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Anisotropic Electron Distribution and the dc and Microwave Avalanche
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The Boltzmann transport equation is solved taking into account vibrational, dissociation, excitation,
and ionization losses in hydrogen at E/p pbetween 40 and 450 V/cm-mm Hg. No approximations are made
regarding the angular dependence oi the electron distribution function. At the high E/Pp the distribution
function is suKciently anisotropic that it cannot be represented by a two-term expansion in spherical har-
monics. It is shown that the concept of "eGective" field in microwave breakdown remains valid in the pres-
ence of anisotropies provided the circular frequency is much larger than the electron growth rate. The tem-
poral growth rate of the electron density is calculated and compared with the experiments of Rose and of
Cottingham and Buchsbaum. The sects of anisotropy on the diffusion coefficient and on the microwave
breakdown equation are discussed.

I. INTRODUCTION

HE exponential growth of electron density in the
microwave breakdown of hydrogen gas has been

studied by Cottingham and Buchsbaum' under condi-
tions which allow the gas to be regarded as being of
in6nite spatial extent. They obtained values of the
growth rate P, $E=Xp exp(Pt)], for a range of E,/pp,
the ratio of the effective electric field intensity to the
pressure, ' from 36 to 200 V/cm-mm Hg. The conditions
of the experiment facilitate comparison of the results
with the theory of Allis and Brown' and with the theory
of Pearlstein and Stuart. ' In both cases the agreement
is poor. The microwave measurements do agree well
with dc measurements by Rose' in which the Townsend-
alpha coefficient (exponential spatial growth rather than
temporal growth) was observed. The disagreement with
the two theories is to be expected for reasons which will
be apparent immediately; the agreement between the
microwave measurements and the dc measurements has
interesting consequences regarding the validity of the
"effective-field" concept at high E,/pp.

The disagreement with the theory of Allis and Brown
is to be expected because the theory, concerned pri-
marily with low values of E,/pp, contains approxima-
tions which become less valid as E,/pp is raised. One set
of approximations is connected with the energy de-
pendence of the various collision frequencies. Allis and
Brown took these to be linearly increasing functions of
energy. Also, Engelhardt and Phelps have recently con-
cluded that there is an appreciable probability that
low-energy electrons will excite vibrational states of
the hydrogen molecule. In order to obtain agreement
with the microwave breakdown data, Allis and Brown
had to disregard this process in their calculations.

'W. B. Cottingham and S. J. Buchsbaum, preceding paper
LPhys. Rev. 130, 1002 (1963)g.

~ The effective electric Geld intensity 8, represents an equivalent
dc Geld in the plasma. See H. Margenau, Phys. Rev. 69, 508
(1946). See also, reference 3.' W. P. Allis and S. C. Brown, Phys. Rev. 87, 419 (1952).

4 L. D. Pearlstein and G. W. Stuart, Phys. Fluids 4, 1293 (1961).
5 D. J. Rose, Phys. Rev. 104, 273 (1956).
6 A. G. Engelhardt and A. V. Phelps, Bull. Am. Phys. Soc. 7,

637 (1962).

Another approximation in the Allis and Brown theory
is that the angular dependence of the electron distribu-
tion function is described by the erst two terms in the
spherical-harmonics expansion. On the basis of this
approximation, they show that the microwave 6eld may
be replaced by an appropriately defined dc Geld, the
so-called "effective" electric field. Our solution of the
Boltzmann equation for the distribution function indi-
cates that this angular approximation breaks down at
high E/pp, and that the distribution function becomes .

sufficiently anisotropic that it cannot be adequately
described by only two spherical harmonics. One then
wonders whether the effective electric field concept loses
its validity at high E,/pp. The agreement between
Cottingham's microwave measurements and Rose's dc
measurements suggests strongly that in this case, at
least, the effective electric field concept does hold. This
serves to raise the question of whether the distribution
function is really as anisotropic as our calculations
suggest, or, whether the effective 6eld concept is valid
independently of the angular dependence of the
distribution.

Finally, if we assume that the effective electric 6eld
concept is valid, then Cottingham's measurements can
be compared with the theory of Pearlstein and Stuart, 4

which, without use of any angular approximations,
predicts the growth rate for a dc discharge in an infinite
medium. The lack of agreement here suggests that the
Pearlstein-Stuart theory, essentially concerned with
extremely high E//pp contains approximations which
lose their validity at lower values of this parameter. v

The purpose of this paper is threefold. First, we show
that at high E/p thpe distribution function is suK-
ciently anisotropic that it cannot be represented by a
two-term expansion in spherical harmonics. Second, we

prove that the effective field concept is valid even at

7 The main concern of Pearlstein and Stuart was to obtain upper
bounds on the growth rate p as a function of E/p using simple
models amenable to rapid calculations. Their treatment of the
energy loss is compatible with these objectives, and their values
of P certainly lie well above the measured values. In this sense the
experimental result may be cited as support of the Pearlstein and
Stuart theory.
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high 8/ps, that is, in the presence of large anisotropies.
Third, we calculate the growth rates as a function of
E/ps and compare the calculated rates with experiment.
We also point out the tensor nature of the diffusion
coeKcient at high E/ps and the need for modifying the
diffusion-controlled breakdown equation when the dis-
tribution function is highly anisotropic.

