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Ns', and e4' asao, Po and yoare of e~, ns, n„and e4. Be- sum would exactly cancel with the second part of the

cause of the symmetry of the summand with respect to quadruple sum in. Z. We are thus left with only the

the interchanges of suSces 1+-+ 2, 3~4, the foregoing double sum in (134) which is found to be
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Int.roducing the constants appearing in (126), this gives

m.+m*s 1«
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—' rs — s's*'.

r, e~l m+m*
(137)

The 6nal result for the integral I is then equal to the sum of (133) and (137).
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An approach is presented toward validating the assumption that the ground state of bosons with repulsive
interactions at low densities is characterized by macroscopic occupation of the zero momentum level. We
use a cell model which affords a simple description of the high-density region, where Buctuations in number
density are small and where no single-particle level is macroscopically occupied. As the density decreases,
Quctuations increase, and we reach a critical density at which the small Quctuation approximation becomes
unstable with respect to plane wave states of zero momentum. At this critical density, the single-particle
energy gap disappears, and the dependence of excitation energy on momentum changes from quadratic to
linear, for small values of momentum.

I. INTRODUCTION

'HE model of E hard-sphere bosons at low densities
has been very successful in predicting many of

the physical properties of a superQuid. ' Of significance
in theoretical treatments is the role played by the
assumption that in the presence of the repulsive inter-
actions a 6nite fraction of particles occupy the state
with zero linear momentum. In the second quantized
formulation of the model, this assumption facilitates
reduction of the Hamiltonian operator from quadri-
linear to quadratic form in plane wave creation and
destruction operators. ' In a con6gurational-space
approach, it enables one to calculate the e6ects of
interaction using the ring integrals of Mayer cluster
theory. '

This assumption regarding a macroscopically occu-
pied level is physically plausible for repulsive inter-
actions at low particle densities. Moreover, it provides
a self-consistent theoretical development, that is, once
it is invoked, the theory shows that the interactions do

~ Present Address: Lockheed Missiles and Space Company,
Palo Alto, California.' N. N. Bogoliubov, J. Phys. (U.S.S.R.) 2, 23 (1947); K. A.
Brueckner and K. Sawada, Phys. Rev. 106, 111/ (1957); T. D.
Lee, K. Huang, and C. ¹ Yang, ibidf. 106, 1135 (1957).' H. A. Gersch and V. H. Smith, Phys. Rev. 119, 886 (1960).

not destroy the macroscopic single level occupation.
However, the validity of the assumption has never
been proved.

Our aim here is to attempt to indicate with a simplihed
model how the condensation in momentum space may
result spontaneously from the theory without having
to assume it at the outset. Such is the state of affairs
in the treatment of thermodynamic properties charac-
terizing an ideal Bose gas. There, at sufBciently high
temperatures, no single-particle level is macroscopically
occupied. As the temperature is decreased below a
critical value, the requirement concerning a 6xed
number of particles comprising the system forces a
6nite fraction of the particles to occupy the lowest
momentum level. One thus obtains a complete descrip-
tion of the ideal gas of bosons in both the region of no
macroscopic occupation of a single-particle level
(normal region) and the region of macroscopic occu-
pation of the single-particle zero momentum level
(superfluid region). It would, of course, be pleasing to
have the same complete description for bosons with
repulsive interactions. We have not developed such an
inclusive treatment in this work, but rather have
observed the ground state of the system starting from

' F. London, Phys. Rev. 54, 948 (1938).
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high densities (normal region) and proceeding to smaller
densities, until the appearance of an instability in the
theory.

Ke treat the system of bosons with repulsive inter-
actions by using a cell model which aGords a simple
description of the high-density region in which the
particles are well localized by the repulsive interactions.
In a representation which diagonalizes the cell occu-
pation numbers, the potential energy operator is
diagonal, while the kinetic energy operator has off-
diagonal terms which cause transitions of particles from
one cell to another. At high densities these transitions
are rare events so that we can develop an approximation
for small Quctuations in occupation numbers about the
average number. Under these circumstances, the mo-
mentum distribution of the particles is a smoothly
varying function of momentum, with no single level
macroscopically occupied. The single-particle excitation
spectrum exhibits an energy gap, and a quadratic
dependence of excitation energy on momentum. As the
density decreases, the particle wanderings become
greater, and Quctuations increase. Finally, at a low,
critical density, the small Quctuation approximation
becomes unstable with respect to formation of states
where particles are free to wander unrestricted over
the entire volume, i.e., plane wave states of zero
momentmn. At this critical density, the energy gap
disappears, and the single-particle energy has a linear
dependence on momentum, for small values of mo-
mentum. For densities less than this critical density,
one would have to replace the small Quctuation approxi-
mation by one which allows for the large Quctuations
in number density accompanying the greatly increased
occupation of the zero momentum state.

