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We have investigated the perturbative solution of the equation
for the one-particle Green's function for the ideal problem of a
dense innnite electron gas with neutralizing uniform positive
background and a static "source" consisting of a 6xed positive
point charge of atomic number Z. The densities appropriate to
the perturbation expansion are so high as to limit the quantitative
applicability of the model to very dense metals or dense de-

generate astronomical systems such as white dwarfs. Lowest order
expressions for the non-Hermitian effective Hamiltonian of the
single-particle excitation spectrum are derived. According to an
interpretation discussed in a previous paper, the eigenvalues and
eigenfunctions of the effective Hamiltonian correspond also to
single-electron energy levels and wave functions associated with
ground-state properties of the system. Some general properties of
the induced charge density and of the corresponding polarization
potential are discussed. The theory predicts the existence of a
discrete spectrum of bound holes and its disappearance beyond a
certain limiting value of the density, n: n"~Z'ao ', where ao is
the Bohr radius. This is a consequence of the fact that the lowest
order polarization potential is a shielded Coulomb potential
(Yukawa potential) with a range inversely proportional to the
classical plasma frequency. This potential, derived here by a
formal limiting process, is well known from the electron theory

of metals where its derivation has been based on a linearized
Thomas-Fermi treatment. In order for the discrete spectrum of
bound holes to have physical reality it is necessary that the level
width of these holes be less than the spacing of bound levels or less
than the distance to the continuum limit. This condition is veri-
6ed, at high densities, by a lowest order calculation of the level
width in the same formal high-density limit that yielded the
Yukawa potential. Approximate numerical estimates for the level
width are then given for a considerably wider range of densities
and values of Z. It is shown that, to a fair approximation, the
level width depends on only two parameters: the ratio of the inter-
particle spacing to the Bohr radius and the ratio of the binding
energy to the Fermi energy, provided that these parameters are
less than or comparable to unity. It turns out that away from the
limit of very small binding energies, the plasmon-emission mode
gives an important contribution to the level width. An interesting
consequence of the present work is that for low binding energies
the "orbits" of bound holes may be considerably larger than the
interparticle spacing. Some physical applications of the results,
particularly to the problems of electron capture by a nucleus in a
dense medium, and the x-ray spectrum of atoms in metals are
briefly discussed.

I. INTRODUCTION

E shall be concerned here with the application
of a nonrelativistic Geld-theory method to an

ideal many-fermion system consisting of a dense
inhnite electron gas at zero temperature, with neutral-
izing positive background and a 6xed positive point
charge of atomic number Z.'

The 6eld-theory method is the widely used Green's
function approach. ' 7 In a previous paper some aspects
of this method were considered for the more general
problem of a static external potential, V(x), and a
two-body interaction v(x —x'). In the present exampie,
V and v have the forms

V(x) = —Ze'/r,

v(x —x') =e'/~x —x'~. (2)
*This research was supported in part by the U. S. Atomic

Energy Commission.' A brief account of part of this work was published in Bull.
Am. Phys. Soc. 6, 447 (1961}.

~ V. M. Galitskii and A. B. Migdal, J. Exptl. Theoret. Phys.
(U.S.S.R.) 34, 138 (1958); V. M. Galitskii, ibid. 34, 151 (1958)
I translations: Soviet Phys. —JETP 7, 96 and 104 (1958)j.

3 P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).
4 A. Klein and R. Prange, Phys. Rev. 112, 994 (1958).
'D. V. Dubois, Ann. Phys. (New York) 7, 174 (1959};S, 24

(1959).' V. Bonch-Bruevich and S. Kogan, Ann. Phys. (New York)
S, 125 (1960).

7T. Kato, T. Kobayashi, and M. Namiki, Suppl. Progr.
Theoret. Phys. (Kyoto) No. 15, 3-60 (1960).

A. J. Layzer, preceding paper LPhys. Rev. 129, 897 (1963)j.
We shall refer to this article, hereafter, as I. The terminology
and results of this paper will be freely employed here.

The model of the dense electron gas has been in-
tensively studied for a number of years and is now
qualitatively well understood. ' The field-theory treat-
ment of this problem is more recent. ' '~" A compre-
hensive 6eld-theory analysis of the uniform dense
electron gas has been given by Dubois. ' This work
forms an important part of the background of the
present investigation.

As is mell known, the high-density limit of the
electron gas corresponds to a lowest order expansion in
terms of Feynman graphs. This is, of course, the reason
why so many authors, including the present author,
have been attracted to this domain of densities.

High densities here means that the interparticle
spacing is less than or approximately equal to the Bohr
radius. Such densities are found only in extremely dense
metals, which even so apparently lie on the border line
of validity of the perturbation expansion. "But they
are also found in some dense degenerate astronomical
systems, in white dwarfs for example, where the
electron density gets as high as one desires. " '5

9 We refer to the review article of D. Pines for a discussion of
this earlier work and for references to the extensive original
literature. D. Pines, The Many-Body Problem (W'. A. Benjamin,
New York, 1961) (Collection)."J.Quinn and R. Ferrell, Phys. Rev. 112, 812 {1958)."J. Langer and S. Vosko, J. Phys. Chem. Solids 12, 196,
(1960). I wish to thank Professor J, Lebowitz for bringing this
paper to my attention."J.S. Langer, Phys. Rev. )24, 1003 (1961);120, 714 (1960)."E.Schatzman, White Duarfs {Interscience Publishers, Inc. ,New York, 1958). I wish to thank Dr. E. Spiegel for bringing
this work to my attention.
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One hopes then that in addition to illustrating some
general features of nonuniform many-fermion systems,
this model will be of "practical" use in applications to
the description of properties of metals or white dwarfs
as influenced by point inhomogeneities of charge and,
from another point of view, to the description of nuclear
processes in such dense media as influenced by electronic
shielding.

To see clearly how the density of the system and the
strength of the source potential are related to the
perturbation expansion, it is convenient to adopt the
standard units

P=—&p/oo. (6)

Then P and Z are the only dimensionless parameters
in the problem.

In these units the unperturbed Green's function Go
and the potentials v and V have the following forms in
momentuIIl space

e(1-p) ~(p-1)
Gp(p, w) — — +-

w p'/2 —ig w—P'/2+—ig

v (q,w) =4'/q',

U(q) = —Zv(8.

We see that Go is free of the parameters p and Z,
while v is proportional to p and U to pZ. Thus, we
verify that the forrnal conditions for the validity of the
perturbation expansion are

(10a)

(10b)

"J.Greenstein, in Hendbuch der Physik, edited by S. Fliigge
(Springer-Verlag, Berlin, 1958), Vol. 50. I wish to thank Professor
Greenstein for an informative discussion of problems connected
with dense astronomical systems."S. {handrasekhar, An Introduction to the Study of Solar
Structure (University of Chicago Press, Chicago, 1939),especially
Chap. 11.

16%e ignore here the complication caused by the shift of the
chemical potential which may be remedied by shifting the unper-
turbed energies and performing the appropriate "mass renormal-
ization" subtractions. See J. I.uttinger and J. Ward, Phys. Rev.
118, 1570 {1960);reference 12; and footnote 52 of l.

where pr is the unperturbed Fermi momentum. This
is related to the background density, n, through the
usual formula

Xp~= 3+n, (4)

where 'Ap is the Fermi wavelength

Xv =5/P p.

The unit of length is now the Fermi wavelength and
the unit of energy is twice the Fermi energy. %e
introduce also the ratio, P, of the Fermi wavelength to
the Bohr radius of the electron ao.

The last condition states that if an expansion in
powers of the source potential is also to be valid the
interparticle spacing must be comparable or smaller
than the "Bohr radius" of a hydrogenic atom of atomic
number Z.'7

%e shall be mostly concerned here with the single-
particle excitation spectrum of our model. For the
uniform system this question has been considered by
several authors"8 and we shall mainly consider here
eGects related to the presence of the additional point
"source. "

In order to investigate this problem we shall obtain,
via a Feynman diagram expansion, lowest order
expressions for the efI'ective Hamiltonian describing
single-particle excitations and entering into the so-called
Schwinger equation for the one-particle Green's
function G(x, t; x' t')."' ' '

For a static external field the energy transform of the
Schwinger equation takes the operator form

P(x) ~ -s v(x-x')p(x')d'x', (12)

where p(x) is the number density of electrons at the
point x, the sum of the average or background density
and the induced density.

