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ON THE VIBRATIONS OF ELASTIC SHELLS PARTLY
FILLED WITH LIQUID.

BY SUDHANSUKUMAR BANERJI.

I. IN TRQDUc TIoN.

HE problem considered in this paper is chiefly of acoustical interest
in relation to the theory of "musical glasses. " This class of in-

strument consists of a series of thin-walled elastic shells whose gravest
modes of vibration are tuned to form a musical seal by partially filling

them with a liquid and are excited either by striking or by tangential
friction on the ruins. The principal features of interest requiring eluci-
dation are (x) the dependence of the pitch of the vibration upon the
quantity of liquid contained in the vessel and (2) the mode of vibration
of the liquid itself. These features are discussed in this paper for the
three cases in which the elastic shell is respectively (r) a hemispherical
shell, (2) a cylindrical vessel with a flat bottom and (3) a conical cup,
these forms approximating more or less closely to those used in practice.
The analytical expressions show that the motion of the liquid is very
marked near the margin of the vessel and is almost imperceptible near
the center and also at some depth inside the liquid. This feature becomes
more and more marked in the case of the higher modes of vibration of the
vessel. Numerical results have also been obtained and tabulated show-

ing the theoretical relation between the quantity of liquid contained in

the vessel and the vibration frequency. These show that the rapidity
with which the frequency falls on addition of liquid is greatest when the
vessel is nearly full, this being specially noticeable in the case of the higher
modes of vibration.

The general principle of the analytical method used is similar to that
adopted by Lord Rayleigh in treating the two-dimensional case of a long
cylinder completely filled with liquid which was studied by Auerbach. '
This case has also been recently discussed by Nikoloi. ' The lowering of

'Lord Rayleigh, Phil. Mag. , XU. , pp. 38'—389 (I883). Scientific Papers, Vol. 2, pp.
208-2XX.

~ Auerbach, Wied. Ann. , 3, p. x57, x878, and also %lied. Ann. , x7, p. 964, x882. Reference
may also be made to the papers by Montigny, Bull. del' Acad. de Belg., [2], So, x59, x88o,
and by KolKcek, Wied. Ann. , 7, 23, x879, and also Sitz. math. naturw. d. VA'en, 87, Abath.
2, X883.

& Nilokoi, Journ. Russk. Fisik Chimicesk, 4x, 5, pp. 2x4-227, x909.
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the pitch produced by the liquid is of course due to the added inertia
exactly as in the related case of the vibrations of a bar or a string im-

mersed in a liquid which have been studied by Northway, ' Mackenzie
and Kalahue. '

Musical glasses are sometimes excited by rotating them about a fixed

vertical axis, the tangential friction being produced by a rubber kept in a
fixed position. No attempt is made in this paper to consider this some-
w'hat complicated case, ' which I hope to be able to deal with on a future
occasion.

2. HEMISPHERICAL CUPS.

The force which a thin sheet of matter subjected to stress opposes to
extension is very great in comparison with that which it opposes to
bending. From this Lord Rayleigh concluded that the middle surface
of a vibrating shell remains unstretched and proposed a theory' of
Rexural vibrations of curved plates and shells in accordance with this
condition. As the direct application of the KirchhoA'-Gehring method
led to equations of motion and boundary conditions which were difficult

to reconcile with Lord Rayleigh's theory, his theory gave rise to much

discussion. Later investigations have, however, shown that any exten-
sion that may occur must be limited to a region of infinitely small area
near the edge of the shell and that the greater part of the shell vibrates
according to Lord Rayleigh's type.