The structure of the paper is as follows: In Sec. II we

discuss the data on various collision frequencies which
we use in the theory and the assumptions we make where
data are lacking. Section III contains the derivation of
the equations from which the distribution function and
growth rates are cakulated in the dc avalanche break-
down. Our method here is an extension of the approach
initiated by Stuart and Gerjuoy. ' We obtain a pair of
equations whose simultaneous solution gives the spheri-
cally symmetric part of the distribution function and
the exponential growth rate. From the spherically
symmetric part of the distribution function it is possible
to regain its full angular dependence. In this section we

deviate from the procedure of Gerjuoy and Stuart' by
introducing the inelastic collisions. We repeat many of
the steps of reference 8 because in the derivation of the
effective field in the microwave breakdown (Sec. IV) we

need to establish contact with some of the intermediate
equations of the dc case. Our Anal expression for the
calculation of P differs somewhat from that used by
Stuart and Gerjuoy. Finally, in Sec. V, we present and
discuss results of the detailed calculations using the
data of Sec. II.
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PIG. 1. Electron collision frequencies in H2 vs energy for
vibrational excitation, dissociation, electronic excitation, and
ionization.

s G. W. Stuart and E. Gerjuoy, Phys. Rev. 119, 892 (1960l;
E. Gerjuoy and G. W. Stuart, Phys. Fluids 3, 1008 (1960).

II. BASIC CROSS SECTIONS AND ASSUMPTIONS

I et v., v„v„vq, v;, and v be the elastic, vibration,
excitation, dissociation, ionization, and total collision
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FIG. 2. Total collision frequency v/p vs energy. The solid curve
is from reference 6; the dashed line represents the value 4.8)&10'po
as used in the present work.

frequencies, respectively. They are functions of the
speed C of the electron; but for electron energies above
about 4 eV, the total collision frequency v depends only
weakly on the speed. Hence, we shall take

v= "(C)+~.(C)+~*(C')+v~(~)+"(C) (2.1)

to be a constant, independent of the electron speed and
shall regard v, (C) as being calculated by means of (2.1).
The quantities on the right-hand side of Eq. (2.1) have
recently been determined by Engelhardt and Phelps'
who give sources for their data and express their results
as cross sections for collision. The corresponding
collision frequencies for the last four processes on the
right-hand side of Eq. (2.1) are shown plotted in Fig. 1.
For the total collision frequency we use the value

v=4.8X 10'ps, (2.2)

where ps is the pressure in mm Hg reduced to O'C of
the neutral hydrogen gas. This value of v results in best
agreement between the microwave and dc measure-
ments of the ionization frequency. ' The total collision
frequency v as given by Eq. (2.2) is plotted in Fig. 2,
where it may be compared with the corresponding
frequency of reference 6.

We assume that the scattering is isotropic for each of
the processes listed in Eq. (2.1), but that each process
may have a different eGect on the energy of the colliding
electron. We list here our assumptions about the energy
losses associated with each process and defer till later
the justiication of these assumptions.

(a) Elastic collisions leave the electron energy
unchanged.

(b) Vibrational collisions decrease the electron energy
by E,=0.516 eV, the threshold for vibrational energy
transfer.

(c) Excitation, dissociation, and ionization result
either in maximum energy loss, leaving the electron with
zero energy, or in minimum energy loss, leaving the
electron with its original energy reduced by the thresh-
old energy for the process in question.

(d) Ionizing collisions release another zero-energy
electron into the system.

When there is no need to distinguish between the
various processes which leave an electron with most of
its energy or between the various processes which
return it to zero energy, we shall refer to the vibrational
collisions as elastic, or near elastic, and shall refer to the
remaining three processes as inelastic.
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III. THE dc AVALANCHE BREAKDOWN

In this section, we consider the Boltzmann equation
governing the electron distribution function for the case
of the dc held. Initially, there is a single electron of zero
energy in the system. It accelerates under the inhuence
of the Geld and collides elastically with the gas molecules
until it achieves sufhcient energy to suffer an inelastic
collision which returns it to nearly zero energy. If the in-
elastic collision is an ionizing one, a second electron of zero
energy is released. After the collision, the newly released
electrons continue the cycle of acceleration and collision.
The problem is to calculate the rate of growth of the
total number of electrons in the system and their dis-

tribution in energy and direction.
The history of the electrons in the distribution may

be divided naturally into intervals between successive
inelastic collisions, because in each such period, the
time development of the distribution function of the
electrons released at, or returned to, zero energy is the
same as that of the original electron during the 6rst
acceleration period. This point of view will appear early
in the mathematical description. It is an extension of the
idea contributed by Gerjuoy and Stuart in their theory
of dc breakdown of a gas in which all collisions were
assumed to be elastic. We shall also follow Gerjuoy and
Stuart in performing the angular integration of the
Boltzmann equation so as to obtain an integral equation
for the angular average of the distribution function.
This frees us from the necessity of making approxima-
tions about the angular dependence. Having found the
angular average, we shall be able to compute from it the
angular dependence of the distribution function.

The distribution function f(v, t), which gives the
number of electrons in the velocity element around v at
time t, is governed by the following Boltzmann equation
and initial conditions:

/8 8
~

—+s +v)f(vp,
&at ap,

f(v,p) = dt e »'f(v, t),
—

(3 2)

S(p) = dt e »'S(t), — (3.3)

and making use of the delta function in the elastic
collision terms, the Laplace transform of (3.1) becomes

8
p+ + If(,p)

av,

right of Eq. (3.1a) represents elastic scattering into this
velocity interval from all other velocities with the
same energy. The second term on the right of Eq. (3.1a)
represents scattering into this velocity range by vibra-
tional processes, from all velocities for which the energy
is greater than mv'/2 by an amount E„the threshold for
vibrational excitation. The third term on the right of
Eq. (3.1a) represents the inelastic collisions which

supply electrons at a rate S(t) to the velocity element at
sero energy. This rate of supply is given in (3.1b)—one
for each excitation and dissociation, two for each
ionization. Thus, Eq. (3.1) corresponds to the assump-
tion of "maximum energy loss" on inelastic collision as
discussed in Sec. II. A similar equation can be written
to correspond to the "minimum energy loss" assump-
tion. It can be solved by the same method as that used
for Eq. (3.1). We shall only quote the results of such a
parallel calculation, and will label them "minimum

energy loss."
Neglected in Eq. (3.1a) is the (2m/M) energy loss

on elastic collision, where ns and M are the masses of the
electrons and hydrogen molecules, and the energy loss
due to excitation of rotational degrees of freedom. These
energy losses are indeed negligible over the whole range
of E/pp that we shall consider.