In terms of Feynman diagrams, P(x) is given by the
totality of polarization insertions at a single point in
an electron line.

The exchange potential is determined by the remain-
ing class of insertions. The lowest order expression for
3E(w) Lsee Eq. (40)j is the familiar exchange potential
first derived by Bloch."

As is well known, lowest order expressions for the
induced charge density, in an approximation linear in
the external potential, can be written down on the basis
of various approximations to the static dielectric

'7 For some of the results obtained here, however, the restriction
(10b) may be dro ped (see Sec. 4).

(1960).
'~A. Glick an R. Ferrell, Ann. Phys. (New York) 11, 359

"J.Schwinger, Proc. Natl. Acad. Sci. U. S.37, 452, 455 (1951).~ F. Btoch, Z. Physik 57, 545 (1929). See also H. Bethe, in
Hundbech der Physik, edited by S. Fliigge (Verlag Julius Springer,
Berlin, 1933),Vol. 24, Part 2, p. 484, and reference 10.

[w—P"/2 —U(x) —Z(w)]G(w) =1,

where G(w) is the frequency transform of the Green's
function operator and Z(w) is the transform of the
so-called self-energy operator.

Z(w) is the sum of a local, Hermitian, and w-inde-
pendent polarization potential P (x) and a mass operator
or exchange potential M(w). (The exchange potential
is nonlocal, non-Hermitian and energy dependent. )

The polarization potential P(x) is the classical Geld
due to the average distribution of electrons and may
be written in the closed form
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constant of the electron gas. -" "'More recently, Langer
and Vosko" have derived these expressions within the
context of the exact nonlinear 6eld theory.

In the simplest of these approximations, commonly
known as the pair approximation, the momentum space
transform of the induced number density, p;(q'), takes
the form

p;(q'-) = ZPb, (q')/t q'-+Pb, (q')], (13)

2 1 q' 1+q/2
bg(q') =— 1+— 1—— ln

q 4 1 —q/2
(14)

and the I'ourier transform has been normalized accord-
ing to the rela, tion

f(q)= f(s)e"*d'x

On the same grounds, '4 the polarization potential,
P(x), must also have this asymptotic behavior.

In the presence of an attractive external potential,
a new type of single-particle excitation is expected to
enter. This is a "bound hole" localized around the
source and associated with a bound single-electron
energy level occupied in the ground state. The real
and imaginary parts of discrete complex eigenvalues of
the hoesogeneous Schwinger equation correspond to the
energies and lifetimes of such bound holes. '—'

As a physical example of such a bound hole excitation
we cite the case of orbital electron capture by a nucleus
in a dense medium.

Since the e&ective potential, 1''+Z(w), is of shielded
rather than pure Coulombic form, the number of bound
levels should be finite rather than infinite. Since the
range of the shielded potential decreases with increasing
particle density, the number of bound states should
decrease in this process and one anticipates that there
will occur a limiting density, for given atomic number
Z, beyond which no bound states are possible. This

"J. Lindhard, Kgl. Danske Videnskab. Selskab. Mat. -fys.
Medd. 28, 8 (1954).

~ P. Nozihres and D. Pines, Nuovo { imento 9, 470 (1958}.
23 J. Hubbard, Proc. Roy. Soc. (London) A240, 539 (1957);

A243, 336 (1957); A244, 199 (1958).
24 M. J. LighthBl, Fogrier Analysis and Generalized I;unch'ons

((:ambridge University Press, New York, 1960), Chap. 4.

Roughly speaking, the corresponding charge density in
position space is of the form associated with a screened
coulomb potential. I.anger and Vosko, " however,
made the important observation that the logarithmic
singularity of p, (q') at the momentum transfer q=2
(twice the Fermi momentum) gives rise to a small (of
order p) oscillatory long-range behavior of the induced
density in position space of the form (R= tx~) (see
LighthilP4).

cos2R sin2E
p(x) PIa(P) — +b(P) -- (1nR+e) . (16)

R3 R4

type of behavior would be consistent with the quali-
tative phenomena of "pressure ionization" in dense
matter. ""

The present analysis con6rms the above conjectures
though, because of the mathematical complexity of the
problem, they cannot be regarded as rigorously
established.

These questions are considered quantitatively in
Sec. 3 where lowest order expressions for the self-energy
operator are given. Ke derive also lowest order expres-
sions for the lifetimes of bound holes.

In Sec. 4, rough numerical estimates are given for
the level width of bound holes over a considerably
wider range of densities and values of Z than in the
previous limiting case. It turns out that away from the
limit of very small binding energies (relative to the
Fermi energy) the plasmon-emission process gives an
important contribution to the level width of bound
holes.

A summary and discussion of the results is given in
Sec. 5. In that section we also consider briefly some
physical applications of the results obtained here for
the single-particle excitation spectrum.

2. PROPERTIES OF INDUCED CHARGE DENSITY

%e consider first some general properties of the
induced charge density and the corresponding polar-
ization potential of the Schwinger equation. We include
a brief discussion of the derivation, by our methods, of
the pair-approximation result (13).

Let us first dispose of the complication of the uniform
positive background. Actually, we should have included
in our Feynman diagrams external-potential vertices
due to the uniform background. Now, since the density
of the unperturbed system is the same as that of the
background, the vertex due to the latter LFig. 1(a)j is
cancelled by the lowest order polarization diagram
LFig. 1(b)]. Furthermore, since the density of the
interacting and unperturbed systems is the same, in the
absence of the source, the lowest order polarization
diagram has, in fact, the same value as the totality of
source-free polarization diagrams at the same point
LFig. 1(c)j. Thus, we may eliminate the uniform
background from consideration provided that we adopt

(a)

I ro. 1. Diagrams illustrating the cancellation of the effect of
the uniform background. The cross represents the potential due
to the uniform background.

"J.C. Slater and H. M. Krutter, Phys. Rev. 47, 559 ($935),'6 P. M. Morse, Astrophys. J. 92, 27 (19&0')."E.Schatzman, reference 13, Chap. 4.
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the following simple convention. "ALL vertices due to the

uniform background and simultaneously all source fr-ee

polarization insertions in an eLectron Line are to be

ignored.
This convention, of course, is equivalent to sub-

tracting out the unperturbed charge density, po, from
the total density p in all expressions involving p, a type
of renormalization procedure which is appropriate to
this problem.

%e turn now to a consideration of the induced charge
density. The direct potential, defined here as the sum
of the external and polarization potentials, can be
written in the operator form

IC '=1—vQ+vQvQ —vQvQvQ+

whose sum is
E '= (1—+vQ)

—'.

(20)

(21)

Thus, the generalized dielectric constant has the form

For spherically symmetric external potential, Q, like K,
is rotationally invariant. Furthermore, Q is a real
symmetric matrix in position space. This last property
guarantees the reality of the induced charge density
when using the dielectric constant approach. ~

For suitably normalized Q one has then for K ' the
operator expansion

Vd=E 'V,

where l, as usual, is the external potential.
More explicitly, we have

Va(x) = d'x' E '(x,x') V (x').

(17)

or

E= 1+vQ.

Frem (17) and (22) one can write also

(1+vQ) Vg= V,

(v '+Q) V =v 'V
= —Z.

(22)

(23)

(24)

Or, in momentum space, The induced number density p, is obtained by taking
the negative Laplacian of the induced potential. Thus,
we obtain from (17) and (21)

V (q) = d'q' & '(q, q') V(q')
(qI p,&

= q'&qI (&-'—1)v&, (25)

K ' is itself a functional of the external potential V.
The inverse operator E will be called the generalized
dielectric constant. If the external potential is spheri-
cally symmetric, it is easy to see that K is rotationally
invariant. In the limit Z —+ 0, E is diagonal in momen-
tum space and K(x,x') is a function of (x—x')-'.

The quantity E '(q, q') corresponds to the totality of
polarization diagrams with initial dotted line labeled
by q and a final "source" vertex V(q') as illustrated in
Fig. 2, in addition to a simple vertex corresponding to
the external potential alone. These polarization dia-
grams can be broken down into diagrams involving
repeated insertions in dotted lines of strongly connected
diagrams, as in the example of Fig. 2(b). The totality
of such strongly connected insertions will be called Q.

It is easy to verify that Q is a Hermitian operator.