In Sec. II, we develop the cell model Hamiltonian,
and show that it is capable of reproducing several
well-known approximations.

In Sec. III, the description of the ground state as
one of limited Quctuations is made, using Greens
function techniques, and the instability at low densities
is demonstrated.

n. zoRMULwrrom op rHE cELr. MoDEL

A system of spinless, nonrelativistic boson particles
is considered to be enclosed in a large box. Both the
number X of interacting particles and the volume 0
of the box are assumed to be so large that all effects
which are small in the limit X—+ 00 and 0—+ ~ can be
neglected, the particle density p =S/0 remaining finite.

In the formalism of second quantization, the Hamil-
tonian operator for such a system is represented by

A2

B= ——ft(r) PP (r)dr2'

where f~(r) and P(r) are, respectively, creation and
destruction operators for a particle positioned. at r,
and U(r —r') is the interaction potential for particles
at r and r'. The number operator representing the total
number of particles is

4'(r)4 (r)dr,

and the commutation relations for bosons are

8 (r),4(r')]= E4 "(r),4'(r')]=o,
(4'(r) A'" (r')]= b (r—r').

For systems of low density, the field operator P(r)
is customarily expanded in a complete set of plane wave
states. Since the system of interest here is one of close
packing, an expansion of P(r) in a localized set of
functions is desirable. Accordingly, the box of boson
particles is divided into cells of size v equal to the
specific volume 1/p. The field operator is expanded in
a complete orthogonal set of functions f(r—r, ) centered
on the jth cell,

We choose Kronecker 5 functions for the orthogonal. set,

6«.= I, if r is in cell centered on r;,
=0, otherwise.

The Geld operator is thus assigned a constant amplitude
throughout a cell, resulting in the loss of some detail
regarding the fine structure of the model. However,
the properties sensitive to wavelengths, long compared
to a cell dimension, should still be obtainable with
precision. The field operator f(r) now has the form

(6)

as opposed to the usual Fourier decomposition into
plane waves. From Eq. (6) follows the commutation
relations for the operators b,„

[b,„,b„]=[b,„~,b,„~]=0,
7

Lb..b «']=b. ;»

The number operator of Eq. (2) becomes, in terms of
these new operators,

X=+,, b, , "b,, =Q, , n... ,

where n, ,=b,,~b,, is the occupation number of the cell j.
Equation (6) is now introduced into the Hamiltonian

operator of Eq. (1) to express the latter in the new
operator notation. The kinetic energy operator T of
Eq. (1) is

+- Pt(r')Pt(r) U(r r')f (r)f(r')drdr', —(1)
2

A finite difference approximation is adopted for the
operator 7 b,,6, ,, In a three-dimensional model with
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Reference to Eq. (8) shows that the first term appearing
on the right in Eq. (11) above is simply the sum of n, ,
times a zero-point kinetic energy for localization of a
particle in a cell. The second term on the right side of
Eq. (11)—the off-diagonal element —represents the
drifting of particles into neighboring cells. This latter
term affects a decrease in the kinetic energy from its
value for localized particles, an understandable result
since the shifting of particles spreads out the wave
function which implies a reduced kinetic energy.

A second step in the reduction of Eq. (1) to its
equivalent representation in terms of the cell creation
and destruction operators is the description of the
potential energy operator V. Substitution of Fq. (6)
and simplification leads to

U(r —r')drdr'. (12)V=-', p' Q Q b, , tb, „tb,,b, „rj rk
rQ j,r'QA;

We rewrite this as

V=-,'pUp Q b, , tb, , tb, ,b, ,Ij

+pp 2 2 U.;..P.,'b. ,b"'b.p (13)
r jrk

rj r re

where the effective interaction potentials Uo and U„, „,
are defined as

Uo= p U(r r')drdr', r—, r' in one cell,

U(r —r')drdr', r in cell j,
r' in cell k.

