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Resonances of a sphere of plasma in a magnetic 6eld are discussed for a radius small compared to the
wavelength of the incident radiation. There are two classes of resonances: radius independent and radius
dependent. 'The former are the electrical analog of the resonant modes originally observed in ferrites by
White and Solt. The latter are related to the electromagnetic resonances of a dielectric sphere. Although
some of the approximations used in calculating the electromagnetic resonances are not obviously valid,
they give remarkably good agreement with experiments on small spheres of indium antimonide. In particular,
it is shown that a strong resonance is associated with a mode which is essentially a rotating magnetic dipole.

INTRODUCTION The standard treatment of the electromagnetic reso-
nances of a dielectric sphere' shows that these resonant
modes may be divided into electric (TM) modes where
the magnetic field is always perpendicular to the radius,
and magnetic (TE) modes where the electric field is
always perpendicular to the radius. When the "dielec-
tric" sphere is a plasma in an applied magnetic field the
dielectric constant is a tensor and the separation into
electric and magnetic modes is not generally possible.
However, if the radius of the sphere is much smaller
than the wavelength of the radiation in the material of
the sphere, the electric field in the electric modes is much
larger than the magnetic field. We can, therefore, neg-
lect the magnetic field and all propagation effects and
solve the problem in the electrostatic approximation
using Laplace's equation. If the dielectric constant is a
tensor, we solve a generalized Laplace equation. In the
case of a plasma where elements of the dielectric con-
stant tensor are negative, we obtain radius independent
resonances. For the magnetic modes the magnetic field
is much larger than the electric field, and the problem
can be treated in the magnetostatic approximation. For
a plasma the permeability is positive, and one does not
obtain magnetostatic resonances. In ferrites one has a
positive dielectric constant and a tensor permeability
with negative components and one observes magneto-

HE eGective dielectric constant of a plasma in a
magnetic field is a tensor. The mathematical di%-

culty of solving boundary value problems involving
finite plasmas in a magnetic field is therefore great, and
very few have been solved. The resonances of a spherical
plasma in a magnetic field is still an unsolved problem.
We have observed such magnetoplasma resonances in
small spheres of indium antimonide where the plasma
consists of the free electrons and the immobile, posi-
tively charged, donor impurities.

The resonances were observed by placing a small
sphere of indium antimonide in a waveguide or a reso-
nant cavity and observing maxima in the absorption of
E-band (f=25 kMc/sec) radiation as a function of
applied magnetic field. In order to reduce the scattering
frequency the sample was cooled to about 60 K. At this
temperature the scattering frequency was generally
smaller than the plasma frequency and the cyclotron
frequency, but almost a few times greater than the fre-
quency of the exciting radiation. The resonances were
studied as a function of sphere diameter, electron
concentration, and the symmetry of the exciting micro-
wave field. The electrons in indium antimonide have an
isotropic effective mass equal to O.OI4 times the free-
electron mass. This low effective mass makes this ma-
terial particularly useful for plasma studies since one can
have a high plasma frequency with fewer carriers (and
therefore fewer scattering impurities) and a high cyclo
tron frequency with a relatively small magnetic field.

Copyright 1963 by The American Physical Society.
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static resonances. 'These have been extensively treated~'
and we adapt these solutions for the case of the plasma.

One of the electrostatic modes of a plasma sphere is
the well-known plasma resonance of Langmuir and
Tonks' which has also been studied in InSb.' This mode
can be identified with the lowest TM mode of a plasma
sphere. We refer to it as the uniform mode; the displace-
ment of the carriers is the same throughout the sphere.
This mode is analogous to the uniform precession mode
usually observed in ferromagnetic resonance.