(~le)= r~ «)—
1+v

(26)

Let us consider first the subclass Q of Q consisting
of source-free diagrams. Since Q is diagonal in mo-
mentum space, (26) becomes simply

q'v(q)Q(q),
(qI p'&= —

(qI V&

1+v(q)Q(q)
(27)

Since v(q) =4trP/qs and V(q) = —Zv(q), we see from
(27) that

o'(q) =4wPZQ(q)ILV'+4~PC(q) j, (2g)

where the Fourier transforms p(q), V(q) are normalized
as usual according to the relation

f(q) = f(x)e's'd'~

FIG. 2. Polarization dia-
grams with (a) a single
strongly connected inser-
tion, {b) two strongly con-
nected insertions.

~s I wish to thank Professor M. Ruderman for the idea of
looking at the cancellation in this simple way,

Assuming that Q(q) approaches a limit different from
zero as q

—&0, as we shall see is, indeed, the case, we

"These properties of Q follow from similar properties of the
zero-frequency transform, D, of the "density propagator" D(t—t').
The latter is defined by (xtD(t —t) tx')=(Tp(x t)p(x', t')) where
tt) {~)=—p~(~)p{~).

Except for a real constant of proportionality, we have, namely,
Q=D{1+vD) '=D —DvD+ ~ -. Note also that E '=1+vD.

The stated properties for D follow from the representation

(xID, x')=clim d~e «'I fg{r)Q{x)e'(0 ~'p{x'))
+~{-.) &.{').— - - '{.'))~,

where c is a real constant.
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q, W Q,W

Fxo. 3. Feynman diagram
for Q0{g,m).

1
img~(q, q )=—III, Ill+-&1,

2~
'

2
(33a)

note, in particular, from (28) and (29) that
1 1 q

2

4x q 2

p;(0) p;(z)daz Z (3o) jest——III &1&-+III, (33b)
2 2

This expresses the fact that the total induced charge
exactly cancels the source charge, leaving the system,
in this approximation at least, electrically neutral. We
must expect that (30) holds true in the exact theory
also since charge neutrality is a necessary condition for
the electrostatic stability of the ground state." We
shall return to this point later.

The derivation of the neutrality condition (30) points
up the fact, characteristic of the long-range Coulomb
interaction, that the conventional perturbation expan-
sion of p in powers of P, which would regenerate a
series of the type (20), is invalid for q2&P. As is well
known, the terms of this series exhibit successively
stronger "infrared" divergences at q'=0 which cancel
when the sum is taken. A correct perturbative procedure
is, instead, to make the same lowest order approxi-
mation to Q in both numerator and denominator of
(26) leaving the denominator unexpanded.

The lowest order expression for p;, in the above sense
is obtained by making the replacement Q~ Qo(q) in
(27) where Qo(q) corresponds to the limit w ~ 0 of the
simple "bubble" diagram of Fig. 3, denoted by Qo(q, w).

The correctly normalized expression for Qo(q, w) is

2i
Qp(q, w) = d'kdw' Go(k,w')Go(q+k, ut+w'). (31)

(2s)'

For w different from zero Qo has an imaginary part
which contributes to the lowest order lifetime of a
single-particle excitation, as discussed in the next
section. According to Dubois' and Lindhardt "

Qo(q w)
has the following value:

ReQO(q, qN)

1 — ( q
' -(e+q/2)+1-

1+—1—
I
I+- ln

2q & 2 (I+q/2) —1

q
' -(I—q/2)+1-

1—s—— ln, (32)
2q 2 (u —q/2) —1

~ At 6rst sight the requirement of charge neutrality may be
puzzling since one imagines that an extra charge Ze has been
inserted {adiabatically) into an enclosed system which was
originally neutral. However, it must be kept in mind that in
calculating local properties, such as the density, we are really
dealing with a limiting process in which the volume of the con-
tainer becomes arbitrarily large while attention is focussed on a
6xed point of space. In this case, boundary effects do not appear
in the final result and, in particular, charge neutrality will be
preserved,

=0, ——III &1.
2

(33c)

Q= Q+Q', Va= V+ V', (35)

where 'F, proportional to Z, is the solution of (23)
with Q= Q. V' involves higher powers of Z. The lowest
order diagram for Q' is shown in Fig. 4.

From (23) one easily derives the following equation
for V' in terms of Q, V, and Q':

V'=-(-+Q)- Q'V. (36)

In lowest order, corresponding to the approximation
Qo for Q, V has the general form

V (q) =const/I:q'+0& (q)3=&'(q'),

where b~ and k' are bounded functions of q' I the exact
form of b~ is given in (34)]. We note also from (34)
that Qo(q') is a bounded function of q'.

It is now easy to show from (36) that the induced
charge density corresponding to V' will not aGect the
neutrality relation (30) provided that suitable bounded-
ness requirements in momentum space are imposed on

v{q-q')
X FIG. 4. Lowest order Feynman

diagram for Q'.

In the limit I -+ 0, the imaginary part of Qo disap-
pears and one obtains from (32)

2 1 q 1+q/2
4sQO(q) = b~(q') =— 1+- 1——ln . (34)

q 4 1—q/2

Substituting this into (28) we obtain the familiar
"pair-approximation" result (13) for the induced charge
density.

Before proceeding to the discussion of single-particle
excitations we return briefly to the question of the
neutrality of the system in the exact theory as pledged
earlier. We have already seen, formula (30), that
neutrality is achieved in the linear approximation in
which Q is replaced by the totality of source-free
diagrams.

Let us separate out the source-free approximation
by writing Q and Vq in the form
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(a)
ps4

P~U P U P~U

(d)

V(p-p')
X

P,U P, U

PiU

(e)

Thus, in particular, the imaginary part of the mass
operator enters only in order P'." This circumstance
permits one to neglect the non-Hermitian part of the
effective Hamiltonian in lowest order. That is, single-
particle excitations are stable in lowest order.

Diagram (a) is easily evaluated Lsee formula (77) of
1]. The resulting expression is, in fact, identical with
the familiar lowest order exchange contribution to the
single-particle energies in the source-free case."

Pro. 5. Lowest order mass operator diagrams.

Q, V, and Q' which are suggested by the lowest order
results (34) and (37).

Let us assume, for example, that the exact Q(q) is a
bounded function with Q(0)WO. It then follows that
the exact V(q) can be expressed as a bounded function
of q' times the factor (q'+c) ' for some positive c/0:

V(q') =&(q')(q'+~) ' (38)

The same is true, of course, of a factor (v '+Q) '.
Let us assume now that a series expansion of (v '+Q) '
about (n

—'+Q) ' has the usual desirable convergence
properties. Then (as one easily sees by induction on the
eth term of the expansion) in order for the total charge
induced by V' to be zero, it is sufFicient to assume in
addition that Q' has the property

I

I
Q'(q, q')

I
=&(q'),

2+Q

(39)

for all positive c/0, where b(q'), as usual, denotes a
bounded function of its argument.

This is true, for example, if Q'(q, q') can be expressed
as a bounded function times [(q—q')'+cj ', where c is
a positive or zero constant. This Coulomb type of
dominating behavior is suggested by the lowest order
diagram for Q'. (See Fig. 4.)

While the verification of these properties is a difFicult
matter, even within the framework of perturbation
theory, it is nevertheless satisfying that plausible
conditions of this kind, guaranteeing charge neutrality
for the exact theory, can be formulated.

3. LOWEST ORDER EQUATION FOR SINGLE-
PARTICLE EXCITATIOHS

Ke shall now consider in some detail the lowest order
equation describing single-particle excitations. This is
obtained by using the pair approximation (13) for the
electron density in the Schwinger equation (11) to-
gether with the lowest order "mass operator" term
corresponding to diagram (a) of Fig. 5.

Diagrams (b) through (e) of Fig. 5 are formally of
one higher order in P or ZP than diagram (a), due to
the presence of an additional interaction line or an
external potential. It is not difIicult to show that
diagrams (a), (b), and (c) do not have imaginary parts.

(P I
3f'.

