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A unitary operator is de6ned, connecting the states of the measured system and the measuring-instrument
system before and after interaction, by means of which the post-interaction values of 5 in the instrument
can be used to calculate the pre-interaction (R),„and 6'R in the measured system, where R and 5 are
Hermitian operators. The premeasurement state of the instrument need not be known, and the same meas-
urernent operator is applicable whether the system to be measured is originally described by a pure case or a
mixture. Finally, this theory is contrasted brieAy with the measurement theory of von Neumann.

"N this paper a formal theory of measurement for
~ - quantum mechanics is developed which seeks to
realize, as nearly as possible, the same objectives pro-
posed and attained in classical measurements. To this
purpose a brief discussion of the nature of classical
measurement and the necessary modifications imposed
by quantum mechanics is followed by definition and
investigation of a unitary operator which, it is said,
successfully fills the role of a measurement operator in

quantum mechanics. Because this theory diGers in
several respects from the well-known theory of von
Neumann, some points of contrast are made explicit
in an Appendix.

i. MEASUREMENT

The process of measurement, taken in a classical
framework, can be conceived schematically as follows.

There is a physical system to be measured, i.e., a
physical system with a property to which some nu-
merical value can be assigned, and there is another
physical system to act as measuring instrument, i.e.,
another physical system with a property to which some
numerical value also can be assigned, and this value
can be ascertained by reading the instrument. Before
measurement the system to be measured is in an in-
definable state such that the property in question has
a definite but unknown value. A measurement is per-
formed by allowing this system to interact for a time
with the measuring instrument, and after this inter-

action the instrument is read, i.e., a numerical value
is obtained from it by observation. If the interaction
has been of the proper kind, then the nunierical value
read from the instrument can be correlated with the
numerical value of the property to be measured as it
existed in the measured system prior to the measure-
ment —"prior to the measurement" because it seems
essential to the notion of a measurement that it answer
a question about the given situation existing before
measurement. Whether the measurement leaves the
measured system unchanged or brings about a new
and diferent state of that system is a second and inde-
pendent question.

When one applies this concept of the measurement
process to the systems encountered in quantum me-
chanics, however, certain additional rehnements must
be made. '

It is no longer true in the quantum-mechanical case
that the property of the system to be measured neces-
sarily has a definite value before (or aftei) the meas-
urement interaction. If the property is represented by
the Hermitian operator E. and the premeasurement
state of the system by the normalized vector

~ @), then
one can say only that in an ensemble of identical
systems the property has the average value (R)„
=(P~R~P), with the dispersion about this mean given

' Of the very extensive literature on measurement in quantum
mechanics perhaps the most informative and most provocative
article is still that of H. Margenau, Phil. Sci. 4, 337 (1937).
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by 6'R=(R'), —(R), ', and in general this dispersion
will not vanish. Further indefiniteness is introduced if
the ensemble of systems is represented not by a pure
case but by a mixture with statistical operator U, so
that (R), =Tr (UR). In quantum mechanics, moreover,
the interaction with the instrument changes the initial
state of the system being measured, so that the result
of measurement, as here described, is by the nature of
things applicable only to the premeasurement state (or
to that subensemble of the original ensemble which
did not interact with the instrument). It is an extra
dividend, so to speak, that in classical or macroscopic
measurements one can assume the measured quantity
will either be the same after measurement or else
changed to an extent that can be allowed for in the
calculation.

On the basis of this brief discussion of the measure-
ment process, the following description of a measure-
ment in quantum mechanics can be proposed: The
system in mIiich quantity R is to be measured interacts
with an appropriately chosen measuring instrument, in
which quantity 5 can be read ffff, in suck a way that the
values of 5 after interaction give (R)„, and tVR as they
were before interaction No men. tion is made here of
using the measurement to determine

I
ftf) or L, for since

the measurement deals with the directly observable it
cannot reasonably be expected to give lftf) or L',
neither of which is immediately an object of experience. '

In addition to the system to be measured, which we
can assume given, the measurement involves two other
elements; namely, the choice of an appropriate system
to act as measuring instrument, and the design of a
suitable interaction.

As has been indicated, two basically diferent situa-
tions must be distinguished. The premeasurement state
of the system on which the measurement is to be
performed may be represented by a state vector lftf),
i.e., the system is in a pure case, or it may be represented
only by a statistical operator U, i.e., the system is one
of an ensemble in a mixture of quantum-mechanical
states. As it may not be known which of these alterna-
tives is realized in a given case, it is desirable that the
same measurement process work equally well in both
situations. For convenience the less general case will
be treated first.

2. PURE CASE

Before measurement the unknown state of the system
in which E is to be measured will be represented by
the state vector Iftf) and the unknown sta, te of the
measuring instrument by Ifp). The eigenvectors of R
are denoted by I

ftff, ) and those of 5 by Ifpf, ), so that

RI &)=rile),
CIA)=sf If', &.