Let the radius of the hemisphere be equal to a. Let a point whose
natural coordinates are u, 8, @ be displaced to the position a + I, 8 + v,

@ + m, where u, v, zv are to be treated as small.
From the condition of inextension

(bs)' = a'(M)' + a' s&n'e(bg)'

= (a + u)'(be y bs)' + (bu)' + (a y u)' siil'(8 + s) (by + bw)', (I)

Lord Rayleigh obtains the three differential equations

Bv Q—+ — 0
88 a

' Northway and Mackenzie, PHvs. REv„x3, pp. I45—I64, xerox.
~ ~5hne, Ann. d. Physik, 46, x, pp. I-38 IQI4.
3 Reference may be Inade in this connection to papers by Prof. Love on "The Free and

Forced Vibrations of an Elastic Spherical Shell Containing a Given Mass of Liquid, "Proc.
Lond. Math. Soc., Vol. XIX., where he has studied the case of a rotating spherical shell com-
pletely full of liquid, and by Prof. Bryan on "The Beats in the Vibrations of a Revolving
Cylinder or Bell,"Proc. Comb. Phil. Soc., Vol. VII.. I89z.

~ Lord Rayleigh, Proc. Lond. Math. Soc., Vol. XIII., p. 4, x88I. See also Proc. Roy. Soc.,
Vol. 45, pp. 45 and 443, x88x, Theory of Sound, Vol. I., Chap. XV, and Love's Elasticity,
Chap, XXXIII.
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Bv . 870—+ sin'8 —= o,
Bqh 88

Q Bzo—+ cot8 v+ —= o,6 8@

which can be integrated in the forms

Q s1n
mp[A„(m + cos e) tan —',8 —B„(m —cos e) cot" —',8],6 —cos

v —sin
mytA tan &8 —B cot -,'8],

sin 8 cos

cos
myCA tan" g8 + B„cot~ -', 8],sin

A and B being arbitrary constants. These equations determine the
character of the displacement of a point in the middle surface.

Since the pole 8 = o is included the constant B must be considered to
vanish and the type of vibrations in a principal mode is expressed by the
equations

I = A e(m + cos8) tan"' 28sin mP,

v = —A sin 8 tan &8 sin mP,

zv = A tan -,'8cos my,

in which A is proportional to a simple harmonic function of the time.
The potential energy of bending of the vibrating shell is given by

8 7' 8 d8
V = —xp —m'(m' —t)'A„' tan'" — .g2 2 sin'8

2 T= —xp —(eP —m) (2m' —z) A '
g2

where T = thickness of the shell and p = rigidity.
The kinetic energy 1is given by the expression

dAT= —xon'r sin e[2sin' e + (cos e + m)'} tan'" 'ede-
dt

dA„' ' (2 —x)"
'ro'cx T

2 dP 2 t. ( —I)'+ 2( + I) — 'ld (6)

dA

2
= —xaa'rf(m)

dt

where 0 represents the density of the shell, and

2 (2 g)m
f(m) = [(m —t)'+ 2(m + x)x —x']dx,

which can be evaluated for any integral value of m.
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Since the types of vibrations of the shell are entirely determined by the

geometry of the middle surface of the shell, it is obvious that the types
can under no circumstances be altered by the presence of the liquid in the

shell. The liquid gives rise to a surface traction and affects only the

arbitrary constant A, that is to say, the amplitude and the frequency of
vibration of the shell.

The motion of the liquid mill depend upon a velocity potential which

satisfies the equation

r cj'4 cot 8 gg cosec'8 g'@

Br2 r Br r2 882 r2 88 r2 8/2

A solution of this differential equation which will correspond to the type
of vibration of the shell can be obtained by assuming C to be of the form

D
4 = C r+ —sinnsp 6&,r2

where hz is a function of 8 only. Substituting in the differential equation
we find that 6& satisfies the equation

d2hg dh,
d8'
——+ cot 8 + (2 —m2 cosec2 8)6& = o.

d8

The general solution of this differential equation is

6, = Z„tan -', 8(m+ cosH) + F„c t"o(28m—cosH).