The study of Eq. (3.1) is facilitated by taking its
Laplace transform with respect to time. On defining

dv' f(v', t)L», (c')b(c—C')
AC'

+v, (C') 8 (C—C")j+S(t)8 (C)/(ac') (3.1a)

1 «["(c)f(«,p)+ (c'/c)" (c')f(c'&,p)1
4x

+L1+S(p)j~(c)/4 C' (3 4a)

S(t)= «5».(C)+vd(c)+2»'(C) jf(v t) (3 1b)
C'= (C'+28„/m)'~' v'=C'Q (3.4b)

f(v, o) =~(c)/(4 C') (3.1c)
S(p) = « I: (C)+ (C)+2 '(C)]f(v,p) (3 5)

C"=L(C')' —2E./~j'" (3.1d)

Here, a is the acceleration caused by an electric field
directed towards negative s, and E„ is the fixed vibra-
tional energy loss. The term vf(v, t) on the left-hand side
of Eq. (3.1a) represents the scattering of electrons out
of the velocity interval dv at v. The 6rst term on the

1
p+a +v g(v, p) =-

8m, 4n-
dQ Lv (C)g(CQ p)

y(C/C) v„(C )g(C ~,P)3+&(C)/4~C, (3.6)

We divide Eq. (3.4a) by (1+S) to show that there is a
function g(v, p) satisfying
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which is related to f by means of

f(v,p) =L1+s(p))R(v,p). (3 7)

where
s(P) =&(P)L1—&(P)) ', (3 8)

&(p) = «L"(C)+"(C)+2r'(C))R(v, p) (3.9)

Combining (3.8) and (3.7) gives

f(v P) = L1—&(P)) 'R(v P),

and the Laplace inversion of (3.10) yields

(3.10)

f(v, t) =
27FZ p goo

R(v,P)

1—cV(p)
(3.10a)

The long time behavior of f(v, t) is controlled by the
singularity of the integrand furthest to the right in the
complex p plane. In Appendix A, we show that this
singularity is a simple pole, located at p=P, where

&(P)=1

Further, we show that Eq. (3.11) always has a unique
positive real solution for P and that any solution of
(3.11) for P off the real axis necessarily lies to the left of
the real solution. This means that the long time behavior
of f(v, t) is

f(v, t) "R(v,P)ee', (3.12)

where P is the real positive solution of (3.11).Thus the
experimentally observable exponential growth rate may
be calculated from Eq. (3.11). This is the procedure
followed in reference 8. Actually, Eq. (3.11) is not.
convenient for numerical calculations, partly because
it is implicit in P, and partly because its solution is very
sensitive to the normalization of g. Both drawbacks
may be overcome as follows: Consider the integral of
(3.6) over all velocities. Setting p=p and making use
of (2.1) gives

d LP+ *(c)+ (c)+ '(c))R(,P)=1 (3 13)

Multiplying (3.7) by v +v&+2&; and integrating yields

s(p) =p+s(p))S (p),
OI

which is independent of the normalization of g. Equa-
tion (3.15) is analogous to that used in conventional
calculations of P, that is, in calculations which start
from the steady-state Boltzmann equation in which the
gain in particle density through ionization is exactly
balanced by loss of particles through di6'usion or
attachment (the breakdown equation). If G(v) is the
solution of such a steady-state Boltzmann equation, it
takes place of R(v,P) in (3.15) in a conventional calcula-
tion. Note that G(v) WR(v, 0) but is more closely related
to R(v,P). This is because Eq. (3.6) can be interpreted
as a steady-state equation in which there is a constant
collision frequency for particle loss. This frequency p
must be set equal to p to yield R(v,p). Equating p, the
frequency for particle loss, to P, the exponential growth
rate in our theory is precisely analogous to the assump-
tions of a steady-state breakdown equation; growth of
particle density by ionization is equal to loss due to
diffusion and attachment.

Having found a convenient relation between P and

g, we turn our attention now to the equation determin-
ing R. We rewrite Eq. (3.6) with p set equal to p, as

(P+a(&/(&(&,+r)g(v, P) = rQ(c)/4n. ; (3.16a)

~(c)
Q(C)= + da r, (c)R(Ca,P)

(~c')

~c'
+

~

—r.(C')g (C'Q,P); (3.16b)
kc

r, (C)= & .(C)/&, r„(C)= &, (C)/v. (3.16c)

Equation (3.16) may be integrated readily to give

R(v, P) = dvj& e
—(~a-~& (e+~&«Q$((& ~+(& 2+ie2)»2)

4m.a

A change of variables to spherical coordinates

ez K =~)
v =C sing sing,

v„=C sine cosy,

~,=C cose=Cp,

Now consider Eq. (3.11), using the definition (3.9) R(v, P) = dR e ~(e+"&~ Q(C"), (3.17a)
4vru 0

d L..(c)+,.(c)+2„(c))R(,P) = 1. (3 14)
C"= (C' 2tJ,RC+R')". — (3.17b)

Finally, the angular integration may be performed,

Subtracting these two equations and solving for the
explicit P gives V

gdQ=—
28

dt( dR e "(e+"&' Q(C"). (3.18)
0

P= dv R(v,P)&';(C) dv g(v,P), (3.15)
Using C" rather than p, as a variable of integration in
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Eq. (3.17), yields'

co (C/I
K(C,C")Q(C")dC", (3.19a)

, (C

where

V =u/(p+v),

n=(1+0/) ',

X(x,q)
—=up(P, C).