If co~'))co~ and co, &co, where co„is the plasma fre-
quency, co, the cyclotron frequency, and ~ the frequency
of the applied field, the effective dielectric constant of a
plasma can be large and positive. In such a case the
radius of a sphere may not be small compared to the
wavelength inside the plasma in spite of the fact that
the radius is small compared to the free-space wave-
length. The electrostatic approximation is, of course,
invalid and electromagnetic resonances are to be ex-
pected. These resonances are closely related to the
"helicon" waves and resonances, which have been dis-
cussed recently. '~" We have not solved this boundary-
value problem, but it appears that an assumption of an
efI'ective scalar dielectric constant Gts the experiments
surprisingly well. The lowest resonant mode observed in
this case behaves very much like a magnetic dipole
precessing about the applied magnetic Geld.

THEORY

A. Electrostatic Modes

The eGective dielectric constant of a plasma without
losses in an applied magnetic field can readily be
computed from the equations of motion to be

where eg is the dielectric constant of the material in the
absence of free carriers; co is the frequency of the applied
electric field; a&,= eBO/mc, co„'=4s Xe'/m; Bo is the con-
stant magnetic field in the s direction; 1V, e, and m are
the electron concentration, charge, and mass, respec-
tively. In the case of electrons in a solid, m would be the
effective mass of the carriers.

If we have a circularly polarized incident field, one
can write an effective dielectric constant tensor for each
direction of circular polarization:

2
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Equations (1) and (2) are referred to the same system of
coordinates.

If the size of the sphere is much smaller than the
wavelength of the incident radiation, the time deriva-
tive in Maxwell's equations can be neglected, and one
can merely solve the equation

V'. a V'C=O.

%e first consider solutions of this equation when a is a
scalar, which is the case for zero magnetic field. It turns
out that there are also solutions for nonzero magnetic
Geld which can be determined in this manner. In such a
case the potential inside the sphere 4; and the potential
outside Co can be written' as
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where r, ||,and p are the polar coordinates and P„are
the associated Legendre polynominals. When r is equal
to the radius of the sphere E, the usual boundary condi-
tions must be satisfied:

C,(R) =C o(R),

e(84;/Br) g = eo(BC 0/Br) g,

where &0 is the dielectric constant of the material outside
the sphere. We can find homogeneous solutions, i.e.,
resonances, whenever

e = —cp (v+1)/n,

where n is an integer. For a positive eo we can have
resonances only when ~ is negative, as in the case of a
plasma. When there is no magnetic field these modes are
(2m+1)-fold degenerate and e= az,—co~'/co'.

If a magnetic field is present, & is a tensor and we
cannot use Eqs. (4) as a solution of Laplace's equation.
However, we can note that for modes where ns= n the
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electric 6eld is circularly polarized in a plane perpen-
dicular to the 2 direction. The dielectric constant in the
s direction is, therefore, irrelevant. For these modes we

can thus write

nance for the uniform mode at

GOy 12 Ep

1—— kp~R~

Gl (6z+2 co) 5 6r+ 2 Ep

eI.—(u,'/&o (co+(u.) = —ep(m+1)/n,

or, solving for ~„
ore= ~ a}

fez+ (m+1) eo

For the case of n= 1 and op= 1 we have

(7) Actually, when R becomes Gnite the electric Geld in the
z direction is not zero, and it is not permissible to use a
scalar dielectric constant. However, the result obtained

by analogy to the more careful treatment for the
ferrite"' is identical to Eq. (12).We note that if eI)&fp
(the usual case for a semiconductor in air) the size
correction is quite small.

(4x/3m) iVe'
Ql =W co

1+(4 /3)x i'

where x= (eI.—1)/4s is the electric susceptibility of the
lattice. This is just the uniform mode of Langmuir and
Tonks, which has also been studied in solids. ' "One can
readily see that if eI.))ep all of the e= m modes resonate
at approximately the same magnetic field for a Gxed co.

This is the usual case for a semiconductor in air.
%hen ns/n the situation is much more complicated.

Fortunately, an analogous problem has already been
solved for the case of a ferrite sphere and one can de-
terrnine the solution for the case of the plasma from the
resu1ts of the ferrite calculations. This is discussed in the
Appendix.