(14)

Equations (14) impose a limitation to integrable
potentials. The inclusion in the function f(r r,)—
appearing in Eq. (4) of a. local function for each cell
would obviate this restriction. 3,Iathematical expedi-
ency dictated the approach taken herein. Using the
commutation relations of Eq. (7) we can write the
potential energy operator V in the form

a simple cubic lattice, the approximation is

Pb, ,b. ..,—(1/rp') [—6b, ,b, ,,+Q, b, ,b, ,,~;j, (10)

where r' extends over the six nearest neighbors to r;,
and where ro' is the volume v of a cell, which is the
reciprocal of the particle density p. With this 6nite
difference approximation the kinetic energy operator
of Eq. (9) becomes

v- A2

7.'=3 p'" 2—b 'b' p'—"—2 b, 'b;+" (11)
I'j 2m rj,r

where E=h p
PP"

/2 np This is the Hamiltonian we use
in our subsequent work.

A brief qualitative discussion of the foregoing
Hamiltonian will now be presented. For repulsive
interactions at a high density p, we have the inequality

p Up))A'p'"/2m.

Thus, particles are inhibited from shifting about, and,
as expected, a "locked-in" behavior ensues. The ground
state of the system then corresponds to one particle
per cell with little or no wanderings. In the opposite
extreme of low densities we have the reverse inequality

p Up((h' p"'/2m)

and the kinetic energy portion of the Hamiltonian
predominates. Now there are signihcant fluctuations
in the cell occupation number about the average value
of one particle for the ground state, and large particle
wanderings occur. If Uf) is allowed to become negative
there will again be large fluctuations in particle numbers
in each cell and, unless the fluctuations are limited, the
whole system collapses.

It is of interest to conclude the cell model develop-
rnent by deriving several known results using the
Hamiltonian operator in Eq. (16). First we treat the
case of free particles, Uo=o. The Hamiltonian in Eq.
(16) becomes in this case

II=6E Q, , b,,tb, , KQ, , Q, b—,, tb, ,+, . (17)

A canonical transformation is made which diagonalizes
the Hamiltonian, namely,

b =Q—I/2 ~ g ~iq. .rj

Then Eq. (16) reads

(18)

II= 2E P, (3——', P, e'& ")a,ta, =P, p,a, tap. (19)
Since it follows from Eq. (18) that apt and ap are
creation and destruction operators, respectively, for
plane waves of momentum q, e~ is the corresponding
energy,

In the following work, the term involving U, , „in
Eqs. (13) or (15) will be neglected on the following
basis. Since physically realizable potentials are of
relatively short range, the integration over cells in the
second of Eqs. (14) will yield a relatively insignificant
contribution as compared with that given by the erst
of Eqs. (14). Combining the principal part of Eq. (13)
with Eq. (11) gives the Hamiltonian operator in the
following form:

II=6K P b, tb, , EP-b„tb, ,+;
Ij r j,r

+-',pUp Q b, ,~b, , tb, ,b. .. (16)

ep= 2E(3—cosq, rp —cosq„rp —cosq, rp). (20)

For low momentum, corresponding to wavelengths long

Y= $pUp P n, , (n, , 1)+-,'p Q Q n, ,n, „U.. .„(1—5), .
rj' r jrjp
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compared with a cell dimension ro, expansion of the
cosine function yields

o,= (lt' p"'/2nt) q'roo= ft'q'/2m. (21)

Equation (21) represents a known result correct for
free particles. It is noted that the appearance of the
trigonometric function in Eq. (20) is a direct conse-
quence of the cell-type model which we have employed.

Next, we calculate the expectation value for the
potential energy, (V), for the ground state at low
density, where from Eq. (15)

(V)= lpUo Z.; ( .;( .,—1))
,'Np-Uo[(n„') 1/—[(n ')—1]. (22)

To compute (n„'), one expresses the number of particles
in a cell by the Poisson distribution function. Hence,
the probability that exactly n„particles are contained
in the cell centered about r~ is

one 6nds that Eq. (28) reads

rr ~Ãpo+X +rrr, )r,&,
lt 25$

+ ',pUo-(ohio xt+o~o ~) . (30)

The same approximation for low momentum has been
used in obtaining Eq. (30) as that previously employed
in the free-particle case. The Hamiltonian of Eq. (30)
is now identical to that used in reference 1 and can be
diagonalized with the Bogoliubov transformation

(31)

where uI, '—op= j. in order that the new operators gl„
q~~ obey the same commutation rules as the old ones.
This process yields the familiar expression for the energy
of the elementary excitations or quasi-particles

Then
P(n„)= (1/e) (1/'n„!). (23)

oo
——[(ft'k'/2nt) (ft'b'/2nt+ 2p U )]"'- (32)

(nrr )= Q J1rr P(nrr) =2.
Sr'toreQ

(24)

(V)= o&pUo= o&p' U(r r')drdr'. —(25)

With reference to Eq. (14) one can express (V) as
follows:

III. LOCALIZED SOLUTIONS AND INSTABILITY

Ke now resort to the Green's function technique and
terminate the hierarchy of coupled Green's function
equations of motion on the basis that only small
fluctuations occur in the cell occupation number about
its average value of unity.