Neglecting solutions of the type cot" —',8(m —cos 8), we see that C is of
the form

D-
4 = C r+ —, sin mt' tan —,'8 m+ cos 8),

where C and D are two arbitrary constants. Let us first take

r
4 = C„—tan"-', 8(m + cos8) sin mP cos Pt. (Io)

The relation between C and A of (4) is readily found by equating the
value of BC/Br, when r = c, to BN/8$, both of which represent the normal

velocity at the circumference. We get

, dA
C COs pt = c2 {zt)

The expression (j:o}determines the principal mode of vibration of the
liquid. The simple character of the Ruid motion as determined by this
expression will however be a little disturbed on account of the existence
of a free surface and we shall have to add a small correction to this
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expression. The condition to be satished at the free surface is

abc} ae—+g —=o, when'=h,N' Bs'

where h denotes the depth of the liquid surface below the center of the
hemisphere. Ke shall neglect the force of gravity, inasmuch as the
period of free waves of length comparable with the diameter of the shell
is much greater than that of the actual motion. The condition to be
satis6ed at the free surface then becomes simply

= o, when' = h.
Hence we must have

4 = C„—tan- ,8(m-+cos8) sinmQcos pt+ f(r, 8, 8,) cosf,t, (n)

where f{r,8, P) is a solution of LVC = o and is such that its di8'erential
coefhcient with respect to r vanishes on the spherical boundary and it has
the value

hsec 8—C tan si8(m+ cos8} sin m8 (r3)

on the free surface.
In the particular case, when the shell is completely full of liquid, the

differential coefficient off(r,8,&) with respect to r vanishes on the spherical
surface and f(r, 8, 8) has the value

r—mc - sin nsP8 (r4)

on the surface defined by 8 = ~/2.
For the determination of the function f(r, 8, 8), spherical harmonics

of the complex degree —si+ pl —i are extremely suitable. The
properties of these harmonics and their applications to some physical
problems have been investigated by Hobson. ' Solutions of Laplace's
equation of the form

I sin
g sin(p log Ar) m&IC„" (cos 8),

where X„"(cos8) is a harmonic of degree —i2+ P 4 —z and order m,
and is defined by the hypergeometric series

X„{cos8) = E{m + ~ + pi, sz+ 2
—pi, m + I, sin y8},

are suitable for our present purpose. These solutions are finite and con-
tinuous for all points in the space inside the hemispherical shell {except

~ Hobson, "On a Class of Spherical Harmonics of Complex Degree with Application to
Physical Problems, "Trans. Camb. Phil. Soc., Vol. z4, pp. 2I2-236, I889.
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in6nitely near the origin which may be supposed excluded by surrounding
it hy an infinitely small sphere).

Let us assume

8 r Z„"(cos8) .f(r, e, y) = g+„—sin p log —„„-sin mp,r h X„(cosa)
where h/a = cos a. Then

(i5)

when r = a, if the p's are the roots of the equation

tan (p log a/h) —2p = o,

and the summation in the above series extends over all the roots of this
equation.

The values of the constant B„have to be obtained from the equation

Cos EL a sin [p log (sec 8)j Xr" (cos 8)—Cm tan" s8(m + cos 8) = Z+„cos 8 sec g Xr (cos a)

which must be satisfied for all values of 8 between the limits o & 0 & n.
Approximate values of the constants B„'s can be easily obtained from
this equation. In the particular case when the shell is completely full
of liquid, the values of the constants B„'scan be obtained in a very simple
form. Since the origin is a singular point, we exclude the point by sur-
rounding it with a small sphere of radius s, and assume that f(r, e, p)
vanishes on the surface of this sphere. Since in this case n = s./2, we
can assume

r X„"(cos8) .
sin P log - sin mt',X o

where

0 s II(m)
(2m —t)' + p' (2m —3)'

22 22

and the summation extends for all values of p which are the roots of the
equation

d sin [p log (c/~)]
dG

that is to say, the equation

tan plog — —2p = o. («)
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(r7)

To obtain an idea of the magnitude of the constant B~, we shall obtain
its value when a/s is a very large quantity. It is easy to see by the method
of successive approximation that the roots of the equation (r6) are given

by
6 I C 6 ~ I C I

p log —= X ——log —— log- 4 — log—2X e X

The constants 8„'s have to be determined by the condition that
f(r, 8, g) must have the value —mC (r/a) sin mp on the free surface which

is given by 8 = s/s. Hence 8„'s are given by

r C r—mC„—= Z+„—sin p log—
6 r

Putting r = e e", it is easy to see that

s(p'+ -', ) mC„ log C/s

B e'I' sin p)d'A
p' »g (a/s) + sly log (a/. ) —r] a

8(4p' + r) mC„sin [p log (a/e)] + p (~/a)sl'

4p tog (a/. ) + (log (a/. ) —s] 9 + 4p'

I 1 1 6 2 I
Tr og + Tfe

—etc. ,

where X = (s + —', )r, s being any integer. Now, if we take a/s = ro',
the roots are successively the following:

pi = '$2I, p2 = '628, p3 = 960, p4 = I.205, etc.

