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AN EXTENSION OF THE ELECTRON THEORY OF METALS.
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SYNoesxs. —Using as a starting-point the simple equations deduced from the
electron theory by J. J. Thomson and others for thermo E.M.F., thermoelectric
power, Peltier E.M.F. and the Thomson effect, and assuming that the number of
free electrons in unit volume of a metal is an exponential function of the tempera-
ture, the author shows that (x) the thermoelectric power is a linear function of the
temperature, (2) the equations relating thermo E.M.F. and temperature, and
Peltier E.M.F. and temperature, represent parabolas having their axes perpen-
dicular to the axis of temperature, and {3)the Thomson effect is different for different
metals and may be either positive or negative. but will usually have a positive tem-
perature coe%cient. Likewise, using the equations for electrical and thermal
conductivity and making the second assumption that the number of positive centers
with which the electrons collide changes with the temperature (these centers being
atoms, molecules or clusters of molecules), it is found that (4) the electrical conduc-
tivity of pure metals decreases with increase of temperature but is not exactly
inversely proportional to the absolute temperature. (5) the peculiar behavior of the
electrical resistance of alloys can be accounted for, and {6)the thermal conductivity
may either increase or decrease with the temperature, the temperature coef6cient
depending both upon the temperature and the material. A third assumption, viz. ,
that the positive centers take part in the conduction of heat but not of electricity,
leads to the conclusion that (7) the usual value deduced for the Wiedemann-Franz-
Lorenz ratio is too small, and the variations in the value of this ratio at ordinary
temperatures is accounted for. The above theoretical results, especially (x), (2)
and {3), are, at least within the ordinary range of temperatures, in substantial
agreement with experiment, since the constants involved in the theory can be
determined from experimental data, and so the author concludes that (8) the con-
centration of electrons in a metal is an exponential function of the temperature, and

(9) the number of pesitive centers changes with the temperature, the exact relation
being somewhat uncertain. The number, however, must generally increase with

the temperature,
CONTENTS.

Introduction.
Previous theories and their limitations.
Statement of the new theory.
Peltier E.M,F.
Thermoelectric power.
Thermo E.M.F.
Thomson effect.
Electrical conductivity.
Thermal conductivity.
The Wiedemann-Franz and Lorenz laws.
Discussion of the theory here presented.



Vox..XIII.
No. 6. ELECTRON THEOR F OF METALS.

I. INTRODUCTION.

HE theory outlined in this paper is an attempt to amplify, or
expand, the electron theory of metals as applied to thermo-

electricity and metallic conduction so as to bring it more nearly into

harmony with the experimental facts without at the same time doing
violence to such portions of the theory as are not treated here. Three
simple assumptions, relating the electrons, molecules and temperature,
are made which will be studied in detail later. Certain mathematical
forms are employed to express the assumed relations. It is not claimed
that these expressions are more than first approximations to the true
functions, neither is it claimed that they are even first approximations
in the neighborhood of the absolute zero and temperatures near which

marked changes in the structure of the material occur. It is claimed,
however, that the theory presented here overs, at least within the range
of ordinary temperatures, as good an explanation of the experimental
facts here treated as previous theories do, and it explains some facts
which have been unaccounted for hitherto.

At the outset the writer wishes to state that much of such merit as
the present paper possesses is due to the fact that he has had the advan-

tage of constant consultation with his colleague, Professor%. P. Boynton,
whose familiarity with the kinetic theory of matter has made his numerous

suggestions and criticisms of primary importance.
Throughout this discussion the symbols employed have the following

IneaIlings:
m = mass of an electron,
n = "mean square velocity" of the electrons,
"1= absolute temperature,
t = Centigrade temperature,

0. = the gas constant for a single electron, being defined by the
equation /&2mm, ' = a 1,

~ = charge on an electron,
) = mean free path of the electrons,

N = number of free electrons in one c.c. of a metal,
n = number of positive centers in one c.c. of a metal,
E = Peltier E.M.F.,
Q = thermoelectric power,
E = thermo E.M.F.,
cr = Thomson E.M.F., or so-called "specific heat of electricity, "
x = electrical conductivity,

p = electrical resistivity, and
k = thermal conductivity.
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The other symbols used are constants whose significance is obvious
from the context. The subscripts I and 2 are used to refer to two
different metals except where some other convention is specifically stated.

