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In the impulse approximation for the scattering of a particle by a bound system, the amplitude is a sum

of integrals over two-body scattering amplitudes, oG the energy shell, folded into bound-state wave func-
tions. In the usual formulation, the nonphysical two-body amplitudes are replaced by physical amplitudes
with no firm justilcation for this procedure. The dispersion-theoretic formulation presented here, for elastic
scattering, removes this difhculty; for low values of t, the momentum transfer squared, the discontinuity
across the cut in the t plane can be expressed in terms of the absorptive part of the physical two-body
amplitude and the asymptotic form of the bound-state wave function. Working with a nonrelativistic model,
it is shown that the Cutkosky method for finding absorptive parts of Feynman amplitudes applies here as
well. The analyticity of the amplitude is a conjecture, based on a proof that the second and third Born
approximations satisfy a Mandelstam representation. The method of this proof is an adaptation of tech-
niques recently developed by Eden and others in the relativistic case.

l. INTRODUCTION

' ~IISPKRSION theory has recently assumed a
central role in the description of processes in-

volving strongly interacting particles. Since the ultimate
validity of this approach is as yet unestablished, it
would seem to be of interest to test these new techniques
on more tractable model problems. In this spirit a
study of the scattering of a particle by a static central
potential, assumed to be a linear superposition of
Yukawa potentials, has led to the result that the scat-
tering amplitude has the analyticity properties in
energy and momentum transfer which imply a
Mandelstam representation. ' Single variable dispersion
relations have been applied to the Lee model, ' to the
scattering of electrons by hydrogen atoms, ' and to
the analysis of stripping reactions. 4 Blankenbecler,
Goldberger, and Halpern' have applied dispersion re-
lations, in a 6eld-theoretic framework, to the study of
low-energy elastic neutron-deuteron scattering.

An essential difIIculty encountered in any attempt to
extend the work of Blankenbecler et al. to higher
energies is the increased importance of inelastic inter-
mediate states. However, it has been demonstrated in
the relativistic cases that for 3, the square of the mo-
mentum transfer, sufficiently small the relevant elastic
scattering diagrams involve only two-body intermediate
states in the I channel even though the intermediate
states are quite complex when approached from the s
(energy) channel. In such a case the spectral function
may be determined in terms of two-body scattering
amplitudes, thereby providing, in the case of n —d
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scattering, a dispersion theoretic analog of the impulse
approximation.

We have attempted to pursue these ideas in a simple
context; the model chosen here is the nonrelativistic
scattering of a particle by a bound two-particle system,
all three particles being spinless and neutral. We begin,
as in the usual impulse approximation approach, by
ignoring those contributions to the scattering amplitude
which correspond to multiple scattering and "potential"
corrections (see Sec. 2). The remainder, which is
expected to give the dominant contribution for the
high-energy scattering by a weakly bound system, is
then assumed to be an analytic function of t with a cut
on the negative real axis. Some support is given for
this assumption in Sec. 3, where it is shown that the
second Born approximation to this amplitude satisfies
a Mandelstam representation. The method of proof is
based on the Feynman parametrization of the integrals
and an analysis of singularities used by Kdenv and
others in relativistic problems. The proof (assuming
one exists) for higher terms in the Born series seems to
involve no technical difFiculties other than algebraic
complexity. In the simpler two-body scattering problem
we have in this way been able to reproduce the result
that each term in the Born series satishes the Mandel-
stam representation. ' Of course, even a complete
analysis of the Born series can, at best, only make
plausible the analyticity of the amplitude itself. The
analysis of singularities referred to above has the addi-
tional virtue that it provides a basis, 6rst developed by
Cutkoskye for the study of Feynman amplitudes, for
obtaining the discontinuity across the cut. This is an
essential point. The only other known technique for
obtaining the spectral function in potential theory is
based on the unitarity statement'; this, however, in-
volves the inelastic intermediate states which we have
been trying to avoid.