I
P') =~.(P)&'(P—P'),

~.(P)= —Pb2(p'),

(40)

(41)

2 1—p' 1+p
ln +-

4p 1—p

As before, b(x) denotes a bounded function of g."
Note that M, is independent of m. M, (0), like the
mass renormalization term in quantum electrodynamics,
which it formally resembles, represents a constant
(state-independent) shift in the single-particle energies
which is the same for free and bound electrons in the
medium. Unlike the Q.E.D. case, however, this shift
has observable physical consequences. ~

According to the foregoing discussion, the complete
lowest order equation for single-particle excitations
reads as follows:

&~'—p'/2+PL&2(p') —&2(0)j)4-(p)
d'p'ZP

, &-(P'), (43)
2n' q'+Pb&(q')

where
m'= w+Pb2(0), (44)

"This formal estimate is con6rrned by the detailed calculations
given later, which show that the leading order is in fact P~ lnP.~' It is interesting to note that the functional forms of b2, and
b1, are related: b~(x') =gb1((2x)~).

"The shift should enter, for example, into the energetics of
electron capture by a nucleus in a dense medium.

and b&(q'), bm(P') are given by (13) and (42). This
equation describes an independent particle model in
which single electrons move in an effective potential
consisting of a direct potential, determined by the pair
approximation for the total density of electrons, plus a
momentum term which in a quadratic approximation
simply changes the eB'ective mass of the electron (and
shifts all energies by a constant amount).

Of particular interest are the bound-state excitations,
if any, associated with discrete negative values of zo.
It is physically clear that these excitations must
correspond to bound holes rather than particles. To
confirm the hole character of the excitations and
estimate the lifetime of the holes, one must determine
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the sign and magnitude of the imaginary part of the
eftective Hamiltonian. We shall return to this point
later.

To see whether bound states occur, it is convenient
to introduce a further approximation in which the
bounded functions b~(q') and b2(p') are replaced by
their values at zero argument. (The nature of this
approximation will be investigated more closely later
on. ) The direct potential now becomes a Yukawa
potential and the mass operator term simply reduces
to a constant. Thus, in this approximation, Eq. (43)
becomes, after taking the position space transform,

(w' —p'/2 —(PZ/r) expL —(4P/z)'"r))&0(r) =0, (45)

where fo denotes the approximate wave function.
The radial equation corresponding to (45) is of the

general form (@=qt), for S states:

(d'y/dr')+L +b(e '/ )+=0. (46)

This equation has been investigated by a number of
authors in connection with the two nucleon problem""
and the problem of Debye shielding in plasmas. " 7 It
has been noted that unless the parameter b exceeds a
certain critical value there is no bound state. According
to the numerical work of Hulthen and Laurikainen, '4

the condition for binding is

b& 1.68.

This condition, translated for Eq. (45) reads

Z'P & (I/z. ) (1.68)'~0.898. (48)

Thus, if the density is too high, binding is destroyed.
The condition (48) is in competition with the condition
(10) for the validity of our perturbation expansion.
%'e see that for both conditions to be met, the density
(or Z) must lie in the range determined by

0.898Z '&P&Z '.

It should be emphasized that the Yukawa approxi-
mation is not adequate for the wave function either
very close to or very far from the source. This is
because the approximation disregards the high mo-
mentum components of the effective Hamiltonian and
also the logarithmic singularities, in momentum space,
of the d.irect potential and the mass operator due to the
Fermi momentum cutoff.

In this connection, it is interesting to note that the
logarithmic singularity at the Fermi momentum of the
exchange potential may be expected to give rise to an
oscillating long-range behavior, of order P, similar to
(16), for the wave functions of the discrete spectrum.

~L. Hulthen and K. V. Laurikiainen, Revs. Modern Phys.
23, 1 (1951). I wish to thank Dr. H. Nickle for bringing this
reference to my attention.

g» J. Blatt and V. Weisskopf, Theoretk al Xuclea~ Physics
(John Wiley R Sons, Inc. , New York, 1952), Chap. 2. I would
like to thank Dr. L. Rosenberg for informing me of this reference.

3' G. Ecker and W. Weizel, Ann. Physik 17, 126 (1956)."G. Harris, Phys. Rev. 125, 1131 (1962).

Thus, the bound-state wave functions are considerably
more diffuse than in the Yukawa approximation.

nevertheless, the Yukawa approximation is, in a
certain sense, a well-defined lowest order limit of (43).
Ke have in mind a particular limit procedure in which
P tends to zero while Z'P is held fixed. (Under these
circumstances ZP will also approach zero. )

To show this formally, let us perform the scale
transformation

p~PZp, r~ (PZ) 'r.

The "Schrodinger" equation (43) then becomes

[,'-P'/2+~-'Lb (»f')-b (0)]jan.(P)

(50)

and
w. '= Lw+Pb2(0)]/(PZ)'= w, +y 'b, 2(0) (53)

Here, P, is the scaled wave function and w, = w/(PZ)'-.
If, now, P and ZP approach zero while y is held

fixed, we obtain i' the limit the equation

Lw*'-P'/2j|i" (P)=, , &.(P') (54)
2m' q'+4(zy) '

3g This point could be settled by numerically solving Kq. {51)
for a range of values of P and y.

In position space this is

(~ '-I "2-(1/) exp'-(4/-~)""])~. (r)=0. (55)

Equation (55) is, indeed, the scaled form of (45).
It is useful to note the conversion formula giving w

in rydbergs in terms of the dimensionless quantity u~,.

in (54):
@=2~,Ry.

We observe also that the continuum starts at m, '=0,
which corresponds, from (53), to a value of w, given by

",o= —~ 'b (o) = —(2/ )7 ' (5&)

We see that the limit of the continuum of single-
particle energies is "pushed down" by the interaction
(see references 25—27).

We have shown above that the Yukawa approxi-
mation (55) is a formal limit of Eq. (51) as P and ZP
approach zero with y=Z'P fixed. It is legitimate to
inquire now as to the validity of this formal limiting
process.

Unfortunately, a rigorous mathematical investigation
of this important point is a difIicult matter, beyond
the scope of the present paper, and we must content
ourselves with comments of a heuristic nature. "

We restrict attention to the discrete spectrum since
this is the simpler case to discuss. It is, in fact, mis-
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leading to talk about limit processes for continuum
wave functions outside the context of particular matrix
elements of interest.

For the eigenvalues and eigenfunctions of the discrete
spectrum, it is reasonable to assume that the above
formal limit process is valid. We refer here to the
"scaled" form (51) of the original Eq. (43).

First, we note that there is no difhculty in formally
applying ordinary lowest order perturbation theory for
the discrete eigenvalues and eigenfunctions of (51) and
that this gives results in agreement with the above
assumption. This, however, is not a very reliable test."

In order to rigorously establish the validity of the
passage from (51) to (54) for a region of values of w, '
about a single point of the unperturbed discrete spec-
trum it is sufIicient to show, according to a theorem of
Riesz and Sz-Nagy, that the perturbed "Hamiltonian"
operator approaches the unperturbed one "relatively
uniformly" as the perturbation parameter (in our case
the parameter P) approaches zero.~

This property of relative uniform convergence is
apparently assured in our problem by the bounded
nature of the functions b~ and b2 and the good bounded-
ness properties in momentum space of the Yukawa
potential. 4'

It should be noted that the source-induced Yukawa
potential which we have justihed here by a formal
limiting process has long been known and used —for
the impurity problem —in the electron theory of metals,
where its introduction has been based on a linearized
Thomas-Fermi treatment. (For a recent discussion,
see Pines. 4' The original derivation is apparently due to
Mott. ~)

This contact with the semiclassical Fermi-Thomas
method permits one to ascribe a more extended region
of validity to the Yukawa potential than emerges from
the present formal analysis.

An important condition for the validity of the semi-
classical analysis is that the average potential due to
the source be much less than the Fermi energy. We
might guess then that our special formal limiting

'9It gives the wrong answer, for example, in the case of the
Stark effect.

'OF. Riesz and R. Sz-Nagy, FNncIional Analysis (Frederick
Ungar, New York, 1955), translation of 2nd French ed. , Chap. 9,
p. 372. The operator sequence A is said to converge relatively
uniformly to the (Hermitian) operator A if

ll(~ —~.)fly
l.u.b. ~ 0* ' llfII+ ttAfll

where l.u.b. means least upper bound and where f ranges over
the Hilbert space."%'e argue roughly that the numerator of the relevant ratio
{see footnote 40) approaches zero with P except for functions fconcentrated in a high momentum region of order 1jP. However,
for these f, the denominator becomes very large, like p ', and,
therefore, the ratio still approaches zero (like p').