The equations to be solved become

(3.22c)

(3.22d)

(3.22e)

(o ~
—t

Er(x) = dt,
g

(3.19c)

is the tabulated exponential integral function. It is
convenient to define

v/C ( P+v
K(c,c")=—

I z, l Ic—c-I
2u&C" E u

p+v—~il I
c+c"

I I, (3 19bui'
and

Ly2+ 2g /~~2] i/2

1/r/=1+ dx N(x, r/)r;(yx)

(3.23a)

(3.23b)

dx X(x,~) (3.23c)

x)
&(x,~)=s *+- dy —IL&r(lx —yl) —&i(lx+yl)l2s y&

&&( .(vy)&(y, n)+ (y/y*) .(vy') &(y* ~) &

p(p C) u—ls—(p+v) 0/e

Equations (3.23) must be handled numerically. The
solution may be obtained by iteration. Having chosen a
value for y, one chooses a trial form for X(x,r/) in
(3.23c) and computes ri. The computed r/ and trial form

so that, by use of (3.16b) and (3.20a) the integral of X are used in (3.23a) to obtain an improved form

equation (3.19) can be rewritten as for E. The improved form is then used in (3.23c) again
and the cycle repeated until p converges. ' Having ob-
tained q for the chosen value of y, one obtains via
(3.22d) and (3.22c)

+ dc"K(C,C")Pr,(c")p(P, C")

+ (C/C )r„(C*)p(P, C*)j, (3.20b)

C*=
I
(C")s+2Z./~)(/s. (3.20c)

dC p(P, C)r, (C)

«'(C) = '(C)/v.

dC p(P, C), (3.21a)

(3.21b)

The difference between Eq. (3.20b) and the analogous
equation of reference 8 is the presence of r, and r, in the
integrand. Without these factors, or, in the special case
in which r, were independent of C' and r, were zero, the
solution of Eq. (3.20b) could be obtained using the
methods of reference 8. The factors arise, of course,
because we wish to allow inelastic collisions to remove
electrons from the speed range at C'.

Equations (3.20b) and (3.21) must be solved simul-
taneously. For this purpose, a new set of variables is
useful:

The inhomogeneous term in (3.20b) arises in taking
the limit K(C, C"—& 0) which is implied by the 5(c")
appearing in (3.16b). In terms of p, Eq. (3.15) for P
becomes

P/v= 1/rl —1,

ulv=V/n

(3.24a)

(3.24b)

By choosing other values for y and repeating the
process, a plot of P/v vs u/v may be constructed. Since
p is directly proportional to the pressure, the plot can be
expressed in the conventional units of p/pp vs E/ps.

Finally, having obtained S(x,r/), one evaluates Q(C),
Eq. (3.16b), by means of (3.20a) and (3.22e). From
Q(C), the angular-dependent distribution function may
be obtained by performing the integration indicated in
Eq. (3.17a).

IV. MICROWAVE AVALANCHE BREAKDOWN

We shall now consider the time-dependent solution of
the Boltzmann equation in the presence of a high-
frequency electric field. Our aim is to establish the
validity of the "effective" field concept without recourse
to an expansion of the distribution function in spherical
harmonics. Our technique here will be to separate the
time dependence arising from the harmonic time de-
pendence of the field direction from the slower time
dependence arising from the transfer of energy from the
field to the electrons (and to the gas) and the resulting
growth of the electron density. The functions describing
the slower time dependence will prove to be the

x= C/y,

y= C"/y,

(3.22a)
'It can be shorn that such iterative procedure converges

(3.22b) provided gr, (C) (1;this is obviously so in this problem.
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analogues of the function which appeared in the
dc treatment. We carry the study of the high-fre-
quency case only so far as to establish contact with
such intermediate equations of the previous section
which will allow a proper definition of the "eGective"
field to be made. Our steps and notations duplicate
most of the steps and notations of the previous section
although many operations which previously were per-
formed on Laplace transforms will have to be performed
on the time-dependent functions. We shall set v, and
vq equal to zero in order to simplify the notation; it will
be quite evident, from the close parallel with Sec. III,
just how the equations can be modified to include these
processes. Such modifications do not affect the validity
of any step in this section.

The time-dependent Boltzmann equation and initial
conditions that describe the electron distribution result-
ing from the release of a single zero-energy electron into
an infinite system in the presence of a high-frequency
electric field are

S(&)= dv t:~.(C)+»'(C)7f(v, &), (4 1b)

f(v, t =0)= 8 (C)/(47rC'). (4.1c)

/8
~

—+a cos t +v)g(v, t, i')
&a& ai,

1
dQ v. (C)g(v', t,t'),

4

g(v, t', t') = 8(C)/(4rC').