'R. J. Eden, Phys. Rev. 119, 2763 (1960};120, 1514 (1960);
121, 1567 (1962).

s We shall not present the details of this proof here.
s R. Cutkosky, J. Math. Phys 1, 429 (1960).
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One might expect that a dispersion-theoretic ap-
proach would provide the advantage that one need only
employ two-body amplitudes which are on the energy
shell. Indeed, we have found this to be the case within
the zero-range approximation, in which only the tail of
the bound-state wave function is retained. This ap-
proximation may be justified, for low momentum
transfers, " in a manner characteristic of dispersion
theory, namely, that eRects of the finite range of the
potential contribute to singularities which are "distant"
and hence relatively unimportant. The use of physical
two-body amplitudes removes a source of ambiguity
which is present in the usual formulation of the impulse
approximation.

It may be noted that the techniques presented here
constitutes a nonrelativistic analog of the treatment of
the impulse approximation given by Cutkosky. "ERects
of the anomalous threshold are considerably simpler to
deal with here since they are taken into account by the
structure of the bound-state wave function. "

2. THE IMPULSE APPROXIMATION

We consider the elastic scattering of a particle of
mass m (particle 1) from a system consisting of two
particles (particles 2 and 3), each of mass m, bound in
and s state with energy —B. The binding potential is
assumed to be such that only one bound state exists.
For simplicity we assume the particles to be spinless
and neutral, and we ignore the Pauli principle. The in-
teractions between particles 1 and 2 and between
particles 2 and 3 are given by the potentials V and U,
respectively. Both are taken to be of the Yukawa
form, e "'/r; the generalization to a linear super-
position of Yukawa potentials for V and U is trivial.
For simplicity, we assume that particles 1 and 3 do not
interact. The Schrodinger equation takes the form

[—(A'/2m) (7&'+'7p+ V'3')+ V+ f '—2&+8jqf
—= (K+ V+O' E)0=0, (2.1—)

where Ez is the initial kinetic energy of the incident
particle. The integral equation, which incorporates
Eq. (2.1) and the appropriate boundary conditions may
be written symbolically as

and
e~kl r&ei k211(. atra) +(r& r&) (2.4)

hk& represents the initial momentum of particle |and
hk23 is the momentum associated with the center-of-
mass motion of particles 2 and 3; y(rk —rs) is the bound-
state wave function describing their relative motion.
The scattering amplitude T(k~,k2~, k~', k23') takes the
form

2'= (CI,Vq')

with 4», the final-state wave function, given by

@f—e~4'~ie~k2I'1(n+~s) &(rm r )

Equation (2.5) becomes, in view of Eq. (2.2),

(2.5)

(2.6)

y(r2 —r~)=(2s.) '' dqe' ' ' p(q) (2.9)

and with the introduction of the variables

(2.10)

we find, for E=—R~+R', the expressions

Rs = dq p(q) p(q+-', a) dr exp(ia. r) V(r) (2.11)

and

We now make the "impulse" approximation, "according
to which the eRect of the binding potential L' is negli-
gible except for its determination of the bound-state
function in 4; and 4 f. The amplitude T in this approxi-
mation is

T= (Cg, V[1+GVjC;)
—=(2s)'~(k, '+k„'—k,—k„)R, (2.g)

with G determined from Eq. (2.3) by dropping the po-
tential U.

I et us now examine E in the center-of-mass frame.
With the replacement

0=4;+GV4;,
where

G(r&,r„r,,r,', r, ', r&', J )

(2.2) R'= —(2s) ~ drdydr'dy'dqdq'p(q) p(q')

Xexp[—i(o"+Il' e)1V(r)Z dpi' v(r)47*(")

' The restriction to low momentum transfers is reasonable due
to the dominance of the forward diffraction peak."R. Cutkosky, in Proceedings of the 1060 Anneal International
Conference on Ehgh-Energy Physics at Rochester, edited by E. C. G.
Sudarshan, J. H. Tinlot, and A. C. Melissions (Interscience
Publishers, Inc. , New York, 1960), p. 236. See also, R. Slanken-
becler, Phys. Rev. 122, 983 (1961)."R. Blankenbecler and L. F. Cook, Phys. Rev. 119, 1745
(1960).

kqi ~= sk~+q
(2.13)

"G. F. Chew, Phys. Rev. 80, 196 (1950);G. F. Chew and M. L.
Goldberger, ibid. 87, 778 I', 1952).