4' D. Pines, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc. , New York, 1955), Vol. 1."N. F. Mott and H. Jones, The Theory of MeAzls and AlIoys
(Oxford University Press, New York, 1936), p. 87.

process in which P ~ 0 with y 6xed is actually valid
in the case of week binding —and high densities —that
is, when the binding energy of the bound state in
question is sufFiciently small compared to the Fermi
energy. This speculation is strengthened by the follow-
ing level-width estimates, particularly of Sec. 4, where
at the same time a more precise definition of the
"weak binding" limit is provided.

Calculation of Level Width

I.et us now consider in more detail the imaginary
part I' of the eigenvalues of the exact Eq. (11) in the
bound-state case. Ke must show, in particular, that
the sign of F is that appropriate to holes rather than
particles. Furthermore, if these bound excitations are
to be discrete, I' must be smaller, though not necessarily
much smaller, than the separation between bound
levels. 44

Actually, the question of the sign of F in perturbation
theory can be answered on general grounds since it is
known (see I, Sec. 2) that the non-Hermitian part of
Z(w) is a negative operator if w(p and, in particular,
if w is negative. (Here, p is the chemical potential. )
As is easily seen this property must be true also in
lowest order perturbation theory. Of course, explicit
calculation must give the same result.

As we have already remarked, the lowest order
imaginary part is due to diagrams (d) and (e) of Fig. 5.
Thus, I' is given in the lowest order by the imaginary
parts, Fg and I"„of the expectation values of 3f~ and
M, using wave functions that are solutions of Eq. (43).

Actually, the familiar problem of the "infrared
divergence" at low momentum transfer forces us to
consider along with diagram (d) diagrams with an
arbitrary number of bubble insertions. Since the lowest
order mass-operator diagram has no imaginary part,
we can add this to M~ without affecting F~. If we do
this, then the net eHect of all these bubble insertions is
to replace the interaction, v, of the lowest order diagram
by the "effective interaction" wEO ' where Ko= 1+mQO
is the time-dependent dielectric constant in the pair
approximation.

Physically, diagrams Mz and M, correspond to the
creation of electron-hole pairs or plasmons in the
decay of a, single-particle (hole) excitation to a lower
state of excitation. This has been shown explicitly by
Dubois, who has introduced effective momentum
dependent coupling constants for these modes of
decay. " (See also Quinn and Ferrell, 4' and Quinn. 4~)

44 This is a physical criterion corresponding to the requirement
that the linewidth of the emission spectrum for a transition
between bound holes be less than the transition energy. We recall
that e ~~ ~' is the probability for decay of the excitation in time 1.
See I, Sec. 2.

4' D. Dubois, reference 5. See especially formulas (3.10), (3.12),
(3.13), (1.14) and (1.15) of the second article. A number of mis-
prints in these formulas have been corrected here."J.Quinn and R. Ferrell, reference 10."J.Quinn, Phys. Rev. 126, 1453 (1962),
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Dubois has pointed out also that M, is the exchange
interference correction to the pair portion of M~. The
plasmon is stable in the pair approximation and the
plasmon decay mode arises mathematically as a delta
function contribution to I'~ from a pole of the inverse
dielectric constant at the plasma frequency.

In writing the decay probabilities in this form, one
adopts an 5 matrix and Feynman diagram point of
view conventional in relativistic field theory. The initial
state is a hole, in our case a bound hole, and the final

state is a free hole plus either an electron-hole pair or
a plasmon. Of course, in this many-particle case all
initial and final states are actually unstable. The pair
"coupling constant" g(P, q) given below in (64) is

essentially the momentum-energy transform of the
time-dependent effective interaction, analogous to the
photon propagator of electrodynamics. The plasmon,
treated as a boson, is coupled directly to the electron
field by the coupling constant g„(q) given in (66), which
arises from the residue of the pole of the effective
interaction at the plasma frequency.

Since M~ and M, are diagonal in momentum one
can write I'd and I', as weighted averages, with weight
function lf„(p) I' of the transition rate for the decay
of source-free hole excitations of definite momentum, p.
One can then simply take over Dubois' expressions for
the latter. The only unusual point in this regard is
that the energy, —m, of the "free" hole excitation of
momentum P is positive, since we are actually dealing
with a hole in a bound state. However, momentum and
energy conservation apply just as in the true free-
excitation case.

Thus, we have

Here g is the "exchange momentum transfer" (for
holes).

q=Pi P (62)

~(~-&(q))r. ,i(p, q) =—g'(q) a(q.—q).
g7r' 2A(q)

(63)

g„'(q) 3'„'— 5 q'
1+- +

(2~)~ g~q' 9A„~
(66)

(67)

The coupling constants for pair creation g(p, q) and

g(p, q) are given by

(2~) g'(P, q) = l (P)x'q')'I E:0(q ~) I
', (64)

where Eo as before is the dielectric constant in the
pair approximation.

In the formulas above, 6 is the energy transfer in
the de-excitation of the hole:

~= I~'I+(P q)'i2— (65)

Here, we have noted that since the "mass renormal-
ization" constant wo of formula (57) affects both initial
and 6nal hole excitation states only the "renormalized"
energy m' enters in the expression for energy transfer.

In the approximation we are considering, Eo may be
replaced by unity in the expression for I', since there is
no infrared divergence at low q values for the exchange
correction.

In formula (63), g„(q) is the plasmon coupling con-
stant and A(q) is the momentum-dependent plasmon
frequency. According to Dubois45

r,= d P 14.(P) I r, (P), (5g)

The transition rate I';(P) can be written as an integral
of a differential transition rate r, (p,q) corresponding
to a definite momentum transfer, q, upon de-excitation
of the hole to a (true) free-hole excitation with mo-
mentum P—q:

r'(P) = d'q el 1—IP —
ql X'(P,q).

A(q.)=sq'+q' (69)

An alternative closed expression for rq „,(P,q) may
also be given and is often more convenient":

where A„, the classical plasma frequency, is given, as
usual, by

A~= (4P/3ir)'". (68)

q, is the plasmon cuto8 momentum determined by the
equation

For r, (p,q) we take over bodily, with only minor
alterations, the expressions and terminology of Dubois4':

2 p2ImQ, (q, ~)« ..(P,q) =
~

I q'+4wPQO(q, h) I'
(70)

xb(gq'+q P,—~), (60)

r (P q)=—,(—k)g(P, q) PPy
l~ I «& I&1+&I

xg(P, q)&(kq'+q pi —~). (61)

The real and imaginary parts of Qo are given in formulas
(32) and (33).

An exact analytic evaluation of I'~ and I', is not
possible. Let us consider first the special lowest order
approximation delned previously in which P and Z

4 Compare formulas {3.6) and (3.20) of Dubois, reference S.
Dubois' derivation of (3.20) is valid also in the present bound-
state case. I et us note that these closed expressions can be used
to derive expressions (60), (61), and (63) without using the
S-matrix approach.
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approach zero while y=Z'P is held fixed at a value
greater than that needed for binding. %e shall call this
the fixed-y approximation.

In the fixed-y approximation the (relative) binding
energy, w, is of ord. er P as one sees from Eqs. (53) and
(54). Similarly, the wave function "selects" (relative)
momenta of order P'". Thus, as P —+ 0, the level width
tends to a value appropriate to a source-free hole
excitation of zero energy and momentum.

We shall consider only terms of order p' (or bigger)
vhich is the nominal order of diagrams M~ and M,
(two vertices). Actually, I'q is of order P'lnP in the
fixed approximation due to an infrared divergence at
10w q values.

On the other hand, it is not dificult to show that the
plasmon decay mode is of higher order than p' in the
fixed-p approximation. Indeed, the energy-momentum
relation of a plasmon forbids the decay of a strictly
zero momentum and energy hole excitation to a lower
state of excitation via the creation of a single plasmon.
Even when one takes into account the distribution of
momenta permitted by the wave function, this "phase-
space suppression" turns out to be sufhcient to make
the plasmon decay mode of technically higher order in
P than the pair contribution. 4'

After a short calculation, details of which are given
in Appendix 1, we obtain the following lowest order
results for the imaginary part of diagrams of the type
Mq and M„ in rydbergs~:

-,'r.=[a 1 (1/P)+b] Ry, (71)

2Fg=C Ry)
where

g= i/m,

b = 1/ir[ —1—ln(4/s)+ (s/2) V (
~

w,
'

~

+-', (P')„)],
c= —m, /24.