The resonances of Eq. (7) do not depend on the radius
of the sphere. However, if we increase the size of the
sphere, the assumptions in deriving Eq. (7) do not hold,
electromagnetic radiation sects appear, and co, shows a
size dependence. The 6rst-order correction in R' to Eq.
(7) can be easily estimated by expanding the charac-
teristic equation for the electric modes of a dielectric
sphere':

kp'[k& j (k&)]'/kP j„(kQ)
= [koRk "'(koR)]'/k„&'&(koR), (10)

in powers of R In Eq. (10) k., and ko are the propagation
constants of the material inside and outside the sphere,
respectively, j„is the spherical Bessel function, and h„")
the spherical Hankel function of the 6rst kind and
order e. Expanding Eq. (10) in powers of R and neglect-
ing all terms higher than R' we obtain for n=1

j„(k~)=0,

for the electric modes and

j.'(kaR) =0,

(14)

(15)

B. Electromagnetic Modes

When ~„'))o&~and &o,)s&, e„and e» in Eq. (2) can
be large positive numbers, and the propagation constant
for circularly polarized plane waves propagating in the
direction of the magnetic 6eld kg, may be positive and
very large. (It is this mode of propagation which has
been referred to as "helicon" waves" and observed in
InSb, "sodium, "and other metals. ") Clearly, the treat-
ment used in the previous section is no longer valid. In
spite of the fact that an element of the dielectric con-
stant tensor is a large negative number, one might
expect electromagnetic resonance modes to exist when
k~&1. In this case the division into electric and mag-
netic modes is no longer permissible, and the problem
appears to be extremely complicated.

An "approximation" which we can justify only by its
simplicity is to consider the plasma in the magnetic 6eld
to be a dielectric with a dielectric constant equal to e

of Eq. (2). We, thus, choose the propagation constant
for the plasma equal to kg. Ke then calculate the
resonant magnetic 6elds from the characteristic equa-
tions for the electric and magnetic modes of a dielectric
sphere. ' This is Eq. (10) with k;=kq for the electric
case. For the magnetic modes we have

[k&j.(k LR)]'/j (kaR)
= [koRk &" (koR)]'/k "'(koR). (13)

Since koR«1 we expand the right-hand side of Eqs. (10)
and (13) and the conditions for resonance become

e/~o ———2[1+(6/5) ko'R'] (11) for the magnetic modes. If or,))ar we obtain
A similar expression can be obtained for n~1. Equation
(11) and its equivalent for n&1 show that the electro-
static plasma resonances are the lowest electric modes of
a sphere with kp'E'&(1. These modes only exist for
negative dielectric constant. Using for e the e, com-
ponent of Eq. (2), we obtain the magnetoplasma reso-

"R. E. Michel and B.Rosenblurn, Phys. Rev. 128, 1646 {1962).

kaR= (co/c)[~I.+or„'/re~]'~'R=P ~ or a„~, (16)

where P ~ and a ~ are the roots of Eqs. (14) and (15),
respectively. "The first few of these roots are nI; ——2.08,

'~ J. E. Mercereau, J. Appl. Phys. 30, 184S (1959}.
"Tables of Spherical Bessel IiNNctions, National Bureau of

Standards Series (Columbia University Press, New York, 1942),
Vol. I.
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I'IG, 1. Cross section of the proposed Geld distribution for the
lowest size-dependent mode of a small plasma sphere in a magnetic
Geld. The solid lines indicate the magnetic Geld and the dots and
crosses the electric Geld. The applied Geld is perpendicular to the
paper.

5.94, 9.21; o.2;——3.34, 7.29; Pis=449, 7.72, 10.9; P2i
= 5.76, 9.10.

The lowest mode is the first magnetic mode (TEii)
corresponding to mid. Corresponding to our choice of a
propagation constant for a circularly polarized wave we
expect this mode to be circularly polarized, i.e., to con-
sist of the excitation of two TE» modes at right angles
to each other and 90 out of phase. This field configura-
tion is shown in Fig. 1. The magnetic 6eld is shown by
the arrows and the electric 6eld, which is in circles about
the magnetic field and perpendicular to the paper in this
cross section, is shown by the dots and crosses. The
constant magnetic 6eld is also perpendicular to the
paper. The proposed mode is a magnetic dipole pre-
cessing about the constant magnetic field.

