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Analytic Approximation to the Low-Energy Solutions of Inverse
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An analytic approximation to the solution of the inverse amplitude dispersion relations exhibiting two
resonances with the same quantum numbers is presented. It is shown that, given a solution exhibiting one
resonance, a double resonance solution can be produced without violating crossing symmetry if a CDD
(Castillejo, Dalitz, and Dyson) pole is inserted near the original resonance position. In the presence of
inelastic scattering the CDD pole must be oB the real axis and will occur on an unphysical sheet. For various
values of the pion-pion coupling constant in the range —0.15&)«—0.1 the masses and widths of the |and
p resonances are calculated.

'
N a recent paper, ' we have presented solutions of the

~ - inverse amplitude dispersion relations for pion-pion
scattering including inelastic intermediate states. When
the inelastic cross section is small and slowly varying,
there exist solutions exhibiting two P-v ave resonances
if the solution of the original pure elastic dispersion
relations possesses a single sharp resonance in the I'
wave. The splitting of this single resonance occurs when
the real part of the phase shift passes through x in the
inelastic region, since then the function R=1+0'"/o '

is peaked at this point, o" having a minimum, and this
peak gives a large contribution.

In this note a simple analytic approximation is pre-
sented, which leads to the double resonance solution
assuming that one knows the solution of the dispersion
relations with only pure elastic scattering. ' The nota-
tion of reference 1 is used throughout this paper. Let
the original solution' be described in the physical region
by

«(vf-'(v)]= a (vs —v),

&mkf '(v)]= —t:v/(v+1)]'",
where vg and 3 ' are the position and reduced width
of the single resonance. When inelastic intermediate
states are included, (1) is modified to read

ReLvf '(v)]=A(vii —v) ——P

"dv Pv /(v +1)]'"tR(v') —1]
X (2)

tracted dispersion relations are ignored' Lwe have as-
sumed here that R(v) —1 v ' as

~

v~~ ~].
Above the inelastic threshold vz, 8=8g+QI and let

us suppose that 8g passes through x at v= v, say, and
that Sq(v ) is small. Then from scattering theory' R
may be written in the form

8ii —ir =P (v —v.),

Lv/(v+1)]"'Ã(v) —1]=~/L0'(v —v-)'+~'] (5)

Kith this approximation, it will be shown that v = v~.
From scattering theory, ' we have

2 sln28gg
~

~

3 1/'2

ReLvf '(v)]= . (6)
v+1 l —2 cos28ge ~'+ g

By substituting (5) into the integral in (2), we get

v dv'Lv'/(v'+1)]'~ LR(v') —1]

6g
R= +1

(&i~ —ir)2+&I-

for the region in which (8s—ir)'((8r. As 8r is small, R
has a resonant behavior and this resonance dominates
the integral in (2). The analyticity properties of f(v)
are discussed in Appendix A, where it is shown that
f ' has a CDD (Castillejo, Dalitz, and Dyson)' pole
on the unphysical sheet. Expanding 8q and (bs —ir) in
powers of (v—v ) and keeping only the lowest order
terms, it follows that

As will be shown later, the splitting of the resonance
has little eR'ect on the inverse amplitude left. cut and,
therefore, the constants vii and ~i in (2) will be the
same as in (1), but there is no longer a resonance at
vg. The complications arising from the use of sub-

(&)
LP'(v —v, )'+n']

Both the expressions (6) and (7) vanish when v= v

and, therefore, from (2) we find A(vii —v ) =0, i.e. ,
v, = vs (since A WO).

'B. H. Bransden, I. R. Gatland, and J. K. Moffat, Phys.
Rev. 128, 859 (1962).

'B. H. Bransclen and J. W. Moffat, Yuovo Cimerito 21, 505
{1961).