The one-particle Green's function is de6ned as

For relatively short-range potentials, one can integrate
over the volume ~' to obtain

G, (r, ,t; r„,t') = —t(Tb, , (t)b„t(t')), (33)

(V)= -', Xp U(q)dr„ (26)

b,,=1+)... (2&)

whereupon the Hamiltonian assumes the quadratic
form (details of the calculation are presented in
Appendix A)

H=oXpUo+E Q,, (6),, tg, ,
—Q, g, ,~$,,+, )

+opUo Z, (6 4,"+24,th, +6;4;) (28)

Since the P's are assumed small with respect to unity,
products of three or more of these operators have been
neglected. Introducing the plane wave representation

(29)

where q= ~r —r'~. The above result is identical with
that obtained from 6rst order perturbation theory in
the low-density region. '

Lastly, for low densities the Hamiltonian of Eq. (16)
can be approximated and subsequently diagonalized to
yield the energy of low momentum excitations which
correspond to sound waves or phonons, the results
agreeing with those given in reference 1. One writes as
a 6rst approximation in this case

where T indicates a time ordered product of operators,
as follows:

8(t)=1 if t)0,
=0 if t .=0. (35)

We take the expectation value indicated in Eq. (33)
with respect to the true ground state of the system.
The equation of motion for G, (r, ,t; rl„t') derivable from
Eqs. (33) and (34) is

G, (r;,t; r„t')—=b, ,„„b(t—t')
dt

—P'[b. , (t),H(t)]b.,'(t')), (36)

where we have used the equation of motion for the
operator b,, (t),

N(db, ,/Ct) = [b...H]. (37)

The commutator of b,, and H is obtained, using Eq.
(16), as

[b,„H]=E(6b,,—Q, b, ,+, )+pUob, ,.tb, ,b... (38)

Tb, , (t)b„t(t') = tl (t—t')b, , (t)b,„t(t')
+tt(t' —t)b, „t(t')b, , (t), (34)

in which
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so that Gi satisfies the equation (hereafter we put fr= 1)

i——6E G) r„t;rl„t'
dt

=8, , „b(t t') —K—Q Gi(r,+r', t; ri„ t')
r'

—zpU, (Tb„t(t)b„.(t)b„(&)b„t(~')). (39)

We now define a two-particle Green's function by
the equation

G, (r;,&; r„f')= —i(Tb,,t(t)b, , (t)b, ,.(&)b„&(f')). (40)

This Green's function, which depends only on the time
diGerence t—t', is simpler than the commonly used
multiple-time two-particle Green's function4 and yet
appears to contain adequate information about the
physical properties of the model. Such "double-time"
Green's functions have been discussed by Zubarev. '
In terms of the two-particle function, Eq. (39) for Gi
reads

(
d

i——6E Gg r;,t; rg„t'
dt

=b...„b (t—i') —K p G, (r,+r', r; r, , t')
r'

+pUOG, (r, ,t; ri, ,t'). (41)

The expectation value for the ground-state energy can
be expressed in terms of the functions Gi and G2 as
foHows:

(H) = lim i Q, , (KL6G, (r, ,r; r, ,t')

—g, Gi(r, +r', t; r;, t')]+ 2pUOG&(r, , f-; r;,t')). (42)

Since all cells are equivalent, the summations over all
cells in Eq. (42) can be replaced by values of Gi and
G2 in any one cell times the number of cells. From our
choice of cell size= 1/p, the specific volume, the number
of cells is equal to E, the number of particles. Then the
ground-state energy per particle is given by

—p, .Gi(r+r', r; r, , t')]+-', pUOG2(r, ,k; r;,t')). (43)

V'e require the equation satis6ed by G2 which follows
from

G, (r, ,r; r, ,i') =——&Tb, ,i(r)b, ,.(&)b,, (t)b„t(t')). (44)
dt dt

A „(r)= b, ,t(t)b, , (r)b, , (i) (45)
4 P. D. Martin and J. Schwinger, Phys. Rev. 115, 1342 {i959).
6 D. N. Zubarev, Soviet Phys. —Uspekhi 3, 320 (1960).