X [(3h'/4m) (P' 0„' ig)j '—exp[—ip (y —g')j.
XV(r) exp[i(a r'+g p')], (2.12)

where



970 I. E0XAR D ROSEX BERG

f„(r) satisfies the equation

(—(ft'/rn) V,'+ V (r)—E,]f,(r) =0,
With

E=E~+ (3A'/4m) k~'. (2.15)

The summation over y in Eq. (2.12) represents a. sum

over bound states and an integral over continuum
states corresponding to solutions of Eq. (2.14). After
performing the integrals over p and p', Eq. (2.12)
becomes

E'= — dqdrdr'P(q)(p(q+-, 'tk) exp( —ie'. r) V(r)

XP $ (3A'/4m) Qt2 k,—' iq)—

E= dq(p(q) P( q+-', a)I Le, e', E (3A'/4m)P')—, (2.17)

where I(k,k', s), the matrix element of the interaction
operator, can be identified with the physical two-body
center-of-mass scattering amplitude only when the
relations

(k'/4n)k'= (l't'/nt)(k')'= s (2.18)

are satisfied. In Sec. 4 we shall see how contact with

physical two-body amplitudes may be established with
the aid of dispersion relations.

Before going into the complex plane we wish to make
an observation bearing on the convergence of the Born
expansion for the scattering amplitude T given by
Eq. (2.5). It is apparent that this series contains, as a
subseries, the terms obtained by inserting the Born
expansion for the interaction operator I in Eq. (2.17).
Suppose the potential V(~ r~—

r~ ~ ) is strong enough to
support a two-body bound state, of energy —~s»~. The
Born expansion of I(k,k'; s) then diverges for z= —

~
s»

~

and, for a wide class of potentials, diverges as well over
a range of s values in that neighborhood. "Since P' runs
through all positive values in Eq. (2.17), one is led to
conclude that in the absence of fortuitous cancellations
the Born expansion of the scattering amplitude in al)
likelihood diverges, for arbitrarily large incident energies
The situation here is identical to that discussed at
length in reference 14 for the case of rearrangement
collisions. Thus, the conclusions reached by Aaron,
Amado, and I.ee apply with equal validity to the case
of direct collisions; the essential requirement is that the
two-body potentials shouM be suKciently strong. "

"R. Aaron, R. D. Amado, and B. %'. lee, Phys. Rev. 121,
319 (1961}.

"The Born expansion of the two-body scattering amplitude
may diverge over a range of energies even if no bound state exists.
See, e.g., W. Kohn, Rev. Mod. Phys. 26, 292 (1954}.

Xf„(r)g,*(r')V (r') exp(ie r') (2..16)

%e see that R has the form

These convergence difhculties point up the desirability
of the development of nonperturbative approximation
procedures in multiparticle scattering problems.

dqdlP(q)P(q+-', tk) V(l—e')

XDf'+4 f2 kg+—s44 irt) —'V(e !), —(3.1)

where V is the Fourier transform of the potential and
c= (rn/Ar)B. It is known'2 that p(q) has the analytic
properties which allow the representation

~(q) = +
/+6

o(r)
dv,

~'"+~)' g +&
(3.2)

where C is the asymptotic normalization of y(r). In the
following, for convenience, only the pole term in
Eq. (3.2) will be retained; it will be apparent how the
proof goes for the entire function &p(q).

The integral is now of the form which enables us to
use the technique of Feynman parametrization, so that,
after some trivial changes of variables, we are led to
study the expression

with

0=e~((pi+pm —k~')'+«)
+e2L(pi+p2 —ki)'+«)+ca/(k' —pi)'+t ')
+e4LpP+ 3p22 —kB+34—irt]

+es[(k—pi)'+t ') (3 4)

The integrals over yI and p2 can be performed in
Eq. (3.3), leading to

I LcV(e))'"b (1—Qe;)
R2= 64I' ' 445 (3.5)

0 L (Dse, t))'

with D of the form

D= s/(e)+tg(e)+k(e) (3.6)