Hence we easily find that the constants B„I,B„2,B„3,etc. , have approxi-
mately the values B„,= —.o9 C, B~, = — o8 C, B„=—.o6 C,
etc. , from which we infer that the surface correction f(r, 8, P) is a small

one. The principal mode ofvibration of the liquid is therefore expressed by

4 = C —tan ~8{m+ cos e) sin mpcos pt.6 (r 8)

If g represent the velocity of the liquid as given by this expression, we
have

g' = C ~ —tan'~ 2 —,8[{m+cos 8)'{sin2 mp tan~ ~8+ ~m' cos2 mp sec2 ~8)Q2

+ ]srm(m+ cos8) sec' —',8 —tan-', 8 sin8}'sin'mQ] cos'pt. (r9)
Since g is independent of r, the velocity of the liquid at any point in a given
radius vector is constant. We see that the velocity varies as tan™1-',8.
Hence if we move along any given meridian, the velocity increases
from a zero value at the pole at 6rst very slowly then rather abruptly to a
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large value at the surface, the abruptness of rise being greater the larger
the quantity m, that is to say, the higher the mode of vibration of the
liquid. Since the velocity of the liquid is constant along any given radius

vector, we see that if we consider the motion of the liquid on the surface
of a cone of semi-vertical angle 8, and trace the motion of the liquid as a
whole as 8 increases, the velocity remains small as 8 increases and assumes
a large value only at or near the surface. It is obvious therefore that in

every case when the cup is not quite filled to the brim, the velocity of the
liquid has a very large value near the margin of the vessel and is almost
imperceptible near the center and at some depth in the liquid. In the
particular case, when the shell is almost filled to the brim, the velocity
of the liquid as given by this expression at a point which is near the
center and also near the free surface is not small. But in this case the
free surface correction f(r, 8, P) to the expression for the velocity potential
becomes of some importance and has a sign opposite to it. Consequently
the velocity of the liquid near the center always remains very small.
These indications of theory are all confirmed by experiment.

To calculate the kinetic energy of the liquid, we have to integrate
4 &( 84 j8N over the whole boundary of the fluid. At the free surface
4 = o. We have therefore only to consider the spherical surface.

Therefore

T = —,'p C —dS

s'2' a
= ~np cos Pt IC sin mP tan —,'8(m + cos 8) + f(r, 8, p) j

0 0

&& C sin mP tan"-,'8(m, + cos8) sin 8d8dg

(2O)= —apcos'Pt C ' tan'~-'8(m+ cos8)'sin 8d8
2 0

sin [p log (n/h) j+ —upcos' pt C„g p„2 X„(cosn)

X tan™—,'8(m + cos 8)E„"(cos 8) sin 8d8,
0

p being the density of the liquid.
Since the liquid is supposed to be incompressible, the potential energy

ls zero.
The sum of the kinetic and potential energies of the solid and liquid

together must be independent of the time. Thus we get
d'A

a p tan2 ~8(m + cos8)'sin 8d8+ a'pX + a oaf(m)
0

4 7'3

+ —p —(m' —m)(2m' —x)A = o,
0!
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Bpsin [p log {u/h)jK = g — — tan™1,0(m+ cos8}X„(cos8) sin 8d8
C„ lt„"(cos n)

B„4sin2 u sin [p log (c/h)] Zo~ (cosn) I tan ,'n(m-+ cos n} I
p C„9+4P' Xp (cos o.)

" dcosa

d—tanm ~n{m + cos cx) Xp (cos ~)
d cos cx

If we put

p(o, ~) = tandem -'g(m + cos t}})'sin Hd|)}

0

~ss 2 —X m

(m —t + x)'dx,
1+cosa

and if A varies as cos (Pt + s), we get

[apt(n, m) + r&tf(m) + npZ]&&&s = ——, — (m' —m)(2m' —t) (»)4. p 7.