'The possibility of constructing an "equivalent"' state vector
is mentioned in reference 7. Note also in the Appendix the com-
ments on von Neumann's projection postulate,

Operator S, representing the quantity read o6 in the
instrument, is chosen so that the two sets of eigen-
vectors are equal in number. Previous to any interac-
tions the combined state of the two systems will be
represented by IC')~', and one writes

', fIf)before
I y)fgf I y)

=p„„a„b„lft'„)I3if'„),
where

In the pre-interaction state the average or expectation
value of E is

(R) before —P
and the dispersion is given by

6'R ""=Qf,lail'r (r —p„la„l 'r„) (-5).
To perform a measurement, therefore, one must be
able to determine the set f I

a„l'} from repeated read-
ings of the quantity S in the measuring instrument
after interaction with individual systems in an en-
semble all of whose members are in the state described
by le&

The combined state of the two systems prior to the
measurement interaction must be related to the com-
bined state after interaction by means of a unitary
operator, M, the measurement operator:

ilII
I

@)before
I

Cf)after

At this point, then, the measurement problem consists
in construction of a suitable operator 3f. It will be
shown that the desired unitary' operator is defined by
the expression

~ Z. .'.b. l~.& I~.&=K.,'.b. l~.& I~.&, (t)
where Eq. (2) has been used for IC) '"~

This operator has the required measurement proper-
ties, for it yields the result

(S). & =Z„la„I2s„. (8)

Each reading of the instrument, therefore, will give
one of the values s„, and by establishing the frequency
with which each of these values appears in repeated
readings of the instrument it is possible to obtain the
set of numbers {I a„l'}.Employed in Eqs. (4) and (5)
these numbers allow calculation of (R), ~"~ and
6'E~"".From the statistics of the instrument readings
one passes to the statistics of the measured quantity,
and thus the measurement has been made.

To perform this measurement it is not necessary to
have an ensemble of measuring-instrument systems all

'The operator M, one may note, is not only unitary but also
Hermitian, so that M'~ 1.its eigenvalues of 1 and —1 correspond,
respectively, to the multiply degenerate eigenvectors

2 '"(1+& ) "'(l4 )If. )+l4.)IW, )) 6 & &

2 "'i14.&faftft. &
—14.)SIN.)) if &r)
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in the same initial state, since the measurement is inde-
pendent of the instrument's initial state. Therefore
one may use an ensemble of instruments in arbitrary
states, or else the same instrument may interact suc-
cessively with members of the ensemble of systems
being measured if it is read between interactions.

An important feature of the measurement interaction
defined by the operator M of Eq. (7) is that these
interactions can be linked together to form a chain
terminating in a measurement. Writing a„ for (I a„l ')'",
one can say that the post-interaction state of the in-
strument is equivalently

14 &'=Z. &.~""'I&.)

where e(p) is an unknown phase factor—"equivalently"
in the sense that it reproduces Eq. (8).' If now a second
interaction takes place using this instrument as the
system to be measured and choosing a new instrument
whose state is represented by lx) and in which the
quantity T can be read oG, that measurement will be
represented by the operator M2, where

(10)

After this second interaction one has

(T)-""'=Z. l ~.I'&.,

and determination of the frequencies of the various 3„
through repeated interactions and readings of the new
instrument allows one to calculate ( I a„l'}, and thus
the original (R), ~" and 6'R~" are known. This
procedure of constructing additional measurement in-
teractions can be carried on indefinitely with no loss
of precision in measuring the quantity initially sought.
Such additivity is a desirable feature in any measure-
ment process.

If the operators R and 5 represent the same dy-
namical quantity, then their sum may be conserved
during the interaction. The expectation values are

This form makes evident the dependence of the meas-
urement interaction on both the quantity being meas-
ured and the quantity used as an index in the measuring
instrument. Unitarity is apparent, and Eq. (14) is
verihed under the conditions stated in the discussion
leading up to that equation.

3. MIXTURE

Thus far the measurement process has been con-
sidered for the pure case in which the system to be
measured is found in a quantum-mechanical state
represented by I@). But one must also allow for the
possibility that the system is part of an ensemble
which cannot be represented by a single state vector
but only by a (positive-definite Hermitian) statistical
operator U. This more general case can be treated
briefly since it leads to no new difliculties.

Let the statistical operator for the combined systems
(the system to be measured and the measuring-instru-
ment system) before interaction be U, where

U= Ur8~rr.

The operator Ur refers to the system to be measured
and represents a mixture, while L'rr refers to the
measuring-instrument system and represents the state
IP). The operators R and S are as before, and they
again have the eigenvectors

I Pq) and
I P&,) and eigen-

values rq and sq. If M is the measurement operator
defined in Eq. (7), its effect on the statistical operator
will be given by

O'= MUHAM ~, (17)

where U' is the statistical operator of the combined
systems after the interaction. Using these statistical
operators one obtains

R+5 commutes with the measurement operator':

LM, R+S7=0.

Finally, it is possible to give an explicit formulation
of the measurement operator. Inspection of the defini-
tion of M in Eq. (7) shows that one can write'

(12)

and these two expressions will be equal if the eigen-
values are such that

(R) „~""=Tr(UR)
=Z. LE.u.