3. ANALYTICITY OF THE SECOND
BORN AMPLITUDE

In the two-body scattering problem the analytic
properties of the full amplitude in the momentum
transfer variable are revealed (except for the behavior
at infinity) by a study of the first and second Born
amplitudes; this is true whether or not the Born series
converges. Ke shall assume that a similar situation
holds in the present case as well. It will now be shown
that the second Born approximation to E. satisfies a
Mandelstam representation. This amplitude, which is
obtained from Eq. (2.16) by replacing the functions f,
by plane waves, takes the form (aside from constant
factors)
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Here s is dered by

(3h'/4m) ~=E,

either n;=0,
or BD/Bn, =0,

(3.8)

which guarantee either a pinching or end-point singu-
larity in each of the n integrations in Eq. (3.5). It is
found that the curves of singularities on the boundary
of the physical sheet are continuous, have positive
slope, and are asymptotic to the threshold lines s=0,
and t= —16& or t= —4p'.

With these properties established it may be shown
that the curves of singularities have no extension into
the complex region of the physical sheet. A simple way
of showing this makes use of the method of analytic
completion'; as this has been fully described we omit
the details here. The Mandelstam representation then
follows by a double application of Cauchy's theorem.
The proof can also be carried through for the third
Born term. " In the following section we examine the
consequences of the assumption that the analytic
properties in the variable t, with s&0, which have been
established for the 6rst few terms in the Born series,
are retained in the full amplitude. "

"To study the general term in the Born series using the above
method it would be necessary to obtain information about the
functions f{n), g(a}, and h{a), in particular the inequalities of
Eq. {3.7). While such information can be readily obtained for
each term in the Born expansion of the two-body amplitude
{thereby providing another proof that these amplitudes satisfy a
Mandelstam representation) we have as yet been unable to do so
for the present case.

"When we apply the Landau-Bjorken conditions to the eth
term in the Born series, R (s,t}, we find threshold singularities at= —16~ and t= —e~p~. Accordingly, a proof of the analyticity

and the functions f, g, and h, having been determined
explicitly, are found to satisfy the inequalities

f()«, g()&0. f()» (37)

for o;;)0. These inequalities imply that the function
R2(s, t), as defined by Eq. (3.5) with g=0, is a real
analytic function in the region s(0, t)0 since D(a,s, t)
is positive in this region for n;&0. It may be shown, by
examining the functions g and h, that D is in fact posi-
tive in the extended region s(0, t& —16&.

It is clear that with s(0 and Imf/0, D(n, s,t) is non-
vanishing so that R~(s,f) can be analytically continued
into the complex t plane cut along the negative axis
from f= —00 to I,= —16&. Similarly, with t& —16&,

R2(s, t) is analytic in s with a cut along the real axis
from s =0 to s = ~ . The physical amplitude is recovered
by letting s approach the positive real axis from above.
This defines the physical sheet. It is easily established,
by taking appropriate analytic continuations of R2(s, t),
that singularities on the boundary of the physical sheet
(s and t real) occur for undistorted n contours (i.e.,
n, )0). The location of these singularities is determined
by the conditions that

4. DISPERSION-THEORETIC APPROACH

According to our assumption of analyticity (and,
further, assuming no subtractions are necessary) we
write

1 " A(s, t')
R(s,f) =Re+ — dt'.

t'+t
(4.1)

It is our purpose to evaluate A (s,t) in terms of the ab-
sorptive part of the two-body scattering amplitude.
The essential points in the method can, in fact, be well
illustrated by an analysis of the Born term R& to which
we now turn our attention.

Keeping just the pole term in the expression for
p(q) /see Eq. (3.2)] we obtain

Rs(t)=C' dr exp(fa r)V(r) I(t), (4.2)

where

1 1
I(t) = dq

qP+~ q2'+~

with qi=q and qm=q+~ik. Direct evaluation of I(t)
(e.g., by Feynman parametrization) yields

2ir' -(—4e/t)'"+i~-
I(t)= ln

f~1/2 ( 4&/[) i/2 1 (4.4)

(4.5)

With the aid of Eq. (4.4) we get

I(f)= 2gr2 (f ) ~ d$
3'+t

(4 6)

The sign in Eq. (4.6) is determined by requiring that
I(t) be positive for t& —16', the necessity of which can
be seen from the parametrized form for I(/).