"See in particular Fig. 3 of reference 2.
' L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 101,

453 (1956).
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Re [pj" 'lv)]
A (v„-v)

(12) as a consistency requirement it will place a re-
striction on the parameter p:

lOO =

-IOO-

-200-

ve

p))2a'A/v .

The reduced width y, which is the same for both
resonances in this approximation, is given by

E(v)

(d/dv) ReLvy-']--s, .s
= (1/2A)(1+a+a'A/v P) =1/2A. (14)

FIG. 1.The functions Rel vf '(v) j (full line) and A (v —v) (broken
line) for X= —0.13, o, =0.01, and P=0.1.

For pion-pion scattering the values of v and A are
determined by the pion-pion coupling constant X.' In
the numerical solution of the dispersion relations pre-
sented in reference 1 there occur two independent pa-
rameters X and CP (where G' corresponds to u), and p
is determined by the iteration scheme, but in the ap-
proximate solution presented here we do not attempt
to calculate P, which remains an arbitrary constant.
Thus, we have three parameters X, 0., and p at our
disposal. We have already assumed that n and p are
small and experimental evidence from S-wave scatter-
ing gives k~—0.15.'

From (2) and (7), we obtain

ReLVf ']=A (v.—v)+Pv. (v —V.)/QP (v—V.)'+n']. (8)

The functions Regvf '] and A(v —v) are shown in
Fig. 1 and ReLvf '] has three zeros given by

(i) v= v corresponding to 5s ——er (a minimum in 0 '),

(ii) v —vR$ =—v —(v /AP —a'/P')'",

and
(iii) v= va2=—v.+ (v./AP —n'/P')'I'. (9)

Here (ii) and (iii) correspond to b~=er/2 and 3er/2,
respectively, and give the positions of the two reso-
nanCeS in 0 '. At vg1 and vg2, E iS giVen by'

R= 2/(1+a-"') = 1+a. (10)

If, however, we use (5) and (9), we get

which disagrees with (10) as v (A' and P&1. We
expect this disagreement if (11) is used some distance
from the peak in R and from (9) this will be the case if

(12)

where 6 is the half-width of the peak in E. If we adopt

~ J. Hamilton, P. Menotti, G. C. Oades, and L. L. J. Vick,
Phys. Rev. 128, 1881 (1962).

In the pure elastic case the reduced width is yp=A '
so that y=-,'yp.

In view of these results, we see that the total area
and the center of mass of the two resonances are ap-
proximately the same as for the single resonance in the
pure elastic case. This justifies the remark made earlier
that the splitting of the resonance has little effect
on the inverse amplitude left cut, which determines
the constants v and A.

The exact numerical solutions of the S waves for
I=O, 2 have shown that the eITective-range behavior
of the S waves is given correctly to within 10% by the
formula'

cotbp'= —+—

1
XlogL(v)"'+ (v+1)'"]—v2 tan-' —,(l5)

v2

where ap= —5X and a~= —2X. There is little change in
(15) when inelastic intermediate states are included
for I=0, 2 provided that the inelastic cross section is
not too large. '

As an example of the application of the approximate
inelastic solution for the P-wave case, we consider the
pion-pion scattering solution (without cutoff) given in
reference 1. We have X= —0.1, n=0 025, P=0.12.2 and
the values of v and A corresponding to this value of

in the pure elastic case are v =4.6, 2=29. The
results given by the approximate equations and the
exact calculation are compared in Table I, the masses
and total widths of the resonances being given by

Mr ——2p, (vI+1)"'
3E =2y(v~ +1)'i'

1j2 —1/2

~t'= IJ vBlp
VR1+ ~

where p, is the pion mass.
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In Table II are given the values of Mt. , M„r~, and
I', for various values of X, n, and P calculated using the
approximate equations.