Here the symbol ( )„denotes the expectation value
with respect to scaled Yukawa-potential wave functions,
solutions of (55), for fixed y. Note that the constants
a and c are independent of the bound state and are, in
fact, the same as for a source-free excitation with
p=m=0.

For the total width of the excitation level in the fixed
approximation one then obtains the result

-', I'= (1/~) [ln(ir/4P) —1—(x'/24)

+ (~/2)~(l w. 'I+i(P')~)] Ry (&3)

XVe see that as the density increases indefinitely with
y held fixed, the absolute level width will approach
infinity, like lnP. Since from (56), with fixed y, the
binding energy is of order 1/P in absolute units (ryd-

'9 A further justi6cation of the neglect of the plasmon contri-
bution to the linewidth to low est order in P is given in the next
section.

'o The leading Inp term +as announced at the Chicago meeting
of the American Physical Society, November, 1951.

bergs), the bound-state level spacing hw„also ap-
proaches 00 and in a manner such that the ratio
(I'/hw„) approaches zero like P lnP. This assures the
existence of a discrete spectrum in the limit P-+0
with y fixed.

One must demand also that the first bound level be
separated from the continuum by an amount greater
than the linewidth. This is clearly also guaranteed in
the limit P —+ 0.

4. SOME NUMEMCAL ESTIMATES

Although the result just given for the level width in
the limit p—+0 with y fixed is interesting from the point
of view of establishing with some degree of mathemati-
cal rigor the actual existence of the discrete spectrum of
bound holes, the region of quantitative accuracy of this
formula is limited to extremely high densities. It is,
therefore, desirable to get a rough, necessarily non-
rigorous, estimate of the level width for a wider range of
densities. At the same time, this would permit one to
assess more precisely the region of validity of the fixed
y result. To this rather lengthy task we devote the
present section. We shall, of course, maintain the
restriction that p be not (appreciably) larger than
unity. However, we shall not take the limit P ~ 0 and
we shall not at first place a restriction on the magnitude
of Z.

The approximation we shall use is the following.
We shall assume that the major contribution to F for
p&1 comes from the expectation value of diagrams of
type M& with respect to an appropriately chosen wave
function. Thus, in particular, we shall neglect the
exchange interference diagram, M„ the contribution of
which has been shown to be small in the fixed-y approxi-
mation.

We neglect also, as before, all higher order mass
operator diagrams. Since P& 1, this is a reasonable first
approximation for the class of diagrams not involving
external source vertices. (Multiple emission processes
are included in this set of discarded diagrams. ) Dia-

. grams with external source vertices, however, have
factors of ZP associated with them, which we do not
assume to be necessarily small.

We justify dropping external source diagrams on the
grounds that the influence of the source on the decay
of the bound hole is primarily to determine, through
the wave functions, a distribution of momenta for the
decay of "free" holes.

Thus, we neglect, in particular, the possibility of the
decay of the hole to mother bound skate and, more
generally, we neglect the influence of the source on the
final decay states and on the "coupling constants. ""

Clearly, these approximations will be poor when the
bound state in question approaches the corresponding
state of the isolated atom that is when the binding

~'An approximate expression for the decay rate to a lower
bound state is given at the end of this section.
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energy becomes significantly larger than the Fermi
energy. Therefore, we do not expect our results to be
particularly meaningful beyond the range m &1."

%'c come now to the question of the choice of wave
function. %e shall attempt to make as general a choice
as possible since the exact form of the efFective
Schrodinger equation is unknown except in the limiting
case previously considered.

Now, if one neglects the small nonlocal potential due
to the mass operator, as we shall, the (radial) wave
function falls ofF exponentially in position space for
large distances with a range that depends only on the
binding energy"

p —1 w+-,'p'

2 2(1+p)
(77b)

Here we have introduced the standard variable s=q/2.
The variable y is the energy transfer in the decay of the
hole divided by the momentum transfer q. f& and f2
are, respectively, the real and imaginary parts of Qo
multiplied by s as given by formulas (32) and (33)
with e replaced by y. The limits of integration z+ and

y+ are defined by

p+1 1+(2+2w)'12

P (r) expL —(2w)'I"rg.

The corresponding normalized momentum-space
wave function is

( )"V (p)=( / )'"5( )'"/(p'+ )'j ( )

y+= min

y =max

-w+~2 w+xs(p+2s)'
' 8+1

2Z
'

2Z

-w+~(p+2s)'
(77d)

This is the wave function we shall adopt as a starting
point in the present approximate calculation. " It has
the interesting property that it depends only on the
single parameter of the (relative) binding energy, u,
rather than on the full set of parameters characterizing
the exact solution, namely, P, Z and the quantum
numbers of the bound state. Of course, it gives a
rigorous solution for the ground state of the isolated
hydrogen atom. "

Let us consider now in more detail the pair portion
of Fd. After some elementary manipulations, Eqs. (70)
and (59) for Fq, „„(p)can be put into the following form
in which phase-space limitations are explicitly exhibited
in the limits of integration:

7r Z+

—Fg, p, (p) =— dss'
2

f2(s,y)
X Ry. (76)

Ls'+Pfi(s, y)7+tf'f2'(s, y)

"Here and in the remainder of this section we adopt for
notational simplicity the convention that the symbol "m" stands
for the renormalized NNding energy, a positive quantity.~ We have already observed that the logarithmic singularity
of the exchange potential at p=1 is responsible for a small long-
range falloG of the wave function similar to that of the polarization
potential. This eGect actually dominates the asymptotic behavior
of the bound-state wave function at very large distances from the
nucleus, However, according to perturbation theory, this long-
range tail should not be important, in the high-density region,
for expectation values such as that involved in computing the
linewidth.

~The wave function (75) can be improved by taking into
account the change in eGective mass, m*, of the electron. To do
this one should replace m by (m*/m)u~. According to the lowest
order Hamiltonian of Eq. (43), (m*/m} = (1+2P/3x) '

"The wave function (75) satis6es, of course, the relation
(p')=2', the virial theorem for bound states in a Coulomb
potential. The virial theorem goes somewhat diGerently for, say,
a Yukawa potential, but one does not expect a radical change in
this relation between the rms value of momentum and the binding
energy. After all, for a given bound state, one can always approxi-

I',„= F „(P)P '(P)d'P F, „(P=(2u)'~ ). (79)

To evaluate the right-hand side of (79) it is still
necessary, in general, to carry out a double integration
numerically. In a few special cases, however, this
integration can be performed exactly or asymptotically
or reduced to a single integral. Thus, one finds that in
the limit p', w ~ 0 (for p/0),

—Fa,p, (p'=w=0)
2

Z dZ= 2 Ry. (80)
0 Ls'+P fi(s,s)1'+P'fP(s, s)

mate the eGect of a Yukawa potential by using a Coulomb
potential with the appropriate "eGective charge"' (by averaging
the screening factor).

f& has the form (33a) for y less than 1—s and the form
(33b) elsewhere.

In spite of the factor of 1/p in (76), this expression
is 6nite in the limit p —+ 0 due to the limits of the y
integration.

It is easy to verify from the limits of integration that
I'd, „(p) vanishes unless p lies in the region

max[0, (2w+2)'12 —2]&p((2ut+2)'I'+2 (78)

This interval always contains the point p'=2w. To
get F~ we must integrate Fd(p) with the weight function
p.'(p)d'p. Now, we see from (75) that p'p '(p) has a
maximum near p2= 2w with a half-width for p of order
(2w)'12. On the other hand, F& „(p) has a wider
distribution in p for small m.

For the above reasons, we make the further approxi-
mation that the pair portion of F~ is adequately
represented in the region x & 1 by evaluating the
integrand at p'=2m:



SI NGLF —PAP~ TI CI. F. EX CI'I AT IOUS I N DENSE ELECTRO/i GAS

-r. , (p)=-I3-&Ay[1 —2(A —w)]
2

'
2

ln(q+/q )
)&8(A„—w) Ry, (83)

p
where

q~= minLq„p+ (2A„—2u)'"],

q =min[q„jP —(2A„—2w)'")],
(84)

q,~(1+2A„)'"—1. (85)

Note that from momentum and energy considerations
the plasmon portion vanishes if zv is less than A„—-', or
larger than A„. fA~ is given by Eq. (68).]