3 QP cl

This equation gives the frequency of vibration of the shell with different

quantities of liquid.
The fall of pitch for the three gravest tones given by m = 2, m = 3

and m = g for a brass hemispherical shell Io cm. in radius, 2 mm. in

thickness and of density 8.6 with different quantities of liquid are shown

in Table I. In Fig. I, the frequencies have been plotted against the

quantity of water in the vessel for these three modes of vibrations.

T'ai.E I.

90'
80'
70'
60'
50'
40'
30'
20'
10'
0'

nantity of~

~

~ ~

ater in
the Shell. E(a, m).

~a' X .667 1.114
~a' X .494 .570
~a' X 338 , 291
~a3 X 208 .123
~as X 133 .058
~a' X .034 .026
s-a' X .014 .015
~a' X .003 .013
~a' X .001 .011

0 0

f(m).

1.53

)& Const.

I t.ao
2.24
2.75
3.29
3.61
3.81
3.88
3.90
3.91
3.93

1.580
.641
.125
:O32

~

.008 I

.003

.001

.000

.000
0

m=3 ~

1.88 4.63
6.50
9.53

10.57
10.95
11.14
11.22
11.23
11.23
11.24

ts = 4

S'&s, m&. j&m&.

2.030 2.296
.479
.097 l

009
.002
.000
.000
.000
.000

0

X Const.

8.76
14.51
19.42
21.45
21.64

~

21.68
21.69
21.69
21.69
21.69

The frequencies of a brass hemispherical shell of about the same radius

and thickness loaded with different quantities of water have also been
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determined experimentally by a photographic method. The results
showed a general agreement with the calculated values. As a shell of
uniform thickness and of uniform elastic properties throughout could

not be procured, and the one that was
2D used was very much deficient in these
ls respects, the slight discrepancy that was

noticed between the calculated and the
observed values of the frequency, was

probably due to these defects.

D 1 a $4 8 4

QUkNTtTY Ot WA7CN tN THIt IHIl.L

Fig. i.

3. CYLINDRICAL CUPS.

The problem of the Aexural vibrations
of a cylindrical shell is considered in

Lord Rayleigh's Theory of Sound, Vol.
I., $23gC. If the displacetnents at any
point a, 8, z of the cylinder be br, a88, bz,

then

= —n(A„a + B„s)sin n8,

(A „a + B„s)cos n8,

= —n 'B csin n8.

(»)

Supposing now that the cup has been formed by an inextensible disk being

attached to the cylinder at z = o, the displacements 8r, ab8 must vanish

for that value of z. .Hence A „=o, and

8r = —nB„s sin n8, a88 = B„scos n8, 8s = —n 'B a sin n8, (23)

the constant B„is proportional to a simple harmonic function of the time,

say, cos Pf.
Since the displacements br and aM are proportional to z and the dis-

placement bz is independent of z, it is obvious, that when z is large the

displacements br and cM are also very large compared to bz, that is to
say, near the free end of the shell, the displacement bz is negligible com-

pared to br or aM. But at the bottom of the shell, the displacements br

and aM vanishes and bz remains constant. %'e conclude, therefore,

from the law of continuity, that the disk at the bottom of the shell must

have a small normal vibration. If m denote the normal displacement of
the disk, it is well known that m satisfies the differential equation

82M—+ c'74m = o,
BP

(a4)

where
d' I d I d' Er"—d2+ d + 2d2and C —

(
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8 being Young's modulus, r the density, r' the thickness and ~ the Pois-
son's ratio.