Then direct substitution shows that

(4 2)

f(v, t) =g(v, t,0)+ dh' g(v, t,t')S(t'). (4.3)

We introduce the Green's function for this equation,
g(v, t,t'), which satisfies

$8 8
i

—+a cos~f +i
~
f(v, t)

&at ai,

1
dQ v. (C')f(v', t)+S(t)8(C)/(4m. C'), (4.1a)

4x

IO

S(j')=N(t, o)+ d&' N(&, &')S(t'),
p

(4.4)

Equation (4.3) is, of course, the analog of Eq. (3.7). We
proceed in much the same way as in Sec. III, multiply-
ing (4.3) by i +2v;, integrating over v and using (4.1b)
to obtain

10
6

E/P =1OI.S
u =&0.04eV N(t, t') = dv $v (C)+2i, (C)7g(v, t, t'). (4.5)

p(c)

)0-11
I

MAXWELLIAN1

2 ' 4 6
SPEED,(C), IN

CM/SEC

QEiv =

S(p) =L1yS(p)7N(p), (4.6)

N(p) = dv L~.(C)+»'(C)7g(v, p) (4 7)

Now suppose that the times t and t' were to enter
Eqs. (4.4) and (4.5) only through their difference,
(t—t'). Then these equations would be exactly ans. logous
to Eqs. (3.8) and (3.9) of Sec. III because on taking
Laplace transforms, Eqs. (4.4) and (4.5) would become

50.1

l 101.5

l
l
l

I

2 4 6 S 10 f2
ELECTRON SPEED, (C), IN CM/SEC

14
X10s

FIG. 3.Electron distribution function p (C) vs electron speed
calculated assuming "minimum energy loss."

The same line of reasoning as was used in Sec. III would
again lead to the conclusion that the density grows
exponentially with a growth rate P determined by

N(P) =1

There would then remain the problem of calculating
S'(p). If we could show that S'(p) corresponds to the
analogous function in the preceding section, the equiva-
lence between the microwave case and the dc case
would be established.

We show in Appendix 8 that under certain conditions
an N(p) can be defined which is analogous to the corre-
sponding function in dc-field case. These conditions
require that the circular frequency M of the microwave
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Geld be larger than the growth rate P and that the
amplitude of the microwave field be not so large that
the first collision is likely to be inelastic. %hen these
conditions are satisfied and the correspondence is
possible, there emerges an e6ective electric field given
by

1 j'
E ——

~2 L1+cps/(p+P)s)r~s

10
8

10
8 LIE '4

L

10

10

p(c) ('

IO

I
I
I
I
I

10-11 I

I

E/P =100.7
u =7.04 eV

which plays the same role in the microwave growth
rate equation as does the dc electric field in Sec. III.

The equivalence between the microwave and dc cases
goes further than the growth rates, of course. We also
show in Appendix 8, that a function g (v,P), which gives
the time dependence of the slowly varying part of
distribution, also exists, and is obtained by averaging
the dc distribution function over the directions in which
the microwave Geld points )Eq. (817)$.

V. RESULTS AND CONCLUSIONS

1010

8
6

10~
8
6

kzoe
100.7

MAXWELLIAN&

0 2 4 6
x 108

SPEED,(C), IN CM/SEC

We have evaluated the distribution function g(v, P)
and the coeKcient p for a range of 8/pp from 40 to
450 V/cm-mm Hg using the two assumptions of
"minimum" and "maximum energy loss" of Sec. II. We
also evaluated the average energy n and the diffusion
coeKcient D.
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The Distribution Function

In Figs. 3 and 4 is plotted the function p(P, C)
t Eq. (3.20a)$ as function of the speed C for various
values of E/pp and for the two assumptions of "mini-
mum" and "maximum energy loss."The function is so
normalized that Jjg p(C)dC=1. The presence of elec-
trons at zero speed in p(C) is, of course, a consequence of
our assumption of the appearance of such electrons as a
result of inelastic collisions. It is interesting to compare
p(C) with a suitably normalized Maxwellian distribu-
tion of the same average energy; such a representative
comparison is shown in the inserts in Figs. 3 and 4 for
an E/pp of 100 V/cm-mm Hg. It can be seen that at
high speeds p(C) falls off less steeply than the Max-
wellian, the effect being more pronounced for the
"maximum-energy-loss" assumption. Thus, an experi-
mental measurement of the dependence of the tail of
the distribution on energy, generally will lead to an
overestimation of the average energy of the distribution.
Such effect was observed by Whitehouse. '

The plots of Fig. 5 depict the anisotropy of distribu-
tion function for various values of E/p and for various
speeds at a given E/p. These are polar plots, the radius
vector from the origin to any point on the curve being
proportional to the number of electrons traveling at the
given speed in the direction that the radius vector
makes with the direction of acceleration. The scale on

"D. R. Whitehouse, Ph.D. dissertation, Department of
Electrical Engineering, Massachusetts Institute of Technology,
1957 (unpublished).

Fro. 4. Electron distribution function p (C) vs electron speed
calculated assuming maximum energy loss."

these plots is relative; for a given E/p the scale is the
same for all speeds but changes for various Z/p's in
order that all plots be of approximately the same
physical size.

The anisotropy has two forms: a "spike" in the direc-
tion of the acceleration and a flattening" of the over-all
distribution into an elliptical shape. The "spike" is
made up of those "fortunate" electrons which have
eluded collisions and which continue to travel along the
direction of the acceleration. The number of electrons
within the "spike" is very small and decreases with
electron speed. The flattening of the distribution is very
pronounced at high E/p and survives even at electron
energies of the order of the excitation and ionization
energies. As expected, it is larger for the "maximum"
than for the "minimum energy loss" assumption. This
pronounced Qattening is the reason for failure of the
spherical harmonics expansion to properly represent the
distribution function with only two terms in the expan-
sion. Since low-speed electrons are more anisotropic
than high-speed electrons, the spherical harmonic
expansion will fail at even lower E/p for calculation of
the transport coeKcients (such as diffusion) which
depend more strongly on low-speed electrons.

The Average Energy and Growth Rate

In Fig. 6 is plotted the growth-rate P as a function of
pp/E, . The experimental results of Rose and of Cotting-
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~ ~

ham are shown as a dashed curve. It is gratifying that
the measure va ues ad 1 f ll between the two calculated
curves.