A theory to be completely satisfactory should account for the following
facts.

r. The thermo E.M.F. between any two metals can usually be ex-
pressed by an equation of the form E = At + ~/gBP

2. Sixnilarly, the thermoelectric power of any two metals can usually
be represented by a equation of the form Q = A + Bt.

3. The Peltier E.M.F. must satisfy the equation I' = QT.
g. The Thomson effect may be either positive or negative and is

different for different metals.

5. The Thomson effect has a temperature coefficient.
6. The electrical conductivity of pure metals at ordinary tempera-

tures is almost inversely proportional to the absolute temperature, or
the resistivity is nearly proportional to the absolute temperature.
Usually the resistivity increases somewhat more rapidly than the absolute
temperature.

7. At ordinary temperatures the electrical conductivity of alloys is
frequently nearly independent of the temperature and occhsionally in-

creases with increase of temperature.
8. The thermal conductivity of a number of metals is nearly constant

at ordinary temperatures and may either increase or decrease as the
temperature is raised.

9. The ratio of the thermal to the electrical conductivity at all ordinary
temperatures is nearly the same for all metals, the ratio being nearly
proportional to the absolute temperature. In the case of pure metals
the ratio usually increases somewhat faster than the absolute temperature,
but in the case of alloys it usually increases more slowly.

Besides the facts just enumerated which are explained in the present
paper there are number of galvanomagnetic, thermomagnetic and elec-
tronic emission phenomena which must ultimately be explained. No
attempt is made to account for these effects, their treatment being
reserved for a subsequent paper. So far as known none of the hypotheses
advanced here in any way interferes with the explanation of any of these
effects. '

' For general discussions of the above phenomena, including the subject matter of the
present paper, the reader is referred to J. J. Thomson's Corpuscular Theory of Matter, p. 4g
et seq. ; O. W. Richardson's The Electron Theory of Matter, p. 4o7 et seq. ; E. Bloch's
La Thhorie Electronique des Mhtaux (in a series of essays published under the title Les
Id&s Modernes sur la Constitution de la Mature. Villars, Paris); K. Baedeker's Die Elek-
trischen, Erscheinungen in Metallischen Leitern (Braunschweig); also ¹ R. Campbell's
Modern Electrical Theory, pp, 54—86.
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2. PREVIOUS THEORIES AND THEIR LIMITATIONS.

The equations deduced from the electron theory by Sir J. J. Thomson,
and which are taken as a starting-point in the present discussion, are:

20,T
Pgm —— log —,

Ng'

2(x
Qsa = log

2n d I
o = — T (log%)———

se dT 2

~'Ã) u
K

4aT

k = 3 0.Ã)n.

From equations (4) and (g) we obtain the Wiedemann-Franz law that
the ratio kjx is a constant for all metals at any given temperature and the
Lorenz law that this ratio is proportional to T, which laws together give

The thermoelectric equations satisfy the following equationswhich
were deduced from thermodynamical considerations by Lord Kelvin,
naxIlely,

P = QT,

dQlQ
0'y —0'p = T dT

The constant multiplying factors on the right-hand side of equations

(i) to (5), inclusive, have been given dlfferent values by different theorists,
but in any case they only di6'er by simple numerical factors. Thus
Drude' replaces za/3s by 4n/3s in equations (i), (z) and (3), and LorentzP
assuming the Maxwellian distribution of velocities among the electrons,
finds instead of equation (4) the equation

~'XNu

and instead of equation (g) the equation

{nÃXu). (sa)

'Ann, Phys. , x, 566, z900 and 3, 369, ?900.
'Lorentz, The Theory of Electrons, pp. 63-67.
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From (4a) and (5a) it follows that

{6a}

The value of the ratio /r/xT thus found is but two thirds of that found
from the simple theory by Thomson and Drude. Since these differences
in multiplying constants are of only secondary importance in connection
with the present discussion they will be disregarded for the present,
It may be remarked, however, that experimental data may, with the aid
of the theory presented in this paper, enable one to discriminate between
the diff'erent methods of approach to the problem and to select that one
which agrees best with experiment.