If ma cos (pt + e), then the equation becomes

&4' —V4m = O,

where v4 = p'/c'. A solution of this differential equation is known to be

w = C„J (rtr) sin ne
Hence we shall take

m = C„J„(vr) sin n8cos pt. (25)

The value of the constant C„can be obtained from the condition that m

and bs must be continuous at the boundary.
This gives B„a

Crl, Cos pE =
n J„(sa)

' (26)

We can assume that J„(sa) is very large and consequently that the normal
vibration of the disk is very small. The potential energy of deformation
for a length l of the cylinder is

4m @,r3 )+p n'l'
V = — (nr —r)2 —+r B'

3Q ) 12p3e2

The potential energy of vibration of the disk is given by

(27)

The value of this integral can be easily obtained. But as we regard the
vibration of the disk compared to that of the cylindrical surface to be
very small, the value of this expression is also very small.

If the volume density be 0., we get the expression for the kinetic energy
in the form

dB„T = -maria[ —l'(I + n') + n 'a']2 3 dt

a' ~ dB„+ —.. . ,C~ ( )], (T„( r)],rdr

If' the cylinder contains frictionless incompressible fluid, the motion
of the liquid will depend upon a velocity potential C which satisfies the
equation g'4 = o, or in cylindrical coordinates

O'4 x BC I O'4 824

Br2 r Br r2 882 BZ2
+ + +

The solution of this di6erential equation can be written in either of the
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forms
C = 0. zr" sin n8 cos Pt,

C = P„e ~'J„{kr) sin n8 cos Pt.

The boundary conditions to be satisf]]ed by C are

(29)

(3o)

BC der
{i) —- = —when r

Br dt '

84 dzv
(ii) —= —,when z

Bz dt ' p o

)

{iii) C = o, at the free surface, I, when z = h.

Ke assume that

4 =a„sr"sin n8cos pt+g J„(kr)[Dqcosh ks+E) sinh ks] sin 8))copst, (32)

where the summation extends for all values of k which are the roots of the
equation

dG
—J„(ka) = o.

We at once get by condition ())
dB„

n„cos Pt = —---—
g)l —1

The condition (6}gives

a J„(.r) r- I dB„
t)t:

——QE)J„(kr) cos pt.

(3s)

This equation must be satis6ed for all values of r between the limits

(o & r & a) and wi11 give the value of the constant Z). Now since

f
a nGr"+'J (kr)dr = J„(ka),

s P

a CV
J„(kr)J,(sr)rdr = —,—,J„(ko)J„'( a)s,

0

6 n'
[J„(kr)j'rdr = ~c' I — [J (ka) j'

we get

I dBrt 6 I a
J„(kr)J„(vr)rdr — — r"+'J (kr)dr

k dt n J„(ve) ~)t—1

= Eg, cos pt [J„(kr}j'rdr,

and therefore

za dB„k'a' v J„'{M,} na,

ke dt {k'u' —n') J (ku) (k' —8'}n J {vc} k'G'
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The condition {iii) gives

a„kr" + g (Ds cosh kk + Er. sinh kk) J„(kr) = o

for all values of r between the limits (o ( r ( a).
Therefore we get

2nc"h
D~ cosh kh + EI sinh kh = —0'~

{k2+2 (36)

The equations (35) and (36) give the values of the constants Dq and E~
To calculate the kinetic energy we have to integrate C X BC/Bn over

the boundary of the shell. At the free surface C = o. We have there-
fore only to consider the cylindrical surface and the bottom. The ex-
pression can be written in the form

A,
3 h sinh kh'r=,'rrpcos'pt nn„'a2" —+na a"ZJ (ka) D~

3 k

I I h cosh kk
cosh kh + +EIsk2 k' k k'

———sinh kh

nc~ n2
a„DI, g„(ka) +', ka'MIDI, z —

k, r [J„(ka)}' . (3y)
k

2 k2g2

The constants E~ and D~ are very small compared to 0.„. If we neglect
E~ and Dh„ the expression for the kinetic energy reduces to the simple
form

h3
T = —pSn 262" —COS2 pE2 "

3
In this case the expression for C reduces to the form

4 = 0. s'r" sin n8 cos Pt.