EKPERIMENTAL

The spheres of indium antimonide were prepared by
cutting cubes of appropriate dimensions and placing
them in a cylinder lined with a 6ne emery paper. A jet
of air was used to rotate the cubes in the cylinder. Quite
accurate spheres could readily be made in this manner.
The spheres were mounted in a rectangular TED'„
microwave cavity or in a waveguide by suspending them
on a 0.001-in.-thick Mylar sheet with a thin layer of GE
No. 7031 lacquer. Most of the measurements were made
at a temperature of about 60'K obtained by pumping on
liquid nitrogen. At this temperature the carrier concen-
tration is quite insensitive to temperature or magnetic
6eld, and the scattering times are about as long as can
be obtained in these samples. We did not operate at
helium temperature since at this temperature the carrier
concentration changes with magnetic 6eld and the
scattering time appeared to be somewhat shorter. Most
of the measurements were taken at frequencies of about
25 kMc/sec. The resonances were usually observed by
recording the change in the cavity reflection coefIicient
and therefore in sample absorption as a function of
magnetic field.

We were not able to observe any of the electric modes
other than the uniform mode. As was pointed out above,
those with m=e would be very close to the uniform
mode and, therefore, unresolvable under our experi-

mental conditions. %hen the sample was moved to an
electric 6eld node this resonance disappeared. Thus, if
other modes with n=m were present, but unresolved,
their excitation at the node is very small (as would be
expected). It is shown in the Appendix that with one
exception we would have to go to frequencies about one-
6fth of the plasma frequency to observe any of the
modes with m4n, for n=2. The one exception is the
m=1 resonance near zero magnetic held. W'e did ob-
serve in very small samples a broad maximum near zero
magnetic field when the sample was at a node of electric
field, but we do not feel that we can definitely assign it
to this mode.

In the usual derivation of the magnetic field for uni-
form magnetoplasma resonance' ' "it is assumed that
the electromagnetic field can penetrate the sample. The
criterion stated is that the sample must be small com-
pared to the ordinary skin depth. According to Eq. (12)
if el.&)eo the sample can be considerably larger than a
skin depth and the resonant magnetic field is unchanged.
To demonstrate this we took a sphere of indium anti-
monide (ei, ——19.6)" with a carrier concentration of
6.4/10" and observed the field for the uniform mag-
netoplasma resonance as the radius of the sphere was
reduced in several steps from 0.050 to 0.015 in. The
calculated skin depth for this material was 0.016 in. The
resonant magnetic field changed less than 5%. There
was a slight shift towards lower fieM, but our uncer-
tainty as to the uniformity of the carrier concentration
precludes our drawing any more quantitative con-
clusions.

The calculations for the resonances we observe were
made with the assumption that the sphere is in free
space; actually, of course, it is in a cavity or a waveguide.
To demonstrate that any polarization charges induced
on the walls were unimportant the uniform mode was
measured for an R=0.05 in. sphere in a waveguide
whose smaller dimension was 0.170 in. The sphere was
thus less than its radius from the wall. Nevertheless, the
resonant magnetic field was the same within 3% as the
field measured for the same sphere in a larger waveguide.
An estimate of the shift shows that it should be small
for &L,»~o.

In addition to the size-independent uniform mode,
resonances were observed which depend strongly on
sample size. Different resonances mere excited depending
on the position of the sample in the microwave cavity,
e.g. , whether it was at a node or an antinode of the
electric field. When the sample was gradually moved
from a node to an antinode, the relative intensities of the
resonances changed, but the magnetic fields for reso-
nance did not. DiGerent resonances were also excited
depending on the orientation of Bo with respect to the
microwave fieMs.

In Fig. 2 we show two typical experimental curves of

'7 T. S. Moss, Optical Properties of Semiconductors (Butterworths
ScientiGc Publications, Ltd. , London, 1959},p. 235.