Then G2 satisfies the equation

i(d/di)G, (r, ,t; r„t')= (d/df)&TA, , (r)b„i(t'))
=b(t —f )((A.;(~) b. '(~ )])

—i(T$A, , (t),H(t)]b„t(t')). (46)

For the commutator of A,, with 8, we And

[A...H]= (6K+pUO)b, , tb, ,b,, 2Kb—,, tb, , Q, b, ,+,
+K Q; b, ,+,.tb, ,b, ,+pUob, , ib, , tb, ,b, ,b... (47)

while for the commutator of A, , with b,„(t') we have

$A„(t),b„.t(t')]=2b, ,tb, ,h. ..„b(r t'), — (48)

from which

&LA.;(~),b..'(~')])=2(~;»;,"b(~—~')

= 2b... ,.„b(f—t').

For G2 we may now write the equation

~——6E—pUo G2 r;,t;rI„t' =26, , „5 t —t'
dt

+2Ki&Tb„.t(t)b„(f) P,. b, ,+;(t)b,„t(t'))

~K&T P; b„.+„.t (&)b„(t)b„.(t)b,„'(t'))
—fpUo(Tb. (r)b. (~)b.;(f)b.;(t)b, (~)b '(t')) (50)

Since only two time variables have been employed
herein, Eq. (50) for G& differs somewhat in form from
the corresponding equation involving the customary
multiple-time two-particle Green's function. 4 It has,
however, the familiar characteristic of coupling G~ to a
"three-particle" Green's function, represented by the
last term on the right side of Eq. (50).

We now terminate and simplify the hierarchy of
equations, of which Eqs. (41) and (50) are the first
two, by using our assumption that the repulsive inter-
action dominates the kinetic energy, pUO))E. Con-
sistent with the concomitant implication that there
occurs, for the ground state, only small fluctuations in
occupation number about the average value of unity,
we may neglect the last term on the right side of Eq.
(50), which involves the destruction of three particles
in the cell centered on r;. This means that the occupation
number of particles in any particular cell is prohibited
from exceeding two. In addition, we introduce the
following approximations for the two remaining ex-
pectation values on the right-hand side of Eq. (50)':

&Tb.;"(i)b,(~) 2 '
b;+'(r)b '(~'))
=&b,,tb„)(T Z, b.;;(~)b..i(t'))
=(T2"b., '(f)b..'(t')), (51)

&T Z, b, , i(~)b„(~)b., (f)b.,t(~'))

-&P,, b, ,+, tb, ,)&Tb,, (t)b„t(i')). (52)
To advance the justi6cation for these approximations beyond

the intuitive level, me note that they lead to the same ground state
energy as that derived by a perturbation approach (see concluding
paragraph, Appendix B).
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These approximations allow us to rewrite Eq. (50) as

i—6E—pUO G, (r;,t; rg, t')
ct

satisfies the sum rule for a single-partide 4reen's
function

~ lim [G~ (r„t; r~,0)—G,'(r„—t; rq, 0)] 8..,.„. (62)
t~+

= 26, , „b(t t') —2K—Q; G, (r;+r') t; rg, t') The constraint of S particles in our system is satisfied

+E Q ($ 'fb )G (r (, )I) (53) since, from Eq. (61), we have

The efI'ect of the o6-diagonal terms in the kinetic energy
operator is reflected only in the two last terms on the
right side of Eq. (53). Equations (41) and (53) form a
pair of coupled di8erential equations for G~ and G2
which can easily be solved. First introduce the spectral
resolutions

G (r;,t; r, ,&') = (2~)-' G (r„rq &a)e ' o ' 'der

e= 1, 2. (54)

This enables us to rewrite Eqs. (41) and (53) in the form

[a)—6EjG, (r;,r„cu)
=b,; „EQ,—Gg(r, +r', r„, ra)+pUoG2(r, ,r~, (o), (55)

[~ 6E—pUO—jG,(r;,r&,~)
= 2&~g,~a 2E Z~' G&(ri+r ~ r&~ ~)

+E Q, (b,,+;tb„)Gg(r;,r„,cv). (56)

If we denote by Gjo and G& the Green's functions in
the absence of the ofI'-diagonal elements of the kinetic
energy, then these functions satisfy the equations

[o)—6E)GP(r;, rI,-,& ) =8,, „+pUOG20(r;, rp, co), (57)

(b, ,'b, ,)=i lim GP(r, ,t; r),t') =1. (63)