The techniques for dealing with the double reso-
nances presented in this note are not limited to pion-
pion scattering, or to I' waves. All that is necessary is
that there exists a part of the physical region in which
the solution derived from the left cut contributions has
the form given by (1) (i.e., ReL«f 'j passes linearly
through zero), that 5r be small there and that the tv o
resonances exhibited when CDD pole effects are added
should appear as a single resonance when viewed from
the left cut (or any other cuts which may be present). '
For instance, in pion-hyperon scattering, if the I'0* and
Yo~* were found to have the same quantum numbers,
they couM be explained by this theory. In general, for
other processes the solution of the elastic dispersion
relations is not known so that the sing/e parameter 'A,

v hich serves for pion-pion scattering, must be replaced
by the two parameters v and A. Also, if o, is very
small, it can be ignored except insofar as it limits P.

The approximations in this note can be refined
Lparticularly (7)j, but in view of the approximate
nature of the initial assumption (5), and the possibility
of exact calculations on the computer, this hardly seems
worthwhile.

In the Appendix, it is shown that in the limit as
6i ~ 0 the amplitude f becomes

1
f(v) = —(v- —«)+-

v P(v —v.)

——I

i — i fi(v v.) —. —(17—)
v+1 P

The combination of the inverse amplitude left cut
contribution Lgiven by the first term on the right of
(17)] and the CDD pole effect (the second term)
produces the two resonances in 0".The phase shift 8g
passes through m (changes sign) between the two res-
onances and when 81&0 this corresponds to an un-
stable elementary particle.

TABLE I. The values of v, A, 2Mt, Mp, and rg, rp obtained flolTI
the approximate equations compared with the results of an exact
numerical calculation for ),= —0.1 and a=0,025. The exact
calculation gives P=0.122 and this value has been used in the
approximate calculations.

TABLE II. Values of M~, Mp and ry, r, in MeV for various
values of the parameters X, e, and P. The values of v and A
corresponding to each X are also given.

) = —0.10
v =4.6
A =29
Z= —0.13

v, =4.3
A =22
X= —0.15

v =4.1
A =19

0.01
0.01
0.04

0.01
0.01
0.04

0.01
0.01
0.04

0.10
0.04
0.04

0.10
0.04
0.04

0.10
0.04
0.04

cV)

585
535
550

555
495
510

535
570
485

Mp

735
770
760

725
765
755

720
760
755

r&

30
30
30

35
30
35

35
30
30

rp

45
45
50

50
50
55

50
55
60

The possible existence of a pion-pion scattering solu-
tion with a CDD pole has been noted previously, 7

but not investigated in detail. In the present paper the
CDD pole is inserted into the known solution of the
elastic pion-pion scattering equations, and its effect on
the left cut is shown to be small. It was not possible
to obtain such a solution with the original numerical
iteration scheme for pure elastic scattering, ' because
the CDD pole would have occurred on the real axis
and produced an infinity in ReLf 'j. However, when
inelastic scattering is included no in6nity occurs and
the double resonance solution with a CDD pole is
generated by a numerical iteration of the inverse am-
plitude equations as demonstrated in reference 1.

The authors thank Dr. B. H. Bransden and Pro-
fessor T. Fulton for stimulating discussions.

A I/2

f-'(v) =—(v.—v) —i
v v+1

(A1)
P(vip v) iK( vrv) i

APPENDIX

Let us consider the analyticity properties of the
modified form of the inverse amplitude given by (2).
We remark that the phase shift b(v) is analytic in the
cut plane with the cut in the physical region beginning
at the inelastic threshold v~. In view of this the dis-
continuity br is written 4=n=x(v —vr)'~, where x is
an analytic function of v and is positive on the real
axis. Substituting this expression for 8r into (2), (5),
and (8), we find

Hag
3Ip
r&'
rp

Approximate calculation

4.6
29

590 MeV
725 MeV
35 MeV
45 MeV

Exact calculation

5.2
26

640 MeV
730 MeV
35 MeV
40 MeV

P (v —vv) iK(vv v—r)'i~= 0—.