RESONANCES OF SMALL PLASMA SPHERE IN MAGNETIC FIELD

power absorption versus magnetic Beld. The sample had
a 0.015-in. radius and an electron concentration of
2.3)& 10"/cc. LThe stronger resonance in the solid curve
is the one we identify with the 6rst magnetic mode
(Fig. 1) and the root o.» of Eq. (15).jAs the sphere size
is reduced these resonances move to lower 6eld, decrease
in strength, and disappear. The absolute width of the
resonances decreases as the sphere size is reduced.

We expect the modes excited at a node of electric 6eld
to have electric Belds of odd parity and magnetic 6elds
of even parity. The reverse should be true of the modes
excited at an electric antinode. Thus for odd n we expect
magnetic modes to be excited at a node and electric
modes at an antinode, and the opposite for even n.
Using this rule and Eq. (16), we plot the expected reso-
nant magnetic 6elds for the four 6eld configurations in
which resonances were observed for the first few values
of n and /. It is a property of the spherical Bessel func-
tions that each of the P„&are approximately equal to an
n„~with n differing by unity. The one exception is P».
Therefore, we have not plotted any electric modes ex-
cept the first. In this plot we have chosen co„=7.3)&10"
sec ', co= 1.6)(10"sec—', and &~= 19.6. The circles are
the experimentally observed resonances for a sample of
indium antimonide under these conditions. The plasma
frequency of the sample was determined by a measure-
ment of the uniform magnetoplasma mode. The corre-
sponding carrier concentration was in substantial agree-
ment with a concentration determined by a Hall
measurement on an adjacent piece of material. There
are no adjustable parameters used in comparing the
data with Eq. (16).

The major discrepancies between the experiments and
Eq. (16) is an extra resonance in Fig. 3(c) to which no
electric or magnetic mode corresponds and the apparent
absence of a resonance associated with P~~. As the radius
is reduced the extra resonance appears to become a
broad absorption maximum at low 6eld which we have
said might be due to the n = 2, m= 1 electrostatic mode.
Since in this sample

~
k ji!

~
)1, the large size dependence

would not be surprising.
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Fxo. 2. Experimental microwave absorption as a function of mag-
netic field by a small sphere of indium antimonide.
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FIG. 3. Magnetic field for resonant absorption of 25-kMc/sec
radiation vs radius for an indium antimonide sphere with N =2.3
)(10'4/cc. The lines are calculated from Eq. (16).The points are
experimental.

The form of the absorption curves for the various 6eld
configurations of Fig. 3 was generally quite dissimilar.
At an antinode with Bo perpendicular to the microwave
electric 6eld, and at a node with Bo parallel to the
microwave electric field, the lines were generally well
resolved, and the intensity of the resonances changed in
a fairly simple manner as the sample radius was reduced.
This was not the case for the other two con6gurations.

The dependence of the resonant magnetic field on
microwave frequency has also been observed to be ap-
proximately in accord with Eq. (16). Data were also
taken on samples with carrier concentrations several
times lower than that of the sample of Fig. 3. In these
cases only the resonances corresponding to the lowest
roots could be observed, but these occurred at ap-
proximately the fields predicted by Eq. (16).

We now consider the lowest and most prominent of
the size-dependent modes, the one we assigned to the
root u~~, in somewhat more detail. In the previous sec-
tion we speculated that this mode has a field configura-
tion very similar to that of a magnetic dipole precessing
about the applied magnetic field. We would thus expect
the microwave magnetic 6eld to excite this resonance.
This appears indeed to be the case. The resonance is
excited whenever the applied 6eld is perpendicular to
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the microwave magnetic 6eld, whether or not it is per-
pendicular to the microwave electric 6eld, as is the case
for a magnetic dipole in an applied Geld (e.g., electron
spin resonance). We would, furthermore, expect a mag-
netic dipole resonance to be excited by only one circular
polarization. To check this, a sample was mounted in a
waveguide halfway between the broad walls and one
quarter of the long dimension away from a narrow wall.
At such a point in a waveguide in its TEO~ mode with a
wave traveling in only one direction, the magnetic field
is approximately circularly polarized, but the electric
field is not. It was found that the resonance identified
with n» was considerably stronger for one direction of
the applied magnetic 6eld than for the other. This
demonstrates that this resonance is excited by a circu-
larly polarized microwave magnetic 6eld.