It has usually been assumed either that E remained constant or else
was either directly or inversely proportional to the square root Qf

absolute temperature. The first assumption was made in order to explain
the optical properties of metals, the second was made by J. J. Thomson
to account for the Thomson eHect, and the last was made to account for
the fact that at ordinary temperatures the temperature coefficient of
resistance of a number of metals is approximately equal to r/27' per
Centigrade degree. From equation (4) it follows that if the electrical
conductivity is inversely proportional to the absolute temperature, either
X or ) must be inversely proportional to the square root of the absolute
temperature, since I = lauT/ra. We see no reason why X should vary
to any appreciable extent if the number of molecules does not change and
the alteration in volume is quite small. Then X must change with
temperature. But from the optical properties of metals it seems that N
does not change. ' So one has his choice: either E changes or it does not.
But whether X is constant or is proportional to some power of the abso-
lute temperature, the proportionality factor depending upon the material,
certain results follow which are not in harmony with experiment. Some
of these discrepancies are:

i. The thermo E.M.F. is a linear function of the temperature.
2. The thermoelectric power is constant for any given pair of metals.
g. The Thomson effect is the same for all metals at all temperatures.
y. The thermal conductivity of any metal is independent of the

temperature.
5. The ratio k/aT is the same for all metals at all temperatures and

within the range of ordinary temperatures is usually too small.
On the whole, the most that can be said for the theories so far published

is that they show that these properties are to be expected, but they are
wholly inadequate when it comes to quantitative measurements.

' Drude, Ann. Phys. , z4, gsz, xgo4.
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STATEMENT OF THE NEW THEORY.

The fundamental assumptions upon which this theory is based are

(I) That the number of free electrons in a metal changes with the

temperature,

(2) That the number of positive centers with which the electrons

collide, whether these centers are atoms, sub-atoms, molecules or groups
of molecules, changes with the temperature, and

(g) That these positive centers take part in the transfer of heat but
not of electricity.

The mathematical forms which have been selected to express the rela-

tions between the numbers of electrons and positive centers are

X = ae*~,

(Io)

where c and b are positive constants, and nothing is postulated regarding
the signs of x and y.

Ke are led to the first assumption by the fact that unless equations

(r), (2) and (3) are entirely wrong, X must depend upon T. The expo-
nential form of equation (9) is suggested by the logarithmic form of these

three equations. The excellent agreement of the resulting equations
with experiment indicates the probability that equation (9) is an accurate
representation of the facts.

The assumption that the number of positive centers with which the
electrons collide changes with the temperature is somewhat startling. '

For our purposes it is unimportant whether these centers are atoms, sub-

atoms, molecules or clusters of molecules. A great deal of uncertainty
exists as to the states of aggregation in solids and liquids, and there
is no e priori reason why the state of aggregation in a substance should

not vary with the temperature of the substance. It is not necessary
that all the centers shall be alike. A continual process of disintegration
and recombination of the centers may be going on. If a theory based on

this assumption should harmonize better with experiment than others,
this circumstance would lend color to the assumption.

Remembering that, as in the kinetic theory of gases, X = f/nr', where
r is the radius of the positive centers and f is a constant, and substituting
be" for n in equation {xo},we obtain

X=ce",
where c = f/br'.

%hen T=o, %=a, n=b and X=c. But when T= , then

'Cf. Richardson's The Electron Theory of Matter, p. 467.
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N and e are both in6nite, and X = 0. In practice, of course, T never
approaches infinity, and since both x and y prove to be small, the values
of N and n at, say, 2ooo' C. will probably seldom exceed 5o to too times
the corresponding values at the absolute zero.

The third assumption seems reasonable from the fact that insulators
conduct heat even though they do not conduct electricity, and have
very few, if any, free electrons.

The only assumption involved in the theory of thermoelectricity here
presented is the first, namely, that the number of free electrons is a
function of the temperature. The second assumption is introduced to
account for electrical conductivity, namely, that the number of positive
centers is a function of the temperature. The third assumption, that the
positive centers take part in the conduction of heat, is involved only in
those portions of the theory which deal with thermal conductivity.

Equations (t) to (5), inclusive, are taken as the starting-points in the
present discussion. This is not to be interpreted as indicating a prefer-
ence on the part of the writer for one physicist's theory rather than that
of another. In the light of our present knowledge, however, it seems
that these equations are likely to be as valid as any of the others.
Changing the constant factors has no effect upon the qualitative results
of the theory presented here, and only to a minor extent upon the
quantitative results.