Assuming that ceC&P it is found that

(A2)

which satisfies the reality condition $f—'(v) j*=f '(v*). —

The function f ' has a CDD pole on the unphysical
sheet in the v —v& plane and its position v& is given by

6 J.Kennedy and T. D. Spearman, Phys. Rev. 126, 1596 (l962).

vv= v. in/P. —
' J. W. Moft'at, Phys. Rev. 121, 926 (1961}.

(A3)
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The function f ' satisfies elastic unitarity,

1m[[I-'7= —(v/v+ 1)7 —[v/(v+ 1)7'",

for v& v~ and for v& v~, we have

1/2 z(v —vr)'"
Im[f '7= — +,(A5)

v+1 P'(v, v)'—+K'(v vr—)

In the limit as bl ~ 0 it follows tha, t

and

A I
lim Re[/-'7= —(v.—v)—

v P(v. —v)
(A7)

V
1/2

lim im[f '7=- +-B(v—v.) . (Ag)C~ V+1

«[f '7= —v- —v)—
P(v.—v)

(A6) This demonstrates that the CDD pole in f ' moves
v g (v —v)'+a'(v —vr) onto the real axis as 5r -+ 0.
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A unitary operator is de6ned, connecting the states of the measured system and the measuring-instrument
system before and after interaction, by means of which the post-interaction values of 5 in the instrument
can be used to calculate the pre-interaction (R),„and 6'R in the measured system, where R and 5 are
Hermitian operators. The premeasurement state of the instrument need not be known, and the same meas-
urernent operator is applicable whether the system to be measured is originally described by a pure case or a
mixture. Finally, this theory is contrasted brieAy with the measurement theory of von Neumann.

"N this paper a formal theory of measurement for
~ - quantum mechanics is developed which seeks to
realize, as nearly as possible, the same objectives pro-
posed and attained in classical measurements. To this
purpose a brief discussion of the nature of classical
measurement and the necessary modifications imposed
by quantum mechanics is followed by definition and
investigation of a unitary operator which, it is said,
successfully fills the role of a measurement operator in

quantum mechanics. Because this theory diGers in
several respects from the well-known theory of von
Neumann, some points of contrast are made explicit
in an Appendix.

i. MEASUREMENT

The process of measurement, taken in a classical
framework, can be conceived schematically as follows.

There is a physical system to be measured, i.e., a
physical system with a property to which some nu-
merical value can be assigned, and there is another
physical system to act as measuring instrument, i.e.,
another physical system with a property to which some
numerical value also can be assigned, and this value
can be ascertained by reading the instrument. Before
measurement the system to be measured is in an in-
definable state such that the property in question has
a definite but unknown value. A measurement is per-
formed by allowing this system to interact for a time
with the measuring instrument, and after this inter-

action the instrument is read, i.e., a numerical value
is obtained from it by observation. If the interaction
has been of the proper kind, then the nunierical value
read from the instrument can be correlated with the
numerical value of the property to be measured as it
existed in the measured system prior to the measure-
ment —"prior to the measurement" because it seems
essential to the notion of a measurement that it answer
a question about the given situation existing before
measurement. Whether the measurement leaves the
measured system unchanged or brings about a new
and diferent state of that system is a second and inde-
pendent question.

When one applies this concept of the measurement
process to the systems encountered in quantum me-
chanics, however, certain additional rehnements must
be made. '

It is no longer true in the quantum-mechanical case
that the property of the system to be measured neces-
sarily has a definite value before (or aftei) the meas-
urement interaction. If the property is represented by
the Hermitian operator E. and the premeasurement
state of the system by the normalized vector

~ @), then
one can say only that in an ensemble of identical
systems the property has the average value (R)„
=(P~R~P), with the dispersion about this mean given

' Of the very extensive literature on measurement in quantum
mechanics perhaps the most informative and most provocative
article is still that of H. Margenau, Phil. Sci. 4, 337 (1937).