To illustrate the technique for obtaining A in
Eq. (4.1), we now re-evaluate I(t) by making use of
our knowledge of its singularities. By transforming
variables of integration from q~, 8, q to qi', q2', and q,
with

qP =qi'+~~~'+qch cos8 (4.7)

(4 is taken to be along the s axis), Eq. (4.3) may be

of R(s,t) along the lines of that given for the two body problem
(see reference j.) will be complicated by the fact that in this case
the remainder, R—R, is not expected to be analytic inside a
region which becomes arbitrarily large as n —+ ~.

We see that I (t) is analytic in the complex f plane, with
a cut running from t = —16' to f= —~ . I(f) may, there-
fore, be represented as
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written as

dqz lq2

I(t)= F(qP, t)(qP+ p) 'dqP- (4.9)

The singularity is due to the pinching of singularities in
each of the factors in the integrand at t= —16&, which
occurs at qz = —~. The contour of integration in the qz'

plane may be taken to be the sum of two parts; the
first part surrounds the point qz2= —~ and the second
part is a contour which is not pinched as 3 —+ —16&.

Thus I=Iz+I2, where

Ig (2m i)F (—p——,t), (4.10)

and I2 doesn't contribute to the discontinuity across
the cut. The limits a and b are determined by finding
the maximum and minimum values of qP subject to the
restriction that qz'= —e. The method of Lagrange's
undetermined multipliers leads to the conditions

X , (4.8)
ql +0 qg +6

where the limits a and b are functions of qz2 and 4
according to Eq. (4.7). The discontinuity across the cut
starting at this singularity may be obtained from

Eq. (4.8) by making the replacement

(q +p)
—'(qP+ p)

—-+ (2')b(qP+ p) (2s p)8 (q,'+ p)

To prove this statement, we follow the argument given

by Cutkosky in his analysis of singularities in Feynman
amplitudes. ' We write Eq. (4.8) as

Turning to the integral of interest, we rewrite

Eq. (2.16) as

dp H(qp, t), —

where
16p & t &F2, (4.14)

qp ( c) (cosep& sinep cosy, singp sing),
(4.15)

cosep ———(t/16p)'"

It may now be seen that A (s,t) has the nice property
that it can be expressed in terms of the analytic con-
tinuation of the physical two-body scattering ampli-
tude. We observe that for q=qp the relations

1 1
&'= C"- dq H(q; t)+R", (4.13)

qz +& q2 +&

where we have isolated the contribution to R' due to
the pole term in &p(q). If we continue to assume that
the second Born approximation to R' reveals the
analytic structure of R' itself, we conclude that in the
region 16p&t&4tP, A(s, t) t see Eq. (4.1)j is identical
with the absorptive part of the first term on the right-
hand side of Eq. (4.13). )In fact, when the entire
bound-state wave function is included the nearest
additional singularity which is introduced lies at
t= —4(2p''P+p)P$. Further, the singularity at t= —16p

is due to the vanishing of the two denominators; II is
analytic in the neighborhood of the singularity. /See
Eq. (4.18).j In the expansion of H about the value of q
determined by qP=qP= —e, only the leading term con-
tributes to the absorptive part. We then find that

q2+Xqz=0,

qz

(4.11)
CL =O.'=Ap

y

(35'/4m) (P' k') =F—.—(k'/m)a p'
(4.16)

Equations (4.11), along with the condition q&' ———p,

imply, according to the Landau-Bjorken rules, that the
singularity at t= —16p due to the vanishing of (q +pp)

occurs at one of the end points of the q~' contour. This
can also be seen directly from I'q. (4.7) by setting
cosa= —1. Since Iz has the value

are valid. With kz chosen as

k,= (-,'t'~', fkP —-'t]'", 0),
we findI8

ap-" ——(-,'k, )' xp p ,', t+— ——

b+~
Ig(t) = (2si)( )2-,p'rt "ln

+ (c, —~)~

(4.12)

t —I/o

(kP+ ', t) ——p -cosy. (4.17)
16

As a consequence of Eqs. (4.16), H(qp, t) becomes
the discontinuity across the cut starting at t= —16~ is
just equal to the product of the factor (2~'i)t '" and
the discontinuity of the logarithm across its cut starting
at the origin. Since this latter factor is just 2xi, the
above-mentioned prescription for finding the dis-
continuity of I(t) has been verified. The value of the
discontinity thus obtained agrees with that obtained
by direct evaluation of the integral, although we appeal
to this latter calculation for the correct sign.