4. PELTIER E.M.F.
Sir J. J. Thomson obtained equation (t) given above for the Peltier

E.M.F. by assuming that electrons under the inhuence of an electric
force Row across the boundary between two metals until the electric
force is in equilibrium with the opposing pressure gradient at the boun-
dary. The expression for the Peltier E.M.F. on the basis of the present
extension of the simple theory is readily obtained by substituting in
equation (r) the values of N~ and No given in equation (9), namely,
E~ = a~e" and Em = a2e . Th'is gives

20(T cy
Pgo —— log —+ (x, —xo)T

$e c2

This equation may be rewritten in the form

I' = AT+ BT',

(r2)

(I2a}

where
P = Po+ (2pg&+ Qo)t + 20o (I2b}

+A 2{2
log (&~/&o)~ & = (» —»)i Qo = ~ + 273&, Po = 273Qo,

Qc
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and t = T —2p3. I'0 is the Peltier E.M.F. at O' C. and, as we sha11

see in the next section, Qo is the thermoelectric power of the pair of metals
at o' C.

The equations (t2), (i2o) and (r2b) represent a parabola with its
axis perpendicular to the axis of temperature. We should expect the
Peltier E.M.F. to have a maximum value at the absolute temperature.

T' = —A/2B,
or in Centigrade degrees,

r,
' = —A/2B —z73 = —(273B + Qo)/2B.

The value of the Peltier E.M.F. at the temperature T' should be

P' = —A'/4B.

(r 3)

(t3a)

If we knew the experimental form of the parabola it would be possible
for us to calculate the values of A and 8, and from these values we could

obtain the value of the ratio a&/as and also of the difference (x& —xz).
In practice, however, it will be very much simpler to obtain these values
from the thermo E.M.F.

THERMOELECTRIC POWER.

The equations for the thermoelectric power are readily obtained from
the corresponding ones for the Peltier E.M.F. by dividing by T (see
equation (p)). From equations (xa), (x2a) and (i2b) we thus obtain

2n Ci
Qgg = —log —+ (xg —x2)T i',

3& 62

Q =A+BT, (tso)

(rsf)
where A, B and Qz have the same values as in the preceding section.
These equations represent quite accurately, by a suitable choice of con-
stants, the thermoelectric power of a thermocouple consisting of almost

any pair of metals.
6. THERMo E.M.F.

The expression for the thermo E.M.F. is obtained from that for the
thermoelectric power by integrating the latter with respect to T. If E
is the thermo E.M.F. between two metals I and 2, when their junctions
are at the temperature T~ and Tm, then

whence
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If we put T& = o and T& ——T, then equation (t6) becomes

2&x Cy IE = —T log —+ —(xl —x2) T'
G2 2

where 8 is the thermo E.M.F. between two junctions at o' and T'
absolute, respectively. Equation (x7) may be rewritten in the form

2 = AT + /&DEBT'. (r.7a)

Substituting f + 273 for T~ and 273 for T, in equation (t6) we obtain

& = Qot+ V~P, (r6a}

where E is the thermo E.M.F. between two junctions at o' C. and t' C.,

respectively.
Equations (r7), (rye) and (j:6a) represent a parabola with its axis

perpendicular to the axis of temperature. The maximum value of E
occurs at the neutral temperature, which is therefore given by the
equation

ol

T' = —A/8,

t' = —Qo/&

(z8)

(isa}
The thermo E.M.F. of the couple when one junction is at o' C. and the
other is at the neutral temperature is given by the equation

E' = —Qo'/28 (t9)
Experimentally it is found that the thermo E.M.F. between any two

metals is quite accurately represented by a parabola with its axis per-
pendicular to the axis of temperature, that is, by equations of the type
deduced above, where A and 8 may either positive or negative. Thus
we see that the equations here deduced f'or thermoelectric power and
thermo E.M.F. are in agreement with the experimental facts. And
since equation (7) has been shown to be true both experimentally and
theoretically, the equations for the Peltier E.M.F. must also be in agree-
ment with the experimental facts. From our theory we see that A is
positive or negative according as a& is greater or less than u2. Similarly,
8 is positive or negative according as xl is greater or less than x2.

From the known values of A and 8 obtained from experiment we may
calculate the values of a&ja2 and (xl —xm) by means of the following
equations:

3eAIZa (2o)
and

XI —x2 = $ tB/2cl ~ (2r)

It may be remarked in passing that if X were a constant different for
difFerent metals, or if E were proportional to any power of the absolute
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temperature, the proportionality factor being different for different
metals, then the thermoelectric power would be constant and the thermo
E.M.F. would be proportional to the difl'erence between the absolute
temperatures of the two junctions. These conclusions, however, are
contrary to experiment.