The o.» resonance is associated with a stronger ab-
sorption than any of the other size-dependent resonances
we have studied. On a sample with X=0.008 in. and
E=6X10"/cc the an resonance with the sample at an
electric 6eM node had one eighth the peak intensity of
the uniform electrostatic resonance at an antinode of the
electric 6eld. In several samples of different radii and
electron concentration the ratio was not very different
from this.

DISCUSSION

In the above treatment we assumed that the reso-
nances of the actual plasma would occur at the same
magnetic fieM as for a plasma with a very small collision
frequency; Eq. (1) gives the dielectric constant of a
lossless plasma. We would, generally, expect the position
of resonances to be largely independent of the loss,
which would determine their width. If loss is included in
the dielectric constant, an imaginary part is added to
the diagonal terms and a real part is added to the off-
diagonal terms. The ratio of imaginary to real parts for
the magnetic 6eld dependent part of diagonal terms is
approximately ~r while the ratio of real to imaginary
parts for the off-diagonal terms is approximately
,'cur (co,/sr)', w—here r is the scattering time. The material
used in the present experiments had cur =0.5,' and since
~,))~ the magnetic dependence of the diagonal terms
was loss dominated, while for the off-diagonal terms the
effect of loss was small. The loss tangent of the material
would be = (s&,r)—'.

It was observed that the resonances at high magnetic
6eld were quite broad and got considerably narrower
when they moved to low 6eld as the sample size was
reduced. This seems to contradict what we said above,
since the loss tangent decreases with increasing mag-
netic Geld. Actually, in going from Eq. (13) to Eq. (15)

"This cur is calculated from the measured dc Hall mobility on
several adjacent samples. The linewidth of the uniform plasma
mode was consistently found to be larger than predicted from the
Hall mobility. The additional broadening may be due to the exci-
tation of higher electrostatic modes. This excitation could be
caused by microscopic fluctuations in the carrier concentration
which have been reported for InSb.

we have assumed ksR«1, which is no longer true for
large sphere radius. While Eq. (15) hs, s real roots, as we
increase the sphere radius this equation is not valid, and
the resonance frequency, obtained as a solution of Eq.
(13),becomes complex, the sphere radiates at resonance,
and the resonance line is broadened.

For a gaseous plasma the relaxation time is usually
much longer than for a solid and eL, =1.In such a case
one should be able to resolve the electrostatic modes.

We would like to thank Harold Hanson for taking
most of the experimental data, and Dr. Maurice
Glicksman for stimulating discussions. We would also
like to thank Dr. A. C. Beer and Dr. M. Glicksman for
supplying the indium antimonide used in this work.
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where 0= co/4xyMO, Q~= (H/4m %0)—s', where y is the
gyromagnetic ratio, and Mo is the steady magnetization
in the 2 direction. The symmetry of Maxwell's equations
with respect to E and I enables us to draw a close
analogy between plasma resonance and ferromagnetic
resonance. The electrostatic plasma resonance has its
analog in the magnetostatic ferromagnetic resonance.
The magnetostatic potential + inside the sphere will
satisfy V p VC'=0 and outside V'0 =0. 0 and the
normal component of the magnetic induction must be
continuous at the surface of the sphere. In order to
establish the formal analogy between magnetostatic
ferromagnetic resonance and electrostatic plasma reso-
nance, it is convenient to write Eq. (1) as

IE= CzzR = 6gz

COy Mc
2 2

1—
c &zz

2
Cay COc

Cvy Cuc
2

Z

CO GO
—(d fgz

The ss component of e' is 1 as is the corresponding com-
ponent of p. The electric potential 4 must satisfy
V a' VC =0 and the boundary conditions, C continuous
at the surface of the sphere and the normal component
of a' VC inside the sphere equal to the normal com-
ponent of (eq/e„)V'4 outside. The electrostatic reso-

APPENDIX

The permeability tensor of a ferrite with a steady
magnetic 6eld H applied in the s direction is
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nances are obtained by equating e' to y and the
permeability p,o of the medium around, the sphere to
oo/o„in the equations for the rnagnetostatic resonances.