%e are interested, of course, in the integrated
cxpl essl on

d'p r d, ,i(p)0-'(p) (86)

Since r~i(p) goes to infinity logarithmically in p at
the point p"-= 2(A„—w), it is no longer a good approxi-

This yields the leading logarithmic term of (61) in

the limit J3~ 0.
For P=G and w(1/18 one obtains the asymptotic

formula

(/) ."(p=( )'")- / + (/ )
to-+0

—2 1n2 —4—13/24. Ry. (81)

For P=G, w=-,' and p'=1:

(m/2)I'd, p, (p'-= 1=2w) =-3L(99/80) ——',v3] Ry~.41 Ry. (82)

I et us turn now to the plasmon portion of Fd. V e

neglect the dispersion of plasmon frequency and,
therefore, consider only the 6rst term in the expansions

(66), (67). A simple calculation then yields the result

mation to replace the weighted average (86) by the
value of the integrand at p'=2m. Instead, one might

try to approximate the integral by evaluating the
square of the wavefunction at p'=2(A~ —w). This gives

the result

r, „p.Lp =2(A„—)] d pr, , „(p). (87)

The integral on the right-hand side can be evaluated

exactly, yielding

(~/ 2)rg, i 1,6m'"(A „ur)'. "—P 'q&„'
X8(A,—w)8L1 —2(A, —w)] Ry. (88)

Comparison of (88) with the results of a numerical
integration of (86) shows that (88) is always somewhat
too large but becomes better with increasing P and is
quite good for P in the neighborhood of unity.

From (88) one sees that in the fixed y approximation,
when m is of the order of p, I'~ „1 approaches zero like
P3~4 Ry and is, therefore, indeed of higher order than
the pair portion of I'&, as we have previously claimed.

The Anal numerical results we shall present here were
obtained by the numerical evaluation of the double
integral of the approximation (79) for the pair portion
of I'd and a numerical integration of (86) with the wave
function (75) for the plasmon portion of rq. A range of
values of w and P lying in the interval 0 to 1 was taken.
The results for the partial and total contributions to
(7r/2)rq are given in Table I. (See also Fig. 6.)

The coefficient s/2 multiplying I' was chosen for
convenience in comparing the numerical results with
the analytical asymptotic expressions (73) and (81)
and has no physical signi6cance. Inasmuch as the
probability of decay of the bound hole goes like
exp( —2rt) a more conventional linewidth parameter
would be 21', slightly larger than the normalization
adopted here.

TABLE I. Partial and total level widths vs m and P for bound holes.

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.60
0.70
0.80
0.90
1.00

inf.
21.10
8.33
4.24
2.56
1.70
1.20
0,88
0.67
0.52
0.41
0.27
0.19
0.14
0.11
0.08

0.1

1.37
0.96 3.59
4.09 8.10
7.53 10.78
4.34 6.95

1.98
1.37
0.98
0.74
0.56
0.44
0.29
0.20
0.15
0.11
0.08

0.2

0.87
0.32 1.74
1.46 3.48
3.16 5.15
4.84 6.57
5.28 6.78

1.30
1.07
0.80
0.60
0.47
0.30
0.20
0.15
0.11
0.08

0.3

0.63
0.1? 1.11
0.79 2.01
1.78 3.12
2.94 4.17
3.93 5.07
4.22 5.25
1.85 2.78

0.80
0.65
0.51
0.32
0.22
0.16
0.12
0.09

0.4

0.48
0.11 0.79
0.51 1.35
1.17 2.05
1.99 2.87
2.81 3.67
3.45 4.26
3.56 4.31
1.88 2.59

0.61
0.53
0.34
0.23
0.16
0.12
0.09

0.6

0.31
0.06 0.47
0.28 0.75
0.64 1.10
1.12 1.57
1.65 2.11
2.18 2.66
2.61 3.10
2.84 3.32
2.38 2.85
0.85 1.29

0.37
0.25
0.17
0.13
0.09

0.8

0.22
0.28

0.18 0.48
0.43 0.72
0.75 1.03
1.12 1,41
1.51 1.80
1.88 2.18
2.19 2.50
2.36 2.70
2.10 2.43

0.31
0.26
0.19
0.13
0.10

1.0
e

0.16
0.20
0.22
0.21

0.54 0.75
0.82 1.02
1.12 1.33
1.42 1.63
1.70 1.91
1.92 2.14
2.05 2.28
1.56 1.81

0.23
0.20
0.14
0.11

& a is the plasmon emission width in rydbergs from formula (86); b is the total width, equal to a plus pair width from formula (79); w is the ("renormal-
ized") binding energy divided by twice the Fermi energy; P is the ratio of the Fermi wavelength to the Bohr radius of the electron.
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Pro. 6. The broken
curves show the level
width F as a function
of the relative bind-
ing energy, m, for
several values of P,
from data of Table
Ig with straight-line
interpolation be-
tween computed
points. Physical
bound holes must lie
on the portion of
the curves below the
solid straight lines,
which show the locus
of equal level width
and binding energy
for each value of P.

The following main features of the dependence of F
on w and P may be noted. In general, for P)~0.1, I' begins
at m=0 with values determined by pair emission alone,
then increases with m and has a single pronounced peak,
at a value of several rydbergs, to which pfusmon
emission contributes dominantly. (The pair portion is
comparatively fiat as a function of w.) The plasmon
portion then cuts out sharply at the classical plasma
frequency. "F continues to fall as m increases and at
m=1 the values of I' for all P have fallen to a roughly
common value of about 0.1 Ry, '~

The peak value of the linewidth is lowered as p is
increased and it is displaced slightly toward higher
values of m. Thus, the peak value is about 10 Ry for
P=0.1 at w=0. 15 and goes down to about 2 Ry for
P=1 at w=0.50.

For P=Q, only the pair portion contributes. I'
decreases monotonically with m starting at in6nity at
w=0 like 1/w in a manner given in detail by the
asymptotic formula (81).

For P~&0.6, the plasmon contribution comes in
sharply, and in fact discontinuously in our approxi-
mation, at m=(h~ —s), the minimum binding energy
for plasmon emission. (In our units the Fermi energy
~s)

The region 0(P(0.1 is not covered by Table I. In
this region, presumably, pair emission tends to be the
dominant process throughout. Values of F in the

"Of course, the sharp cutoff on plasmon emission is partly due
to our approximation, in which the dispersion of plasma frequency
has been neglected. Moreover, plasmon emission could still take
place in mulgp/e processes, neglected here, for example the emis-
sion of two plasmons or the emission of a plasmon plus an electron-
hole pair.

«' As one sees from the form of the denominator in the pair
emission formula (76},the reason for the lack of dependence on p
of the linewidth, at these comparatively large values of m, beyond
the plasmon-emission cutoff, can be found in the rather large
minimum momentum transfer in the decay. The latter is deter-
mined by m according to formula (77b). This is also part of the
cause for the rapid decrease in pair emission at these energies.
Another reason for this decrease is that the solid angle (of q) for
pair emission is continually narrowed about the "backward"
direction (with respect to p) as ze increases in order to maintain
conservation of energy and momentum.

(a)

(c)

FIG. 7. Polariza-
tion diagrams enter-
ing into the next
order of perturbation
theory.

'8 G. Harris, Table II of reference 37.
"This rough calculation neglects the effect of the change in

effective mass. See also footnote 54. This would also change the
Hulthhn-I. aurikainen criterion (48).

immediate neighborhood of m=0 should be adequately
approximated by the fixed~ approximation result (73)
with p replaced by 2m.

The results of Table I are interesting in that they
show a characteristic dependence of the linewidth of
the bound hole on the density of the system and on the
relative binding energy of the corresponding bound
state.

Table l can also be used to obtain a correction to the
Hulthen-Laurikainen criterion (48) for the existence of
bound holes and at the same time a correction to the
location of the edge of the physical continuum. %e
recall that the 6rst bound-hole state must have a
linewidth less than its binding energy to prevent the
level from merging into the continuum.

