirms the
expectation that the initial advantage shown by expan-
sions associated with finite (B ) over corresponding
expansions for which (EP) diverges, does not persist
as the number of terms increases. All the functions
considered in A and some of the expansions referred to
here, contain a term with the factor (ri+rs)'~' which
would lead therefore to a singularity in derivatives at
r1——r2=0. This singularity does not prevent of course
the expansions from serving as proper Ritz functions
for the approximate determination of the energy eigen-
value. But, as in the case of the nonconvergence of the
integral (H'), the question arises if the possession of
this singularity has an eBect on the rapidity of conver-
gence of the Ritz sequence as judged by the associated
energy eigenvalues. Comparison of the results in entries
3 and 5 as well as 9 and 10 of Table I does not disclose
any such eR'ect.

It had been conjectured in A that small variation in
the scaling factor k would have negligible eBect on the
energy eigenvalues as the number of terms in the
expansions becomes relatively large. But a test of this
conjecture proved it not wholly tenable, as is shown by
the results in entries 1—4, 6—7, and 10—11 of Table I.
The value k=3.75 appears to be definitely better, even
if only to a small extent, than the value 4=3.5 adopted
in A.

Because of the absence of any unambiguous strictly
analytic criteria for the choice of the exponents in the
expansions, it is not possible to be sure if the one made
is to any degree an optimum one. In order to have some
indication on this question, two diferent sets of expo-
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nents were used for a 24-term expansion, with results
shown in entries '1 and 8 of Table I.

such expansions appears to be clearly demonstrated by
these results.

TmLE II. Energies corresponding to approximate solutions of
the nonrelativistic Schrodinger equation for He, of the form
s "&"~+"»/' Z C/~„(r~+rs)'/'(r, —r2)' r&2"/' with integral l, m, /s

(positive and negative).

Item
Number of

parameters

31
31
28
31
31
31
31
31

(l,m, n.)
set'

3.71
3.71
3.75
3.75
3.75
3.7
3.7
3.6

E(a.u.)—
2.90372128
2.90372127
2.9037214
2.9037220
2.90372214
2.90372216
2.90372217
2.90372216

i=02 04200642 02 0004408 0
aSeti: m=0000001000011010120 0

+=0 0 2 0 2 4 0 0 2 4 6 0 2 8 4 4 0 0 0 10

l = 0 2 —2 —2 -2 —4 —2 —4 —2 —2 —2
Set 1: m= 1 1 0 1 0 0 1 1 0 1 0.e= —2 —2 4 0 6 8 2 4 8 4 10

Set 2 =set 1 with the exponential triplets (l,m, m) =(0, 1, —2), (2, 1, —2)
replaced by (0,1,6), ( —2, 0, 12). Set 3 =set 3 of Table I together with

~

~

~

~ ~

~

~

~ ~

~

~

~

-2, 0, 4), ( —2, 1, 2), ( —2, 1, 0), (-2, 0, 6). Set 4 =set 3 together with
3,1,0), (6,0,0), (0,1,6). Set 5 =set 4 with (0,0,5), (2,1,4) replaced by

( —4, 0, 8), ( —4, 1, 4). Set 6 =set 4 with the triplets (1,0,0), (2,0,3), (2, 1,4),
(0,1,6) replaced by ( —4, 0, 8), ( —4, 1, 4), (0,0,7), (4,1,0),

3. EXPANSIONS INCLUDING NEGATIVE POWERS

In order to be able to judge if the fractional-power
expansions still retain any superiority as the number of
parameters increases through 31, it is necessary to have
suitable comparison functions. No published results ap-
pear to be available for 31 parameters. However, there
exists one function involving nonnegative integral ex-
ponents and 29 parameters, "and the associated energy
value, —2.9037201 a.u. (atomic units), compares with
the 24-parameter value listed in item 1 of Table I. It
appeared, therefore, of interest to 6nd the energies
yielded by optimum 31-parameter expansions of the
Kinoshita type, ' using the ratios of the coeS.cients of
the expansions as computed by Kinoshita as a partial
criterion in the selection of the exponents. The results
are given in entries 1 and 2 of Table II. When these are

4 RESULTS FOR ATOMIC NUMBER Z&2

Initial results of calculations for Z) 2, as discussed
in Sec. 4 of A, appeared to indicate that with increasing
Z there is also some enhancement in the relative superi-
ority, as far as the associated energy eigenvalues are
concerned, of expansions involving fractional powers as
compared with other expansions with the same number
of terms. The interest in this question lies partly in
the possibility that a clear indication on the above be-
havior relative to Z might have some suggestive value
for the purely analytical theory of the behavior of the
ground-state eigenfunctions of our Hamiltonian. But,
of course, these results have also independent interest.

The entries in Table III represent only a small num-
ber of results on this topic, so that only limited conclu-
sions can be drawn at this time. Nevertheless, they do
appear to uphold the indication noted in Sec. 4 of A.
Thus, the energy value in the third entry of Table III
for Z=3, associated with a Ritz-Hylleraas expansion
involving only 24 parameters, divers from the corre-
sponding 203-parameter value of Pekeris, ' —7.2799133
a.u. , by less than 2 ppm; and for Z= 8, already the 18-
parameter value given in entry 7 differs from the corre-
sponding best value of Pekeris, —59.156595 a.u. , by
only about 0.3 ppm.