H(tf p,'t) = — drdr' exp( —n'. r) U(r)

XQ, (E, (ft'/m)np' —iq j—'—
XP~(r)tt «*(r') V(r') exp(in. r'). (4.18)

' Due to the subsequent integration over &, no ambiguity
arises with regard to the sign of the square root in Eq. (4.17}.
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p(s', t')X, 16' t &4ts-', (4.19)
(s' —a,2 —iq) (t' —t)

where p is the double spectral function of the physical
two-body scattering amplitude. It should be empha-
sized that the two-body amplitude is to be evaluated on
its physical sheet; this is the instruction contained in
the presence of the ip term in the energy denominator
of Eq. (4.18)." It is interesting to observe that for
t) 16c,n02, as given by Eq. (4.17), can be positive only
for positive values of s= k»' —3e. Thus, the right-hand
side of Eq. (4.19) is analytic in the s plane cut along the
positive axis. This is a necessary, though of course not
sufficient, condition for R(s, t) to satisfy a Mandelstam
representation.

Note that the function

0

dq @(tl)~(ii+2&),

where f is the two-body scattering amplitude, has the
same discontinuity across the cut in the region
—4p,'&t& —16~ as does the function E. However,
complex singularities (in addition to the cut on the
positive s axis) will appear in R, for those values of s
and t for which 0;0' is positive. E, clearly corresponds to
the more usual form of the impulse approximation.

Equation (4.19), along with the delning equations,
Eqs. (4.1) and (4.18), represents the central result of
this paper. The two major assumptions we have made
are (a) the neglect of the binding potential L in the
expression for the Green's function, Eq. (2.3), is justi-
fied in the scattering problem we have considered, and
(b) the scattering amplitude R which results from this
impulse approximation has the analytic properties ex-
pressed by Eq. (4.1). Equation (4.19) may be expected

'9 A. Klein and C. Zemach, Ann. Phys. (N. Y.) 7, 440
(1959).

Making use of the known analytic properties' of this
function we may write Eq. (4.14) as

n

A(s, t) = (47rmifi')C't "" -dp ds' dt'

to give the dominant contribution to the absorptive
part provided 4p,' is large compared to 16~, and pro-
vided the analysis is confined to scattering in the region
where t,, the square of the momentum transfer, is small
compared to 4ti'. The significant feature of Eq. (4.19)
is that it involves the absorptive part of the pttysical
two-body scattering amplitude and thus makes possible
a quantitative test of the usual procedure of extrapolat-
ing nonphysical amplitudes D.e., the function I in
Eq. (2.17)) back on to the energy shell. While we have
no quantitative estimates to make at this time, our
result suggests that any validity of this extrapolation
procedure would be confined to the region of low t, and
that for large t, the impulse approximation in its usual
form should be subjected to further scrutiny. In fact,
the above remark provides an instance of a general
feature of the dispersion-theoretic approach, which
might be worth emphasizing; this approach has built
into it a natural way of assessing the validity of various
approximations, namely, in terms of "distant" and
"nearby" singularities. Another example of the use of
this validity criterion is provided by the question of
multiple scattering corrections, which we have ignored
in the present paper. It is not dificult to see, however,
that multiple scattering contributions to the amplitude
involve threshold singularities which lie further out on
the negative t axis (in lowest order perturbation theory
the nearest of these singularities is at t = —4ti') and may
therefore be expected to be less important than the
contribution considered here. We have ignored contri-
butions to the scattering amplitude arising from inter-
mediate states in which particles 2 and 3 are bound.
These terms are singular with a threshold at t= —64~.
With the aid of the unitarity relation the absorptive
part associated with these terms can be calculated and,
in the region —

41M,'(t& —64&, it is given exactly in
terms of the two-body spectral function. This, along
with a construction of a unitary impulse approximation
which effectively sums an in~nate sub-class of diagrams,
will be described at a later date.

ACKNOWLEDGMENT

I wish to express my gratitude to Professor R. D.
Amado who suggested the topic of this research and
with whom I had a number of valuable conversations.