By using this analogy and the characteristic equat c.n.

for magnetostatic resonance, ' we obtain the charac-
teristic equation for electrostatic plasma resonance:

(m+1) oo/o. .+$[Po"($)j'/P„"(()= amv,

where
o.~'(&o' —oo,')

ofay o)c2

COy a)c2

OP GPc 076

3.5

3.0

I.s

l.0 m=0

m=l

m=1

This characteristic equation reduces to Eq. (6) for
n= m. For n= 2 and ~0= 1 the characteristic equations
are

y(y~a)= 1, (lml =2)
yoway' —ya-', a= 0, ([m )

= 1)
(19)

2or,y' —y'L2(1+a') oz+3+2or, j
+a'(1+2oz)+ (3+2ol,)=0, (m=0)

where y= (co/co v) (-', +ol )'~' and a= (a),/a&, ) ($+oz)'".
Figure 4 shows the solutions of Eqs. (19) as a function

of a. These solutions for
~
m

~

= 2 and
~
m~ =1 are inde-

pendent of el.. For m=o, el. appears explicitly in the
characteristic equation. These solutions have been

ITI"2

0 I 2 3 4 5 6 7 B 9

Fzo. 4. Reduced frequency y vs reduced magnetic field a
Ldefined by Eq. (19)j for the electrostatic modes of a plasma
sphere for n=2.

plotted for el. —+ ~. In the experiments reported here
co(&co~ and only no= 1 and vs= 2 resonances couM appear.
The vs= 1 resonance, however, would appear at a very
low magnetic 6eld. Because of collision broadening it
looks like a smooth decrease in the conductivity rather
than like a resonance. The ~m~ =2 resonance is very
close to the uniform magnetoplasma mode.

PH YSICAL REVIEW VOLUME 129, NUM HER 3 1 FEBRUARY 1963

Oscillations of a Plasma in a Magnetic Field

M. J. STEPHEN

Physics Department, Pale University, Sea Haven, Connecticut

(Received 14 September 1962)

The plasma oscillations of a high-temperature and a degenerate plasma, both with and without an applied
magnetic field, are discussed using a Green function technique. For the high-temperature plasma in lowest
order the results reduce to those obtained via the linearized Boltzmann-Vlasov equation in the classical
limit. The quantum-mechanical effects are important for strong fields where the quantization of the orbits of
the electrons in the field must be taken into account. The dispersion relation of a degenerate plasma in a
magnetic field is obtained within the random phase approximation. This dispersion relation is discussed for
various special cases. The fluctuation spectru~ of the plasma is obtained by making use of the fluctuation
dissipation theorem.

1. INTRODUCTION
' 'N this paper the small oscillations of an electron gas
~ ~ in thermodynamic equilibrium are discussed. The
two cases of a plasma in zero external magnetic 6eld and
a plasma situated in a strong uniform magnetic held are
considered. The presence of the ions is neglected and we
use the simple model where the ions are smeared out into
a compensating positive background. The usual treat-

ments of the oscillations of a high-temperature plasma
are based on the collisionless Boltzrnann-Vlasov (B.V.)
equation or on the hydrodynamic equations of motion.
Reviews of recent work in this 6eld have been written
by Thompson' and Oster. ' Here we use a diferent ap-

' W. B.Thompson, Reports on Progressin Physics (The Physical
Society, London, 1961), Vol. 24, p. 363.

'L. Oster, Rev. Mod. Phys. 32, 141 (1960).