(38)

(39)

This expression represents the principal mode of vibration of the liquid
and all the other coexistent modes are very small compared to this one.
Since the expression for the velocity varies as (r/a) " ', the velocity is very
marked near the margin of the vessel and is almost imperceptible near
the center. Using the principle that the sum of the kinetic and potential
energies of the solid and liquid together must be independent of the time,
we easily obtain an expression for the frequency of vibrations in the most
general case from the expressions for the kinetic and potential energies
already given. If we neglect E~ and D~, the frequency equation takes a
very simple form. The expression in this case is

[arla[srP(z + n, ') + n 'a'} + '-pnk'a'}P-

8p,7'l X+ p n2P
{n2 —I)' —,+ I . (Wo)

3Q X + 2p, 3@2
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Thus we see that the law of variation of the frequency with the height of

water in the vessel can be expressed in the form

I
~ =A+~(h/I, )

where A and B are two constants for the vessel.

For a glass cylinder whose dimensions are given by i/a = 4, r/o = .o2

and which has the density 0. = 2.6 and the elastic constants p = r.8
and X = l.53, we easily find that the frequency p„ is given by

.r. 875 h 3 Spy'
.o52 (x + n') +— + n — P ' = —(n' —z)' Izo.4 n' + 3]

For the three gravest tones given by n = 2, n = 3 and n = 4, the values

of the frequencies p2, p3 and p4 with different quantities of water in the

cylinder are shown in Table II.

TABLE II.

0
.1
.2
.3

.5

.6

.7

.8
9

1.0

P2 X Const.

12.47
12.33
12.02
11.29
10.15
8.85
7.61
6.56
5.60
4.97
4.21

ga &( Const.

34.44
34.40
33.98
32.05
29.45
26.26
22.99
19.97
17.34
15.13
13.25

P& )& Const.

65.63
65.48
64.47
61.95
57.79
52.45
46.68
41.09
36.05
31.67
27.93

The values of the frequencies given in

Table II. have been plotted in Fig. 2.
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Fig. 2.

4. CONICAL CUPS.

It is shown in Lord Rayleigh's Theory
of Sound in the article already referred

to that if a cone for which p = tang s, y
being the semi-vertical angle, executes
flexural vibrations, the displacements Sp,

bp, Bs at any point whose cylindrical co-
ordinates are (p, @, s') are given by

bp = n tan y (A„s+ J3„)sinn@,

bp = (A„+B„s—') cosnp,
bs=tan'T[n '8 n(A„s+8„)]—sin ng
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If the cone be complete up to the vertex at s = o, then 8„=o, so that

bp = n tan y A„csin np,

bp = A„cos ng,

bs = —nA„ tan'y csin nQ.

If the displacements in polar coordinates (r, 8, p} be denoted by br, M, bp,
we easily obtain

8Q = A„cos nQ

br = pepsin y+ &cosy = 0,

rM = 8p cos y —Sz sin y = nA „tan y r sin nQ.

It is easy to see that the potential energy of deformation for a length / of
the cone

4x, X+p, . , tan y 2

TV = —p,7' A „' sin y —n' . , + n tan y + n cot y), + 2p,
" sin'y

+ cos' y log —,
where r = thickness. '

The expression for the kinetic energy of vibration of the shell can be
easily obtained in the form

dA„T = —trrp Syn3 y [yp SeC~ y + l]8 dt

If the cup contains frictionless incompressible fluid, the velocity poten-
tial of the fluid must satisfy Laplace's equation. Let us assume that the
velocity potential is given by

C = C„r'Q„(cos 8) sin nQ cos Pt (46)

where @n (cos 8) is a function of 8 only. It is easy to see by substitution
in the diR'erential equation

cp+ 2 g+ I g @ cot 0 gg cosec' g cj'g

g~&+q g~ +q2ggm+ && gg
+

that pn (cos 8) sa.tisfies the equation

~4'a

882
+ cot 8—+ (6 —n' cosec' e)p„= o.