Not much weight is attached to the fact that the
experimen a ct 1 curve is closer to the "maximum energy

77loss" curve t an o eh t th "minimum energy loss curve.
I t be remembered that the cross sections asIt must e reme

d
'

Sec. II are (with the except&on of the iquote in ec.
tion cross sec ion&~t'

&~ not measured cross sections, u a
d d d b Engelhardt and Phelps by fitting theoreticae uce y
calculations o r1

' t t ansport coeKcients measured a

Ejps. The resulting set of cross sections, gs althou h it is
realistic, is a mi e y

' . in thedmittedl not unique. We also remin the
reader that we assumed that in an ionizing co ision an

energy. Actually, the energy excess over the ionization
threshol is s are ya '

h d b the two emergent electrons. his
will tend to raise the maximum energy loss" curve in
Fig. 6 and lower the "minimum energy loss ' curve, an
thus reduce the spread between the two.

In Fig. 7 is plotted the average energy u as a function

MAXIMUM ENERGY LOSS MINIMUM ENERGY LOSS

FIG. 5. Polar plots of the elec-
tron velocity distribution for var-
ious values of E/p and the cor-
esponding average energy u. The
energy e for which the angular
distributions are plotted are
indicated.

E/p= ZO6U=6.16EV
U 11 58

@24

.4eV g
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of pe/E, . The average energy increases rapidly with
E,/ps for E,/p IIgreater than about 200 V/crn-mm Hg,
more rapidly in fact than the growth rate P. The rapid
increase of u results from the fact that at very high
E,/Pe the electrons are able to "punch" their way in
energy past the inelastic sinks of energy.

100

80

eo
so

~P 40

D= (1/I) vvf(C, 14)d'v (5 1)

The Diffusion CoefBcient

Because the distribution function is highly aniso-
tropic at large E/p IIthe diffusion coefficient
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Fio. 7. Plot of the average energy vs p4/F. ,; the dashed curve
is from the theory of Allis and Bro~

where u is the average energy in eV and p, ,=e/risI is
the electron mobility. Note that DI& and D& separately
no longer obey the Einstein relation. "The correction
factor 8 is shown in Fig. 8 as a function of ps/E, . At
low E./pp, fi tends to zero, while at high E,/p&, f'I tends
to its limiting value 5 which obtains for a needle-like

distribution. Since 5 is a measure of the importance of
the second spherical harmonic in the expansion of f, an
expansion in which only the terms fs and fi are retained
must fail when 5 becomes appreciable.

FIG. 6. Plot of the growth rate p vs p4/E, ; the dashed curve
represents the measured values of P obtained by Rose and by
Cottingham and Buchsbaum.

DII = sr4Ia L1+sfI),

D,=—
ss re,L1——,'8],

(5.3a)

(5.3b)

is no longer a scalar, but is a diagonal tensor with com-
ponents DII Di Di where the subscripts "~~" and "J "
denote the components along and perpendicular to the
direction of the applied electric field. By expanding f in
Legendre polynomials in p, ,

(5.2)

it can be easily shown that DII and D& are rigorously
given by

~4
K0
0

X0

0 2
-U

z0
0)

O

0
0

LOSS:
IMUM

MUM

10 .15 20

Po/Ee IN MMHg/VCM

25

FIG. 8. Plot of the diffusion-coefficient
correction factor vs p4/&, .

30
X1(P'

fs(c)C4dc
0

fo(C)C4dC, (5.3c) "W. P. Allis, in Handbuch der Physik, edited by S. Plugge
(Springer-Verlag, Berlin, 1956), Vol. 21, p. 414.
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Breakdown

%hen the distribution function is nearly isotropic the
diITusion-controlled microwave-breakdown condition is
de6ned by the equation"

g (v, t +—0)= b (C)/(4vrC'),

g(v, P) = dt e 'g(v, t),

(A2)

(A3)

P =D/A2 (5 4) and the equation of which (3.9) is the Laplace transform.

where

2 tt (p, ,P) 2—(A„'/AP)
(pA)'= — 1+-',8

3 (t3/P) — 1+(Aii'/&i')

1/A'= 1/A 2+1/A 2

(5.7)

(5 S)

Equation (5.7) indicates that at high E,/p where 8 is

appreciable, the variable (pA) depends not only on

E,/p but on the ratio A~~/A~ as well, and thus on the
shape of the container.
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APPENDIX A

Analytic Proyerties of the Transform

Consider the equation of which (3.6) is the Laplace
transform.

(a a ) 1
I

—+a +v Ig(v, t)= da g(Ca—, , t) p, (C)
&at av,

where D is free-di6'usion coeKcient and A is diffusion

length for the fundamental or lowest diffusion mode.
From the Einstein relation D=x~up„Eq. (5.4) can be
written as

(PA) =l(.P) /WP), (5.5)

which exhibits the fact that the proper variable" (pA)
depends on (E,/p) only.

As we have seen, in general D is a tensor, so that the
more general breakdown equation must be written as

Dl I/All +Dl/AI ) (5.6)

where A&& and A& are the lowest-mode diffusion lengths

along and perpendicular to the direction of the break-
down field. Using Eq. (5.3) the breakdown equation can
be written in the form

N(t)= dv
I v, (C)+vd(C)+2v, (C))g(v, t), (A4)

N(p)= dt e "'N(t). (A5)

Equations (A1) and (A2) indicate that g(v, t) is the
electron distribution in a gas which is similar to hydro-
gen, except that the excitation and ionization collisions
in hydrogen become absorption collisions in this gas.
This means that g(v, t) is real and positive, and, because
electrons can be absorbed, g will eventually decrease
exponentially with time. From these properties, it
follows solely because of (A3), that

(1) g is analytic for all p with Rep) 0,

(2) g is real for p real and positive,

(3) g is a monotonically decreasing function
of P, for P real and positive.