Comparing the results given in entries 11 and 12 of
Table III, we see that in this case there is little indica-
tion of any sensible effect in the inclusion of negative
exponents in the expansion. Further calculational experi-
mentation on this point for Z& 2 would, therefore, be
worth doing only when there is a need for approxima-
tions to the wave functions in question which are of
sufficiently high precision (as judged by the associated
energies) while involving a relatively moderate number
of parameters. On the other hand, the results of Table

TmLE III. Energies corresponding to approximate solutions of
the nonrelativistic Schrodinger equation for Li xr and 0 viz, of the
form s—s(ry+rg)/s g C& (r +&&)//s(& &s)sar&sn/s

compared with the energies in entries 9 or 10 of Table I,
it is seen that although the latter energies are indeed
smaller than the former, the difference is relatively
small, and no de6nite conclusion can be drawn from
this comparison. "

Taking into consideration the formal theoretical re-
sults of Bartlett' and of Fock, ~ as well as the computa-
tional results of Hylleraas and Midtdal, " it suggested
itself to explore the inclusion of negative exponents in
our expansions. The results of a few trial computations
are given in items 3—8 of Table II. The effectiveness of

Item

1
2
3

5
6
7
8
9

10
11
12

Number of (l,m, /s)
Z parameters set'

18
24
24
31
31
18
18
18
24
31
31
31

5
47
5
47
5

15.5
16
16.5
16
15.5
16
15.5

—E (a.u.)

7.2798874
7.2798963
7.2799020
7.2799020
7.2799055

59.1655772
59.1565789
59.1565780
59.1565794
59.1565798
59.1565803
59.1565809

"U.
¹ Demlmv, M. G. Neigauz, and R. V. Seniukov, Opt. i

Spectroscopiya 4, '/09 (1958).
"However, cf. footnote 11."E. A. Hylleraas and J. Midtdal, Phys. Rev. 109, 1013 (1958).

a Set 1 =set 1 of Table I. Set 2 =set 3 of Table I. Set 3 =set 5 of Table
I. Set 4 =set 1 of Table I with (1,0,0) replaced by (0,1,6). Set 5 =set 3 of
Table I with (1,0,0) replaced by (0,1,6). Set 6 =set 6 oi Table I. Set 7 =set
5 of Table II.
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III do point to a small but sensible effect resulting from
the choice of k. But in this case, too, attempts to arrive
at an optimum choice, cannot be considered to be suf-
6ciently warranted at present.

5 SOME RESULTS FOR THE EXCITED STATE 2 'S

In principle, it is a very simple matter to 6nd approxi-
mations to the nonrelativistic energies for the erst
excited singlet S states of two-electron atomic systems
with the aid of the same computer program and by the
same method as employed for ending their ground-state
energies. In practice, as is well known, such a method
can be expected to be relatively ine%cient on both
physical and mathematical grounds. It may nevertheless
be of possible interest to have at least some initial indi-
cation as to how the fractional-power expansions com-
pare with the integral-power expansions, also with
respect to the evaluation of the 6rst excited singlet S
state. The following few results were obtained with this
possibility in mind.

The computations were made only through expan-
sions with 18 parameters and only for Z=2 and Z=3,
where comparison could be made with available calcula-
tions of high precision. "For Z=2, the expansion 2 of
Table I was employed with the following results.

3.5 3 2.75

E(in atomic uni—ts) = 2.078 2.092 2.075

By comparison, an 18-parameter expansion involving
positive integral powers gave for k =3 the value
E= —2.066 a.u. For Z=3, and 18 parameters, the
eigenvalues obtained for a set of k ranging from 4 to 5
showed little variation. The lowest value, —4.95 a.u. ,
was obtained for k=4.7. This differs by about 2% from
the best available calculational result, " compared to
the corresponding difference for Z= 2 of about 3%.

In order to obtain some indication of the rate of con-
vergence at this stage of our process, the energy for
Z= 3 was computed also with 11 parameters, employing
the expansion given in Table II of A and taking 4=4.7.
The result, —4.88 a.u. , is about 1% larger than the
corresponding 18-parameter energy, so that at least in
this case and at this stage the rate of convergence ap-
pears to be better than would be expected. However,
preliminary work involving expansions with larger
parameter numbers does seem to point to the expected
eventual drastic slowing down in the rate of the con-
vergence. This expectation is also con6.rmed by the
relevant results in the recent paper of Munschy and
Pluvinage. '

"C.L. Pekeris, Phys. Rev. 126, 143, 1470 (1962l.

The above 11-parameter value can also serve as
additional partial evidence that in the case of the
excited 2 'S state as well, the use of the fractional-power
expansions appears to be advantageous. This value dif-
fers by about 3% from the best available value, "com-
pared with a corresponding difference of about 6% for
the result in the case Z= 2 obtained by Munschy and
Pluvinage' with 13 parameters.

0. DISCUSSION

As stated in the introduction, a principal objective
of the present results is to add to the computational
data that could be useful in the study of the analytical
problem relating to the structure of the exact wave
functions in question. Presumably when that solution
becomes available the means will be at hand for con-
structing good approximations with a minimum number
of parameters and with minimum eGort. But in the
meantime the present cumbersome and costly approach
seems unavoidable.

In this connection it is worth calling attention to the
following instances in the presently available computa-
tional data which appear rather unexpected. The value,
—2.9037223 a.u. , which Kinoshita' obtains with his 34-
parameter function is considerably larger, relatively
speaking, than the '31-parameter values' given in items
1 and 2 of Table II. Such a relative increase, obtained
with the addition of only three parameters at this stage
of the approximation, appears surprising. For this rea-
son, these calculations have been especially carefully
checked and rechecked. "Even more surprising are the
results of Munschy and Pluvinage' concerning their two
42-parameter functions with the remarkably separated
associated energies, —2.90372311and —2.90372421 a.u.
In any possible further numerical study of the kind
reported here it may be worth examining the question
raised by these instances.
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completely ruled out in the absence of a reliable independent check.
Such a check was available for the results presented in A in the
"output" energy values (which can be computed when the as-
sociated eigenfunctions are known).