I ~; I'7»„

(S). &'= Tr (U'R)
=P„LP.w„

I a„„I
'7s„,

(18)

r„—r„=s„—s„.

For this case R+5 is conserved or, in other words,

4 Because of this arbitrary phase factor introduced by reading
the instrument it is not possible to reapply the measurement
operator after measurement and use the property M~=1 to regain
the premeasurement situation.

' It is also possible to consider conservation by observing that
any quantity commuting with M (i.e., a conserved quantity)
will have as eigenvectors the two eigenvector sets of 3I noted in
reference 3. Those vectors are eigenvectors of 8+5 under the
condition of Kq. (13}.

SThis operator could also be obtained by summing the pro-
jection operators formed from the individual eigenvectors of M
listed in reference 3, each projection operator being weighted
with the corresponding eigenvalue (dyadic representation).
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where a„„—=&@„Ie.), and tv„and le, ) are eigenvalues and
eigenvectors of U'g. For a given statistical operator Uq

the sum g, w„la„„l' is a function of ie, so that the
situation represented by Eqs. (18) and (19) corresponds
exactly to that in Eqs. (4) and (8). Thus the measure-
ment process is the same in both cases. 7

pre-measurement state of the measured system. To
achieve this result he defines the unitary measurement
operator 6 by the relation

4. CONCLUSION

If one accepts the proposition that the function of
measurement in quantum mechanics is to determine
the average value and the dispersion of some physical
quantity in a given system as they are prior to meas-
urement, then it is possible to define a unitary operator
which can rightly be called a measurement operator.
This operator links the instrument readings after meas-
urement with the premeasurement condition of the
measured quantity in just the way that allows the
desired calculation, and one need not assume the in-
strument is in a known state prior to the interaction.

The interaction which gives rise to the measurement
can be eA'ectuated through intermediate systems in a
series leading up to an ultimate instrument reading
and measurement without any loss of precision. In the
measurement interaction itself not all quantities can
be conserved, of course, but under certain circum-
stances the sum of the measured quantity and the
measurement-index quantity is conserved.

A final property of the measurement is that the
same measurement operator is equally eRective whether
the system on which the measurement is performed is
a pure case or a mixture. Because the measurement is
concerned only with the average value of a particular
quantity it makes no distinction between state vectors
and general statistical operators. "

APPENDIX

The following comparison with the measurement
theory of von Neumann may be of interest.

According to von Neumann' a measurement has been
performed only if after interaction the quantities R and
S, in the measured system and the instrument, re-
spectively, will simultaneously have the pair of values
r„and s„with probability 0 for p, /v, and with proba-
bility

I (p„l@)I' for p, = v, where
I p) is the unknown

7 In reference to the statement in Sec. 1 about the measurement
not allowing calculation of ~P) or U (here Vr), it may be remarked
that the measurement does not even tell us whether the measured
system was in a pure case or in a mixture. As far as the results of
the measurement are concerned it is always possible to recon-
struct an equivalent state vector for the measured system, i.e.,
one which will give Eqs. (4) and (18}.

"Note added in proof. Another publication will investigate the
realization of this formal theory in actual'physical process.

J. von Neumann, Mathematical Foundations of Quantum
Mechanics (Princeton University Press, Princeton, New Jersey,
19&5},Chap. VI, Sec. 3, especially p. 440.

Written out explicitly, the operator is

(A2)

which is unitary, provided f IP.)) is an infinite set.
Before measurement he assumes the instrument is in
the known state lite) so that the combined state is
given by

(A3)

and after the measurement interaction it is

By invoking what has been referred to as the "pro-
jection postulate, '" which states that each measure-
ment puts a system into an eigenstate corresponding
to the observed eigenvalue, von Neumann obtains a
measurement of r„ in the measured system through an
observation of s„ in the instrument, and the proba-
bility of this measurement is

I &&„l@)l . Stating the
result more generally, one can say that von Neumann's
measurement operator together with the projection
postulate yields the relation

(p[p ]8+[/ j) ofter —g (p[y ]) before (As)

as a statement of the measurement process, where
I'[rtr„] is the projection operator for Idr„). Equation
(A5) is valid whether the measured system is described
by a pure state or a mixture prior to the interaction.

The chief diRerences between von Neumann's theory
of measurement and the theory developed in this
paper are two. In the first place, von Neumann must
assume the premeasurement state of the instrument is
known, whereas the above theory does not make that
assumption. In the second place, von Neumann em-
ploys the projection postulate to yield measurements
which give an exact value to the measured quantity
with each single reading of the instrument. "The theory
of this paper does not use that postulate and produces
a more thoroughly statistical type of measurement
process.

'For a recent criticism of this postulate on the basis of its
incompatibility with accepted statistical notions, see H. Margenau
and R. N. Hill, Progr. Theoret. Phys. (Kyoto) 26, 722 (1961).

"There is clearly a relation between these two differences,
since knowledge of the instrument's pre-interaction state is
presumably gained by a measurement or observation which
produces an eigenstate.