G~'(r;, r~,&a) = [(2n)'p7' G~'(k, co)e'" ' "'d'0 (64)

where n/ra&a, —&m/ro, s=z, y, s. We can determine

I q'(k)
I
', the probability distribution for single-particle

momenta, by introducing Eq. (64) into (53), and
substituting the result into Eq. (63)

The energy 6K+pUO appearing in the exponential of
Eq. (60) for t& t' represents the energy to add one, more
particle to the ground state, whereas the energy 6E
appearing in G&' for t (t' is the negative of the energy
to remove one particle from the E particle ground state.
Thus, we see that we have an energy gap, which reflects
the asymmetry between particles and holes. ' In this
completely localized ground state, one would naturally
expect the particle momentum distribution to be
uniform over the range of admissible k values. This
anticipated result follows by transforming G~' to
momentum space:

[(o—6K—p Uo]G20(r;, rp, (a) = 2h, , „..

Solving for G~ we get

GP(r, ,r„,co) = b...P (~),

(58) 1='[(2~)'p3 '

writing this in the form

GP (k,co)e'""had'k (65)

where

A(a)) = +
o)—M. —iq o)—6E—pU0+ig

1=L(2 )'p3 '
I
v'(k)I'~'&,

we identify
I y (k) I

' as

(66)

and where we have shifted the poles of G~' oQ the real
axis by the in6nitesimal q. That this is the correct
prescription is easily checked by calculating the time-
dependent GP(r;, t; rj„t') which is, using Eq. (54),

PG(r;, t; r~, t')

i P(k) I'=z(2m) —' GP(k, a&)s'"'d(u (67)

For our localized state we get GP(k, co) from Eq. (58) as

A(co)e '"&' '
~derv

ih. .,.„p[—ex—f6K (t—t') j,
(61)

GP(k, (o) =A (cv),
whereupon

I
&o(k)I2

for all k's in the range cited earlier.

(68)

= —2', , „exp[ i (6E+pU—O) (t r') 5, t) t—'.

'I."hese are the correct values for the completely localized
state with one particle in each cell. For t~t', G~'
represents hole propagation, while for t &t' it represents
propagation of an excess particle. The function G~'

~The chemical potential p, is not a pole of our one-particie
Green's function. For the completely localized state here being
considered, p, the difference in energy between the ground state
for +&1 particles and the ground state for N particles I,'at con-
stant volume), is equal to 10E.There is no pole of G~ corresponding
to this energy difference because the cell creation and destruction
operators have zero matrix elements between the states referred to.
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Returning now to the general case in which the o6-
diagonal elements of the kinetic energy operator are
present, we find solutions of Go(rg, ro, co) and Gi(r;, ro,co)

in the form

representing one particle added and one particle
removed.

For small x, expansion of the square root in Eq. (80)
yields the following result, correct to first power in x:

Go(r;, r, ,cd) =f(co)[5,, „K—g; G, (r,+r', ro, co)

+ ', hKG-g(r;, ro,co)], (70)
(cd+); =6K+pUo(1 6x)—,

(cd ) =6K+3xpUo.
(81)

where

f(a&)=2/(co 6A—pUo.+—ig), h=g, (b,,+, tb, ,), (71)

G, (r, ,rc,cd) = 4 (cd) P,, „—K Q, . G,(r+r', ro, co)]

+KhB(co)Gc(r, ,ro,co), (72)
where

8 (co) = —1/(co 6K—iq)+—1/ (co 6K—pU—o+ig) (7.3)

XVe now make a momentum resolution

(2n)'G„(r;,r„,co) = G„(k,co)e'" &'—'»d'k,

m=1, 2, (74)

in which the range of integration is identical to that
previously indicated for Eq. (64). With this replacement
made in Eq. (72), Gc satisfces

L1+2KGP(k, cd) Q; cosk,"ro—KhB(cd)]G~(k, cd)

=Gco(k,co). (75)

Using the value for Gco given in Eq. (59), we find that
6& can. be written in a form which explicitly displays its
singularities

Ke can interpret these results qualitatively in the
following manner. The energy to add one particle to
the X-particle state has decreased from its value
pUO+6E found earlier for the completely localized
state to pUo(1 —6x)+6K. This appears reasonable
since now when we add a particle to a given cell, that
ceH may be vacant, costing no potential energy. Thus,
in the context of the foregoing approximation, we can
interpret (1—6x) as the probability that a given cell is
occupied by one particle. In the same way, the increase
in ~ from 6K to 6K+3xpUO is due to the fact that
now when we remove a particle from the lV-particle
ground state, it may come from a doubly occupied
cell, in which event its removal releases pUO units of
energy. Hence, within the limits of our approximation,
we can interpret 3x as the probability for a double
occupancy of a given cell. It is noted that, as the density
decreases, the parameter x=p'"/mpUo increases, as-
suming the effective interaction Uo is constant.