7. THoMsoN EFFEcT.

When we substitute oe* for X in equation (3) we obtain

2(X
fT = —(» —V2)

Since for practically all metals the absolute value of a is considerably
less than a/ge, it follows that x must be positive. Hence, we may con-
clude that in order to account for the Thomson egect it is necessary to

assume that the number offree electrons in a metal increases with the absolute

temperature. So long as x is positive, 0 will have the same sign as
(Tx —~/s), and the absolute value of ~, when it is negative, cannot be

greater than aj3~. On the other hand, 0 may have any positive value
when x is positive. In the case of certain alloys' it appears that 0. is

negative and greater than aj3e. In such cases x must be negative.
Differentiating equation (22) with respect to T, we obtain

From equation (z3) it appears that the Thonzsoa effect has a temperature

coegcient, and that this temperature coegcient is normally positive. Quali-

tatively at least, this result is in harmony with some of the best experi-
mental results such, for example, as those obtained by Berg' on copper.
In the case of the alloys mentioned above, which have abnormally high

negative values of the Thomson effect, Laws found that the temperature
coefhcients were negative. This is in harmony with our theory.

From the value of the Thomson effect at any temperature it is possible
to calculate the value of x. Solving equation (a2) for x we obtain

3eo+n
2AT (24)

Generally speaking, Tx cannot be very far diferent from /2 at ordinary
temperatures, since o. is usually quite small in comparison with n/3e.
This being so, let us assume that Tx = /&2 and that T = 300 absolute
I'27' C.). Then x = o.ooI667. Substituting this value of x in equation

' Laws. Phil. Nag. , 7, pp, 56o—578, I9o4, and Caswell, PHvs. Rav. , N.S., XII., pp. 23I-
237, X9XS.

g Ann. Ph+8+~ 32~ pp 477 $I9& 19IO.
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(9), we find the ratio of the value of X at any temperature (T + r) to
its value at the temperature T to be I.ooI7. Or, to use a somewhat
larger temperature interval, the ratio of N at (t + Ioo}' C. to its value
at 3' C. is I.I8I. For a temperature interval of IOOO' C. the ratio is

Assuming o.oo2 as a probably maximum value of x for a pure
metal, we find the corresponding values of the ratio for a temperature
interval of one degree Centigrade to be I.oo2o, for a Ioo' C. interval
I.22I4, and for a Iooo' C. interval 7.g89.

If our theory is correct, the Thomson effect is a linear function of the
temperature which approaches the common value for all metals at the
absolute zero of's = —a/gs. In case we should have used 4u/3s instead
of zn/3s in equations (t), (z) and (3), then ir should have a different

limiting value. The same is true if any other factor is used instead of
2nj3e. If this limiting value of a can be determined, then we have a
means of selecting the best from among the di6'erent equations proposed.

It follows at once from equation (zz) that

2' T
irl 0's = (xi is)

or
(2So)

these equations being in the form of equation (8). It is obvious that the
metal having the more positive value of x' will have the more positive
value of cr, and wee versa. Consequently, if we were to arrange a series
of metals in the order of the slope of the corresponding lines in a thermo-
electric power diagram, the metals should also be arranged in the order
of their Thomson eHects at any given temperature.

8. ELECTRICAL CONDUCTIUITY.

In the preceding sections the only assumption which has been employed
is that the number of free electrons is a function of the temperature, and
the satisfactory agreement between the theory and experiment seems to
prove the wisdom of selecting the expression ae' to represent this number
at any temperature T. No assumption was made as to the sign of x,
but we have found that to account for the Thomson effect in most sub-
stances x must be positive. To this assumption we now add a second,
namely, that the number of positive centers is a function of the tempera-
ture, and, in consequence, the mean free path of the electrons is a function
of the temperature. Any discrepancies between theory and experiment
which appear in this section must, therefore, arise not from the first
assumption, but from the second.
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Substituting the value of X from equation (9}, the value of ) from

equation (t r ), and u = (2nT/m)'~' in equation (y), we obtain as the vaiue
of the electrical conductivity