(A7)

(AS)

(A9)

The last point which must be established is that any
solution of N(p)=1 lies to the left of P. This will
guarantee that expPt is the dominant term at large t To.
show that this is indeed the case, let p= p,+ip; in (A5)
and take the absolute value of this equation

IN(P) I

= e ""'e '""N(t)dt

I

e-"'I
I
e-'""I IN(t) I

«

Equations (A4) and (A5) indicate that these same
properties apply to 8 as well. Thus f(v,p) in Eq. (3.10)
can have a singularity at Rep) 0 only where p(p) = 1.
Properties (A7) and (A9), applied to N, limit the
singularity of f to be one or more simple poles. property
(A9) guarantees that there will be one and only one pole
on the real axis if N(0) )1.That this is the case may be
verified by comparing (3.13), with p set equal to zero,
with (3.9) with p set equal to zero. This comparison
shows that

N(0)=1+ dv v;(C)g(v, 0))1.

+I —I"(C')g(C'~, t), (A1)
t C'y

&C)
=N (p„). (A10)

"S.C. Brown, in Bandbuch der Physzk, edited by S. FlGgge
(Springer-Verlag, Berlin, 1956), Vol. 22, p. 531. See especially
Sec. 4.

The equality holds only if the oscillating exponential
is constant, i.e., if p;= 0. Now if E(p,+ip, )= 1, then, by'

(A10), S'(p,))1 which, by (A9), means p, (P.
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g „(v,r) =g (v, t,t')

Then Eq. (4.2) becomes

(81c)

a 8
+a cos(i)ir+ y) + v g v(v)r)

BT 8'v,

dQ v))(C)g )(v)))r))
4n.

g„(v, r=0) = 8(C)/4)rC'.

Equation (82) indicates that g„ is a distribution
function of electrons in a gas which is similar to hydro-

gen except that the cross sections for inelastic collisions
in hydrogen have here become cross sections for absorp-
tion. The single electron is released into the system at
time 7.=0 and, under the inhuence of field and collisions,
diffuses upwards in energy until it is absorbed. The sole

dependence of the distribution on the time t', to which

r =0 corresponds, is through p, the phase of the electric
Geld at the time of release of the electron. After the
electron has collided once or twice so that its direction
of motion has been randomized, it is likely to lose all

memory of the precise phase of the field at the time of
its birth. That is, we expect that y dependence of g„ to
damp out for r) 1/v.

If we consider the relation between 1V(t,t') and

g(v, t,t') given by Eq. (82), it is evident that X depends

only on the behavior of the electrons with energies above
the inelastic threshold energy. The majority of these
relatively high energy electrons will have suffered at
least one collision since their birth at v=0 with zero

energy. Hence, we expect that p dependence of N to be
even weaker than that of g, leaving N to depend mainly
on r= (t—t'). This expectation motivates the mathe-
matics that follows.

One should note, however, that this reasoning does

imply an upper limit on the field strength for which

these conditions are valid. If the field strength is

sufficiently high that the Grst collision is likely to be an
inelastic one, then N itself will decay before its
dependence has disappeared. In that case, we would not
expect the y independence of N to be useful.

We assume now that the time variation of g „can be
factored into parts which vary slowly during a single

period, 1/&v, a,nd parts whose time variation is com-

APPENDIX 8

The Effective Fie1d E,

We wish to show that provided &o)P, an effective field

E, can be defined which reduces the microwave-break-
down growth rate equations to those of the dc field case.

Define
(81a)

y =cot',

and

(8/Br+ v)g'

+,' a(B /8 v)-(cosyg' —sinyg')=v, Ã0 (84a)

(8/Br+v)g'+a cosy(B/Bi), )g +cog'= v,lV', (84b)

(8/Br+ v)g' asin y(B—/Bv, )g' —cog'= v.lV' (84c)

kg; x=0, c, s. (84d)

The task is now to obtain simple uncoupled equations
for the angular averages N*, since it is only these which
are needed in (4.7). For the purpose of performing the
angular average, it is convenient again to introduce the
polar coordinates

&z=pC)

8 (1—ti') 8

BC C Bp

and to define a current density r'

1
I' „'(C, ) =— dQ g '(v, )„C.

4x
(85)

Then the angular average of (84b) and (84c) may be
converted, by means of an integration by parts, to

(
a 8 2 pl"

+v v. 1V'+a cosy— +——
i

+~X'=0, (8—6a)
BT BC C1C

parable to, or faster than that of the field. We are then
able to write

g „(v,r) = g „'(v,r)+g „'(v,r) sin(or+g „'(v)r) cos~r

+g „"(v,r) sin2~dr+g „"(v,r) cos2cvr+ ~ . (83)

Such an expansion is reasonable only if all the coefIi-
cients of the trigonometric terms are slowly varying
with respect to the field; otherwise there is no clear-cut
way of deciding whether a part of the time dependence
should be associated with one of the coefIicients or with
one of the trigonometric terms. This sets a lower limit on
the frequency: 1/~ must be small compared with the
decay time of g, that is, small compared with an
inelastic collision time.

Assuming that the frequency is high enough for this
separation, we may substitute (83) into (82) and
consider the equations obtained by equating the coeK-
cients of like powers of exp(irur). We shall satisfy these
equations only up to and including the Grst power of
the exponential, a procedure which is justified if varia-
tions in times shorter than 1/&o are insignificant. This
again implies the same lower limit on the frequency.
The equations we must consider are
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(8 ) 8 2 Io
f

—+v —v. fJV' a—sin&p +——(olV'= 0. (86b)
(Br j BC C C

Consider I'„o(C,r), the slowly varying part of the
current at time 7- carried by electrons of speed C. As a
current —a vector quantity —it must be identically zero
unless there is some spatial direction which is of
physical significance. There are only two spatial direc-
tions, however, on which g„can possibly depend. One
of these is the direction of the electric field at ~=0, when
the electron was released, and the other is the electric
field at v, the present. On the time scale to which I'

corresponds, the high-frequency Geld at r can establish
no directional preference because I'„o(C,r) is nearly
equal to I' „o(C, r rr/&o) by —reason of the slow variation
of g, while the field at the earlier time is directed
opposite to itself at the later time. This leaves only the
Geld direction at 7.=0 as a significant direction, but
once the electron loses memory of the initial phase, then
this direction too has no special significance. Hence,
there is no preferred direction after times greater than
1/v and I' must vanish.