For general values of x, the aforementioned energy
differences are determined by the poles at (co+);„and
(co ), , which occur, of course, for zero momentum.
These are obtained from Eq. (80) as

where

o)—6E+pU()
— 1

Gg(k, co) = (76) cog(k =0)= 6K+-', p Uo{1—3x

a L(1—3x)'—12x+2hx]'"}. (82)

co~= 6K+ ,' p Uo KQ;-cosk—, ro"
&{(', pUo KQ; co-sk;. r—o)'—2ApUo Q, cosk,"ro

+p UoKh}"'Rig (77).
Since the singularities of G~ depend through the parame-
ter h on G& itself, the solution for G& in Eq. (76) is of a
self-consistent form. For convenience we shift the
energy by the amount 6K, the kinetic energy for
localization of a particle in a cell, that is

(78)

and we introduce the following ratio of kinetic energy
of localization to potential energy:

x= 2K/pUo= p"/mpUo

The energy gap is given by

cd+(k=O) —cd (k=O)
=pUot (1—3x)'—12x+2hx]'~ (83)

The excited states of one particle character for small
momenta can be obtained from Eq. (80) in the form

co~(k)=6K+gpUo 1—3x+
2mpUO

(l. —3x)' —12x+ 2hx+3 (1—x)
nopU()

Then Eq. (77) becomes

&q= opUo{ (1—x Q; cosh,"ro)+L(1—x Q; cosk; ro)o
—4x Q, cosh,"ro+2hx]'"}. (80)

Ke may now obtain the values for the smallest energy
di6'erences between the ground state and the two states

Equation (84) shows that, so long as the constant term
inside the square root does not vanish, the excited
states display a quadratic dependence of energy on
momentum.

To simplify the subsequent analysis, we will replace
the parameter h by its first approximation. As shown
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in Appendix 8, this is given by

h=g, (b,,~;tb,,)=12x.

As x increases, or as the density p decreases, the energy
gap decreases, and 6nally disappears at the value
x= x()—0.06, which satisfies the equation

(1—3xo)a —12xo+ 24xoa =0. (86)

The smallness of xo indicates the insensitivity of the
critical density to the precise value of h. At the value
xo, the constant term inside the square root of Eq. (84)
vanishes, with the consequence that the excited single-
particle energy dependence on momenta changes to the
form

k'
~+(&)=apUO(1+3xo)+—

45$

a-k —1j2

~- ——+6(1—x,)pU, . (87)
2 2' 2m

For small momenta, k«(mPUO)'", we now have a
linear dependence of &a on b, as Kq. (87) indicates. The
last factor in this equation differs from the Bogoliubov
phonon spectrum given by Eq. (32) only in the nu-
merical coefficient of the interaction term pUO. Ke may
also note that the result co+(0) = a'PUa(1+3xo) is, apart
from the presence of the term (1+3xo) instead of unity,
the same as the energy per particle at low density as
calculated in Eq. (25), where all particles were assumed
to be in the state with zero momentum.

One would expect that the aforementioned change
in the character of the excitation spectrum and the
vanishing of the energy gap as x approaches xf) should
be accompanied by a rather drastic change in the
momentum distribution of the particles in the ground
state. This we can check using Eq. (76) for G~(k,co) and
identifying the probability distribution for momenta
in analogy with Eq. (67), namely,

~
y(k) ~'=ic(2x)—' Gg(kryo)e*'~'dco

= c(co 6E+pUo)l(~+ —~ )',

where c is a normalizing factor. Near x(;, the denomi-
nator of Kq. (88) goes to zero linearly with b, and

~ p(k) ~' approaches infinity as b approaches zero. (The
integrated probability distribution remains hnite due
to the b' weighting fa.ctor in the integrand. )

Further increase in the parameter x above xo, or
equivalent decrease in the density below the corre-
sponding po is not possible within the present approxi-
mation of limited fluctuations. As Eqs. (76) and (77)
show, Gg would then have poles oE the real energy axis
for momenta equal to and near zero, indicating insta-
bility of the approximation with respect to these
excitations. For densities less than po, it is necessary

Equa, tion (A1) now reduces to Eq. (28) with the ex-
ception of the second last term,

F. E., (66,—2" 4;+"). (A2)

to return to the original Green's function equations
and make allowance for the large fluctuations in number
density accompanying the greatly increased occupation
of zero momentum states. Ke have not yet succeeded
in unambiguously demonstrating that the new approxi-
mation yields the well-known results for the boson gas
at low densities.