(*-v)& . T'—y/2
&ac

s

2 42o.m

which we shall rewrite in the form

(26a}

where C = e'ac/2(2am)'", and z = y —x. Both C and z are constants

for any given metal.
Since the electrical conductivity of pure metals within the range of

ordinary temperatures is roughly inversely proportional to the absolute

temperature, it follows from equation (26a) that the exponential factor
on the right-hand side of the equation must decrease with increase of
temperature. In order that this shall be so, s must be positive or
(x —y) must be negative. But since x is positive in the case of pure

metals, y must also be positive and greater than x. Hence, we conclude

that in the case of pure metals both the number of free electrons in the metal

and the number of positive centers with which they collide increases with

the temPerature, the number of Positive centers, in general, increasing faster
than the number of electrons

In the case of alloys the electrical conductivity cannot be said to bear

any general relation to the temperature. In fact in the case of some

alloys, such as manganin, the temperature coeScient is exceedingly
small. In such cases the exponential factor may increase with the tem-

perature. That is, if x is positive, then y is either positive and less than

x or else y is negative, but if x should happen to be negative, as we have

seen is probable in the case of some alloys, then y is also negative but
numerically greater than x. The case when both x and y are positive
seems the most likely to occur, since this is the rule for pure metals.
In any case we may conclude that in some substances, particularly alloys,

the number of free electrons increases roith the temperature faster than the

number of positive centers mth which they collide. '
The electrical conductivity of carbon, which though not a metal

conducts metallically, increases rather rapidly with the temperature.
This means that z for carbon has a comparatively large negative value.
This probably indicates a large positive value of x with a smaller positive,
or possibly negative, value of y. An abnormally large value of x corre-

~ A good account of the electrical properties of alloys is given in Baedeker's Elektrischen
Erscheinungen in Metallischen Leitern. Lord Rayleigh (Scientific Papers, Vol. IV., p. 232)
has suggested that the resistance of alloys is unduly high owing to a "false resistance" arising

from the Peltier effect between non-homogeneous parts of the metal.
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sponds to an abnormally large positive value of the Thomson effect.
Since p ~s the reciprocal of ~ it follows that

whence

p = —e ~ T'~'cT
C

I
z = (log C y ]og p —/lz log T).T

(&7)

(&8)

If p is proportional to T, as is assumed but is not strictly true to fact,
then

z =
T (log (CD) + /z log T), (zga)

where p is put equal to DT.
From equation (28a) it appears that either p is not proportional to T

or else 2' is not constant as assumed, but is a function of T. Whenever
the value of z is greater than the right-hand side of equation (28a) the
resistivity increases faster than the absolute temperature, but when the
reverse is true the resistivity increases more slowly than the absolute
temperature.

From equation (27) it is obvious that the resistivity of a metal ap-
proaches zero at the absolute zero, and increases continuously with the
temperature providing s is positive. In case s is negative the resistivity
should have a maximum value when T = —(t/22).

Since the factors a and c, which are contained in the value of C, are
as yet undetermined, we cannot use equation (28a) to calculate the value
of s. But since we know how p varies with T we may write

p(&i-&0)

where p~ and pQ are the resisiivities at Tj' and TQ absolute, respectively.
Putting T~ = TQ + z, and solving for s, we obtain

Pl. I
s = log ——/glog i +-

PQ TQ
(&9o)

If we denote the temperature coefficient of resistance at TQ by p, we may
rewrite equation (29a) thus:

I
s = log (I + P) —/&2 log r +-

TQ
(29b)

or as a first approximation which gives a result about one half per cent.
too high

I
2' = P ——

2 TQ
(z9c)
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We 6nd the temperature coeScient of resistivity of copper given as
0.0042S at IS C., 4. 8., Tp = 29I, and so s is found to be o.ooa5g5 if

we use equation (29b), but is found to be o.oo256 if we use equation (29c).
From the ratio of the resistivities of two metals at any temperature

T we may determine the ratio c~/cs, thus:

P2~2

C2 p»C»
{So)

Since all the quantities on the right can be determined the ratio
c»t'c~ ca,n be calculated. It should be noted, however, that the numerical

values which we obtain for a~/a&, and consequently for c,/c~, depend upon
whether we use za/3e or some other multiplying factor in equations (r),
(2) and (g).