88

~ This expression can be readily deduced from a very general expression for the potential
energy due to strain in curvilinear coordinates obtained by Prof. Love. (Vide his paper on
"The Small Free Vibrations and Deformation of a Thin Elastic Shell, "Phil. Trans. , Vol. xvy,
x888, A.) The expression has been criticized by Prof. Basset (Phil. Trans. , Vol. x8x, z89o, A)
on the ground that Prof. Love has omitted several terms which involve the extension of the
middle surface. As the inextensional vibrations only have been considered in this paper,
this criticism does not affect us in any way.
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A solution of this differential equation can be easily obtained in the form

8 ,8
4n (cos 8) = tan" s8 (z —n)(z —n) —6(2 —e) cos' —+ rz cos'-

2 2

The relation between C„and A„can be easily obtained by equating the
value of 8C/r88, when 8 = y, to d(r88)/dt, both of which represent the
normal velocity at the boundary. We thus get

27 4 7C„cos pt tan—"—',y (z —N)(2 —n) —6(2 —I) cos' —+ zs cos'-
2 2

dA„= n tang . (48)

The principal mode of vibration of the liquid will therefore be expressed

by (46) except for a small correction to be introduced on account of the
existence of a free surface. At the free surface the condition to be satis-
fied is given by

4 =o, when@=h,

where h denotes the height of the liquid.
To satisfy this condition, we assume

c = C„r'd„(cos8) sin npcos pt+ QD„r"p "(cos8) sinn' cos pt, (49)

where the summation extends for all values of ns which are the roots of
the equation

a—P "(cosy) = o.
8+

The constants D 's have to be determined by means of the equation

(so)

C„(hsec8)'Q (cos8) + PD (k esc )8" P" (cos8) = o, (5z)

which must be satisfied for all values of 8 between the limits o ( 8 ( y.
Approximate values of the constants D 's can be eas ly obtained from
this equation. To get an idea of the magnitude of the constant D, we
shall obtain its value in the particular case when the semi-vertical angle y
of the cone is small and the height h of the liquid is large compared to the
radius of the cross-section of the cone by the free surface. In this case
the free surface can be taken to be practically coincident with the surface
of the sphere r = h. The equation for determining D is then

C„h'$„(cos8}+ g D k"P "(cos8) = o.

Now since
I

P "(cos 8)P " (cos 8} sin 8d8 = o,
COS y
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m, rw' being two different roots of the equation (5o),
and

I —cos a'
[P " (cos 8)]' sin 8d8 = P "(cos y) — —P "{cosy),2m+ I Bm8cosy

we easily get
1

C„k' " P (cos 8)P (cos 8) sin 8d8
2m + I cosy

I —Cos' y a2I' " {cosy) P "(cosy)
8mB cos y

Neglecting the small correction introduced by the free surface, we see
that the kinetic energy of the fluid motion is

8&„(cosy)
2
—pC„' cos' ptf„(cos y) — sin y sec' y —.

8+ 5

Since the sum of the kinetic and potential energies of the sohd and liquid
together must be independent of the time, we easily obtain, on assuming
that A„o. cos pt, the frequency equation in the form

(cos y) H'
~&rrl'sin'y(tc'sec'y+ i) + pn'tan'y sing ——P'

8—4 (co V)8+

8 X+ p . , tang= —
p,v' —A„' sin y —n' . , + n tan y + n cot y) + 2JM,

" sin~y

2l+ cos' y log

where H = h sec y, H being the slant height of the liquid. In this case,
we see that the law of variation of frequency with the height of liquid
can be expr'essed in the form

A + B{I/l)&'

A and B being two constants for the particular shell.
The frequencies pm, pe and p4 with different quantities of water for the

three gravest modes of vibrations given by n = 2, n = 3 and n = 4 have
been calculated from this expression for a cone of semi-vertical angle 3o',
the ratio of the thickness of the sides of the cone to the slant height being
equal to .o2 and are shown in Table III.

The curves showing the fall of frequency for these three modes of
vibrations of the cone when loaded with diR'erent quantities are plot-
ted in Fig. 3.
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Pg X COnst. p3 X Const. p4 X Const.

0

.2

.3
4
.5
.6
.7
.8
9

1,0

5.030
5.030
5.028
5.008
4.937
4.761
4.428
3.942
3.399
2.808
2.310

13.58
13.58
13.57
13.54
13.41
13.08
12.43
11.64
10.07
8.63
7.26

26.75
26.75
26.73
26.69
26.47
25.94
24.87
23.13
20.79
18.07
15.41

lo—
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