IV. SUMMARY

At high densities, the ground state for bosons with
repulsive interactions is represented by a wave function
which localizes particles in small spatial regions. This
implies a uniform distribution of single-partide
momenta. The eGect of the kinetic energy, regarded as
a perturbation, is to cause virtual transitions which
spread out the state over larger spatial regions, implying
increased occupation of the small momentum levels.
With decreasing density, the spread out region increases
spatially, until 6nally, at a critical density, all localized
character is essentially lost. At this density, the
asymmetry between particles and holes disappears,
and the dependence on small momenta of the energy
for a single-particle excitation changes from quadratic
to hnear.

APPENDIX A

Ke present here the mathematical manipulations by
means of which the transformation of Eq. (27),

b,,= 1+)...
converts the cell model Hamiltonian given by Eq. (16),

H=6K Q,; b,rtb, , AQ..,.—b,, t. br. r

+~PUO Prr br&tbr'r'tbrPrz r'
into the Hamiltonian of Eq. (28),

H=!~PU.+~ Z„(6z,t&„-Z. S,&S,')
+ aPUO Pr& (err'~fr&~+ 2&rr~ err+ err err) r

which yields the phonon spectrum.
Introducing Eq. (27) into Eq. (16) and considering

the ('s to be sufficiently small compared to unity such
that products of three or more can be neglected, one
obtains the result

ff= 2-~PUo+F. 2' (64 '4 —2"4 "4+")
+2PUO Err' ($r& kr~ +2$r~ $r~ +fr~'Er&)'

+& E.; (6&.,-Z" ~„', )
+PUo Qr, ($„t+$r,+fr, "$r,) (A1)

The last term above is zero, as evidenced by application
of the inverse transformation to this term:

Z., (4,'+k.,+6,'4, )=Z., (b.,'b., 1)=2, b,'b, -
=0.
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Ke can now show that this term is zero by noting that
under the transformation to plane wave operators,

—&/2 Q g eih rt
fp i

Eq. (A2) becomes

energy E:
G&(r, ,ro, &o) = P E"G&&"&(r;,ro,o&),

(83)

K Q, , (6g,,
—Q, $,,+, )

=EX '"P—
. P&, a&.e'"' (6 g—;e"")

=EE'&'Q&, «d&, o(6—Pr e'" ")
=0.

APPENDIX 8

In this Appendix, we calculate the first approximation
to the parameter h given in Eq. (85)

h=g, (b,,+, &b,,.)=12x.

Ke start from the definition of G&(r;,r~,&o) in Eq. (54)
from which there follows the relation

%'ith these substitutions in Eq. (82), we obtain

G, &'& (r, ,rp, &d) =A (&o)b... ,.„,
G,&'& (r;,ro,o&) = —A'(&o) Q, b, ,+,
G&&2&(r;,r&,&d) =A'(o&) P,-„b.. .",„„

+B(o&)A (&d) p, (b,,~;&b,,)o&b,, „.
Then the first approximation yields

iK
(b, ,.+,.tb, ,)&'& =—G, &'& (r,+r', r, , o&)e"'"o+d&d

2'
iK

= ——Q b, ,p, +,",, A'(&o) e'"o+&fo&

The function G&(r;, r&„o&) is a solution of Eq. (72) which
reads

= —(iE/2')(8m'/pUo) =4E/pUo= 2x, (85)

Consequently,

G&(rg, r&,o&) =A (o&)l b*, .s —E 2"G&(ri+r r& o&)3

+ Kh B (&d)G& (r, , r&. ,o&),

A(&o)= +
u) —6K—ig co —6K—pUO+~g

B(&o)= +
cu —6K—ig co —6K—p Uo+ig

Q, (b, ,+;&b,,)o&=12x,

(82) which is Eq. (85).
This series solution for Gj can be utilized to evaluate

the ground-state energy in powers of the parameter x.
The results obtained in this way agree with a Rayleigh-
Schrodinger perturbation treatment which was previ-
ously carried out, and which proved to be analogous to
a sequence of restricted random walk problems.

8 G. C. Knollman, Ph. D. thesis, Georgia Institute of Tech-' e develop a series solution in powers of the kinetic nology, 1961 (unpublished),