9. THERMAL CONDUCTIVITY.

We now proceed to introduce the third assumption, namely, that the
molecules or, more generally, the positive centers, whether these are
atoms, sub-atoms, xnolecules or groups of molecules, take part in the
transmission of heat, although they have no part in the transmission of
electricity in solid bodies. In the simple equation (5), namely,

& = &/su&), u, Ilf, h and u refer specifically to the electrons. A funda-

mental assumption of the electron theory is the equi-partition of energy

among the electrons and molecules, but there are certain reasons why we

are at present unable to assign values to the molecular quantities corre-

sponding to X, X and u. Indeed for our present purpose it is unimportant
whether such values can be assigned. Obviously, there is the probability
that heat is transmitted by the molecules, or positive centers, by radiation

as well as by conduction. What fraction of the total heat transmitted is

transmitted by radiation we are unable te determine. For the present
it remains an open question whether the equi-partition of energy law

applies to the molecules or to the positive centers.
It is rather obvious that the mean free paths and the velocities of the

positive centers, or of the molecules, will vary in the same directions as
X and u, respectively. We shall assume, for simplicity, that 'A» is directly
proportional to X, and that u» is directly proportional to u, where )» is the
mean free path of the positive centers, or molecules, as the case may be,
and u» is the corresponding mean square speed. We may then rewrite

equation (g), substituting N+ u for Ill' and introducing a constant co

which includes the proportionality factors connet=ting X and 'A», and u
and u», and also the ratio of the total amount of heat transmitted by the
molecules to that conducted by them. We thus obtain

k = /IaeuX{X+ a)n).
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Equation (pi) simply means that in view of our ignorance of the behavior
of these positive centers, we feel justified in assuming that the fraction
of the total heat transmitted by them is proportional to their number.

Replacing fi/ by oe*, ri by be", X by ce " (see equations (9), (io) and
(i I)), and u by (2nT/nr)'", equation (3r) reduces to

~b
— ac e(* "' + — P/' (32)

g~m a

It is at once apparent that in the case of pure metals the exponential
factor in the first term on the right-hand side of equation (gz) tends to
make k decrease as T increases, since (z —y) is negative, while the factor
T I2 tends to make both terms increase as T increases. So k may either
increase or decrease with increase in temperature.

IO. THE WIEDEMANN-FRANZ AND LORENZ LA%'S.

We have already seen that the %'iedemann-Franz law coupled with
that of Lorenz leads to the relation that /r/sT = a constant. Substituting
the values of )'i and s from equs, tions (gz) and (z6), respectively, we obtain

(33)

When ru = o, this equation reduces to equation (6) as a special case.
Equation (g3) leads us to expect that the experimentally determined
value of the ratio will always be greater than that calculated from the
simple theory. Assuming the validity of equation (6), the experiments
of Jaeger and Diesselhorst' on thirteen metals and three alloys gave values
in every case, except that of aluminum, greater than we should expect
from the simple theory; but if we assume the validity of equation (6a)
the discrepancy is much greater, even aluminum being about thirty
per cent. too high. It has been objected that the amount of heat trans-
mitted by the positive centers, whatever they may be, must be much too
small to account for the discrepancies between Jaeger and Diesselhorst's
experiments and the simple theory. But this objection is based on the
assumption that the heat so transmitted must be approximately the
same as that transmitted by an insulator. This does not necessarily
follow. If there are practically no free electrons in an insulator and
there are la~e numbers of them in conductors, is it not reasonable to
suppose that there may be more freedom of movement among the
molecules in a conductor than among those in an insulators

The minimum value which the right-hand side of equation (gg) can
have is 4'(x + cob//a)/3e'. This seems out of harmony with the results

' Sitzungsber. Berlin, z8gy, p. 7zg.
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obtained by Meissner' at very low temperatures, since he found that for

copper at 2o' absolute the value of the ratio k/aT was but one seventh of
its value at O' C., the value at O' C. being only slightly greater than
ye'/3. e'.

If the subscripts I and 2 refer, respectively, to the temperature TI and

Tg, then

(34)

According to the simple theory this should be

kg/xm

u/~ (34a)

Jaeger and Diesselhorst, working between the temperatures of t8' C.
and Ioo' C., i. e., between 29I' and g73' absolute, found instead of the
theoretical value of the ratio on the left-'hand side of equation (34e), viz. ,
Tg/T1 = I.28, that eight of the thirteen metals tested gave values greater
than I.28, two of them, platinum and palladium, giving values of I.gg,
two gave values of I.28, one of I.27, one of I.26 and one, bismuth, of
I.I2. The three alloys tested gave results less than I.28. whenever y
is greater than x, as we have seen is the ease in pure metals, equation

(34) leads us to expect the ratio to be greater than x.28. In the majority
of cases this seems to be true. But in the case of an alloy, such as
manganin, which has a very small temperature coefficient of resistance,
x is greater than y, and equation (3g) leads us to expect the ratio to be
less than I.28. This is actually the case. In the case of manganin the
1atlo 1s I.2I.