The vanishing of F' makes it possible to solve Eqs.
(86). We find

X'= WilV'= const expL(v, —voice)r)

We have explicitly taken Ã' and E' to be slowly varying
compared with the field variation, while the solution
above states just as explicitly that they oscillate at
frequency co. We must, therefore, take the constant in
Eq. (87) to be zero, so that iV' and 1V' also vanish
identically and can, therefore, be deleted from (84).

The Laplace transform of the Eq. (84), with trans-
forms denoted by tildes and initial values by G, is

The functions G'(v) and G'(v) are the, as yet un-
specified, initial values of g'(v, r =0) and g'(v, r=0).
The choice of these initial values will be deferred till the
end. For the present, let us define the effective
acceleration

(810)

Then inserting (89) into (BSa) yields

8' 1 -s aBB
gO= —Q+

(p+v)' (lv, ' (p+v) 4v- 2 (lv.

g 2

(811)

The Green's function E for inverting the di6erential
operator on the left of (811) is given by

1 p+v
It(v ~)= v

—[~~~[(v+~)/~e

2 cg

Using it, we integrate Eq. (811) to obtain

g„"(v,p) = d
28'

8 8—Q(C~)+— 3(v~ y) v I vz—w[(Mv)/ae ~

4n 2 8'to

v'= (v„vv,m).

The region of integration may be split at m= e, and
the second term integrated by parts. On introducing a
variable

(p+v)g'+(og'=G' —a cosy ()go/()v„

(P+v)g' —(og'= G'+a sing ()go/Dv„

kr
Q=—Go+r, dA g'.

P

(BSb)

(38c)

(38d)

we obtain

R= fv, —vlf = fpC —wf,

"""—Q (C')+—Q (C")
4m. 4w

a(p+ v)
A=

1+(o'/(p+ v)'

L(p+ v)G' —(oG') cos(o8=
p 2 Q)2

(89b)

L(p+v)G'+(oG'$ sing
(89c)

P 07

Equation (88b,c) may be solved for g' and g' in terms of
the quantities on the right-hand side of the equation.
From the solution, we construct a term appearing in
(BSa)

cos(/r g' —sing g'= —A (()/Bv, )go+3(v, p); (89a)

v'= (v, vv, //C R);—
C'=

f

v'
f

= (C'—2[[/CR+R')' ' (812b)

v = (v, v„, pC+R);

C"= fv"
f

= ( C+2p CR+R')' './(312c)

Now let us construct I', the Laplace transform of the
I'o defined in (85), by multiplying (812a) by pC/4v. and
integrating over angle. A change of integration variable
from p to —p in those terms which depend on C" or e"
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causes the terms in Q to drop out, leaving
Q(C') = 8 (C)/() C')+r. /Ea g'. (815b)

r „0(c,p) (P+~)
dR dQ

""'I:~(»v)+&(», v)1'

'v) = ('vg) v)/) //C —R))

$2= (Vg) //)/) R /JC).

(813)

G'= 8 (C)/(4m C'). (814)

We may now integrate (812a) over angle and, inserting
(814) into (88d) we obtain the pair of equations:

If we were to substitute (89c) into (813), it would
become evident that I' would change sign if the phase y
were altered by w radians. This indicates that 1' con-
tains, at the most, a memory of the initial phase but no
component that results from the instantaneous value
of the 6eld. This is gratifying, because it is consistent
with the assumption that the field varies too rapidly to
establish a spatially preferred direction to which the
relatively sluggish g could respond.

Since the entire development so far followed from the
assumption that I' in (86) could be ignored, we must
choose the initial functions G' and G' so that 1' in (813)
also vanishes. The simplest choice is to take G' and G'
both zero. Then I' vanishes because 8 vanishes. This
leaves only G available for satisfying the initial condi-
tion (82). The initial condition requires, then, that

(816)

in exactly the same way as the clc-growth rate P depends
on the dc acceleration provided that &o)P.

The equivalence between the microwave and dc
cases goes further than just the growth rates, of course.
A comparison of Eqs. (812) and (3.17) reveals that

g'(v p) =
2 Lg~o(v p)+g~. (V p)j

V'= (w. , v„, —v,).

(817)

Note that to this order of approximation, there is
no y dependence in the angular integral of g'. We
already found that the angular integrals of g' and g'
vanish; this means that to this order of approximation,
the angular integral of g „(v,~) itself also is independent
of y. It follows that the function /V(t, t') defined by
(4.5) is really a function of the single variable 7 = t t', —
rather than of t and t' separately. Hence, we may take
the Laplace transform leading from Eqs. (4.4) and (4.5)
to Eqs. (4.6) and (4.7). Observe now the identity
between Eqs. (815) and (3.16b)—(18), between (4.6)
and (3.8), and between (4.7) and (3.9).These identities
are sufhcient to establish that the density in the micro-
wave avalanche breakdown increases exponentially like
exp(Pt) and that P depends on the effective acceleration

This result is to be expected because the slowly varying

dR &
—R())+v)/)) Q(C)) (815a) g in the microwave treatment is unable to distinguish

between the two directions in which the field can point.