II. DISCUSSION OF THE THEORY.

In this section the author wishes to make some general observations
concerning the theory here presented. I'n the first place, we see that,
since the equations are of the proper form and the values of the constants
involved can be determined from experimental data, the agreement of the
theory with the phenomena of the Peltier and Seebeck effects is not only
qualitative but quantitative as well. Not only do the values of the con-
stants so determined indicate that, in general, the number of' free electrons
increases with the temperature, but this is what we might expect, since
the kinetic energy and, consequently, the agitation of the molecules
increases with the temperature.

In a previous paper the author has shown that either (I) the electrons
~ Deutseh. Phys. Gesell. , Verh, x6, 5, pp. 26'-z7z, x9z4.



which take part in thermoelectric phenomena are diHerent from those
which take part in electric conduction, or «'2) the mean free path of the
electrons in an alloy is noticeably different from that in a pure metal,
one of the constituents of the alloy. The former statement seems un-

reasonable, while the latter is plausible if the formation of an alloy in-
volves the regrouping of the atoms or molecules. Thus the writer was
led to the conclusion that in some way a change is brought about in the
mean free path of the electrons. The introduction of the exponential
value of N from equation (9) into equation (4) makes the resulting change
in the electrical conductivity in the opposite direction to that in which
it actually occurs. So we have adopted the hypothesis that the mean
free path of the electrons as well as their number is a function of the
temperature. The change in the mean free path may be thought of as
being brought about in either of two ways, always assuming that the
number of collisions between electrons is negligible in comparison with
the number between electrons and the positive centers. Either the size
of the positive centers may change or their number. Assuming that the
size changes but not the number we are led to conclusions which do not
agree as well with experiment as do the conclusions which we arrive at
by assuming that the number of positive centers is a function of the tem-
perature. The author is inclined to believe that the exponential form
of the function which has been employed in this paper is a fair repre-
sentation of the facts, if temperatures near which marked changes in

the structure of the metal occur, such as eutectic-points and melting-

points, are excluded. In this connection it should be noted that the
Peltier E.M.F. and the thermo E.M.F., both of which we assume depend
only upon the concentration of the electrons, are not discontinuous
functions of the temperature at the melting-point, but it appears that
the electrical conductivity of a metal changes markedly as it passes
from the solid to the liquid state. In the case of a number of metals,
e. g. , cadmium, lead, potassium, sodium, tin and zinc, the electrical
conductivity in the solid state at the melting-point is about one half the
value in the liquid state at the same temperature. Exceptions are
bismuth and antimony. In both of these the conductivity is approxi-
mately doubled as the substances passes from the solid to the liquid state.
The usual case, that of decrease in conductivity in passing from the solid
to the liquid state, is apparently due to a sudden increase in the number
of positive centers. This is what one might expect since there is, ap-
parently, a reduction in the forces of cohesion.

It seems probable that at low temperatures the molecules of a metal
are gathered in clusters which act as single positive centers and that
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as the temperature is raised the increased activity of the molecules causes

these clusters to break up slowly. The complete theory shouM, therefore,

take account of the change in the cross-sections of the clusters as they
break up as well as the change in their number. What the change in

the cross-section is must depend upon the number and arrangement

of the molecules in each cluster, and any general expression must repre-

sent a mean rate of change in the cross-sections. Since the number of
positive centers must increase faster than their average cross-section

decreases, the change in the former is more important than that in the

latter.
In the theory as developed in this paper no allowance has been made

for the expansion of the metal as the temperature is raised. The com-

plete theory ought to take account of this expansion. The correction,
however, is likely to be quite small.

It is obvious that an exhaustive study of the quantitative relations

of this theory and experiment ought to be made. We have shown that
qualitatively it is capable of explaining all of the phenomena considered

if we exclude very low temperatures. It is also capable of explaining

each of these phenomena separately quantitatively, but it remains to be

seen to what extent the values of the cons'tants involved are identical

when different phenomena are compared. The writer is now carrying

out the necessary computations to put the theory on a quantitative

basis and hopes to publish the results of this work in the near future.
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