To investigate this point, we shall adopt values of the
binding energy arising in the Yukawa potential approx-
imation, as tabulated by Harris. "

Keeping in mind the relation W= (2w)/P' between
the relative binding energy and the absolute binding
energy, 8', in rydbergs and using the Yukawa potential
eigenvalues of Harris, " one Gnds that for the higher
values of P there is a significant change in the critical
binding condition due to linewidth. For example, for
P=0.6 one finds that the minimum value of Z for
bound holes to exist is changed from Z=2 (He) to
Z=3 (Li)."

Some interesting points show up in this connection
and it is worth going into the matter in somewhat
greater detail. For P &~0.3 one finds from Table I that
8" is always greater than j.' for m &~ 0.05, though plasmon
emission broadens the level width considerably. For
P=0.4 to 0.6 the minimum value of w for binding, w,
occurs near the end of the plasmon peak at m =0.4 and
0.5, respectively. For P=0.8 and 1.0, I occurs immedi-
ately following the plasmon cutoB, m =0.6 and 0.7,
respectively.

For P = 1.0 one finds an interesting situation: A bound
hole can also exist if m is in the neighborhood of 0.15
(W=0.3 Ry). For still lower densities, that is, entering
the region of ordinary metallic densities, one would
presumably 6nd that the domain of values of m for the
possible existence of bound holes consists of two
isolated intervals with the plasmon emission region
excluded. One should, therefore, observe at these
densities a gap in the emission spectrum of bound holes
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marked by the absence of transitions to or from bound
states with binding energies in the single, unaccom-
panied plasmon emission region (A„—-', ) &w(A„.

From general considerations, the linewidth of a
bound level should show up also in the absorption
spectrum and, therefore, the single-particle bound
states in question should be electively missing.

Because of the simplifying approximations made in
the present treatment of the plasmon portion and since
the region in question occurs for values of P and u
greater than or comparable to unity, the above inter-
esting prediction must be taken with a grain of salt.
Certainly, a more accurate analysis of the plasmon
portion, employing better wave functions and taking
into account the dispersion of plasmon frequency, is
justi6ed.

Before closing this subsection, we comment brieRy
on the region of validity of the 6xed-p approximation
result (73). One sees from the above work that this is a
weak-binding and high-density result whose domain of
applicability is characterized by the fact that the
relative binding energy, w, is appreciably less than P
which in turn should be appreciably less than unity.

where

(90)

Here I' „.is the (electronic) decay rate for transition

60 The integral involving the wave functions is essentially the
q-momentum transform of the product of the wave functions in
position space. It is, therefore, small unless the overlap of the
wave functions is appreciable.

Region of Stronger Binding

The previous estimates of level widths can be im-
proved by dropping the approximation (79) and by
making use of more accurate wave functions as provided,
for example, by the numerical solution of an effective
Schrodinger equation with a Thomas-Fermi potential
or the numerical solution of (the nonlocal) Eq. (43)
which is somewhat better than Thomas-Fermi at very
small and very large distances. In this way, one can
even hope to obtain a rough approximation for the
pair-emission and plasmon-emission rates in the strong
binding region m&1.

This is the appropriate place to discuss also the
contribution to the level width of bound holes arising
from the transition of the hole to another bound state.
In order to estimate this effect, it is convenient to adopt
an 5-matrix point of view and regard the transition as
taking place by means of the previous lowest order
Feynman diagrams and "coupling constants. " Thus,
we have now initial and final bound-hole states in
addition to a 6nal free electron-hole pair or plasmon.

After a brief and straightforward calculation one
obtains in this way the approximation~

of a hole of binding energy m to another of binding
energy w'. f„and P ~ are the wave functions of the two
bound states. I'z(q, h) is the sum of the pair and plasmon
portions of I'q(P, q) with 6 in those formulas replaced
everywhere by w —w'. LSee formulas (63) and (70).]

Since in our approximation the plasmon energy is

q independent, there will be no plasmon-emission con-
tribution to I'„~ unless m' —m happens to coincide with
the plasma frequency.

5. SUMMARY AND CONCLUDING REMARKS

In the preceding sections we have considered some
properties of the effective Hamiltonian entering into
the so-called Schwinger equation or e6ective Schrodinger
equation describing single-particle excitations, for the
particular case of a dense electron gas containing a
6xed positive point charge of atomic number Z.
Formula (43) gives the lowest order Schwinger equation
for this problem with respect to a perturbation expan-
sion in powers of the dimensionless parameters P and
PZ. (P is the ratio of the Fermi wavelength to the Bohr
radius. ) The lowest order energies and wave functions
may be obtained by a numerical solution of Eq. (43).

The lowest order equation (43) has an Hermitian and
energy-independent effective Hamiltonian and, there-
fore, is within the framework of the "h approximation"
discussed in I. In this approximation the ground-state
wave function is an antisymmetrized product of the
wave functions satisfying (43) with eigenvalues less
than the chemical potential p, . The single-particle
excitation states are found by adding particles or holes
in these single-electron states with excitation energies
equal to the corresponding eigenvalues.

We have been particularly concerned with the
discrete spectrum of "bound-hole" excitations. One
of the more interesting results of the present investi-
gation, though not rigorously established, is the actual
presence of a discrete spectrum and its disappearance
beyond a certain value of the density corresponding to
a value of the parameter p =Z'P roughly equal to unity.

We have introduced a particular type of limiting
process, especially appropriate to the investigation of
the discrete spectrum, in which the parameter y is kept
fixed while the parameter P approaches zero. AVe may
call this the 6xed-y approximation or limiting process.

For the fixed-y approximation, Eq. (43) reduces
formally in the limit P -+ 0 to an ordinary Schrodinger
equation with a Yukawa potential, formula (54), an
equation of a type which has been intensively investi-
gated in connection with the deuteron and plasma
problems. According to the numerical work of Hulthen
and I.aurikainen, '4 this equation has bound states only
for y ~&0.898.

In the important case of hydrogen (Z= I) this critical
binding condition is unfortunately not very accurate
since it corresponds to a value of P near unity. On the
other hand, for Z&1, the critical value of y occurs at
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values of P, as well as ZP, that are appreciably less than

unity.
The Yukawa potential obtained by our formal

limiting process is actually a familiar expression, due

originally to Mott, following from a linearized Thomas-
Fermi treatment. "

In formula (73), values were given for the lifetimes

of bound holes for the two lowest orders of the fixed-y

approximation in terms of the unperturbed solutions
of the Yukawa approximation. This calculation con-

firms the important point that at least in the limit

P ~ 0 the level width is small compared to the separa-
tion of bound levels. If this were not the case, the
discrete spectrum of bound holes would have no real

physical existence. Formula (73) shows also that the
level width at high densities is of the order of rydbergs.

In Sec. 4 we obtained approximate numerical esti-
mates for the level width of bound holes over a con-
siderably wider range of densities and source charges.
These results are summarized by Table I. It turns out
that in the range m I, the linewidth, to a fair approxi-
mation, can be expressed in terms of only two param-
eters, P and w. Here I is the relative binding energy of
the bound state —the ratio of the binding energy to
(twice} the Fermi energy.

Table I lists separately the important plasmon-
emission contribution to the linewidth. This comes into
play, in general, as soon as one leaves the limit of very
small binding energies and disappears for binding
energies greater than the maximum plasmon energy,
which is approximately the classical plasma frequency.

The magnitude of the linewidth is responsible for a
correction to the Hulthen-Laurikainen criterion (48)
for the existence of bound holes. In order to prevent
the first bound level from merging into the continuum,
one must demand namely that it be separated from
the continuum limit by an amount greater than the
level width. We find, for example, that for P=1 this
linewidth efI'ect is responsible for shifting the minimum
value of Z for the binding of holes from Z= 1 (hydrogen)
to Z=2 (helium).

It is interesting to note that the dimensions of the
"orbits" of bound holes can be considerably larger than
the interparticle spacing since very weakly bound holes
may be very remote from the nucleus. Specifically, we
see from the form of the approximate wave function
(74) that a measure of the range of the orbit is the
inverse square root of the relative binding energy, m,
while in the same units the interparticle spacing is of
order unity. This conclusion is affected somewhat by
the level-width correction, which requires a minimum
value of m before the level is actually separated from
the continuum. "

Our calculations permit us to assess more accurately
the region of validity of the fixed-y approximation,

~' According to Table I the minimum value of m is about 0.5
for is=0.6 and goes down to less than 0.05 for P =0.1.

which yielded the Yukawa potential in the limit P ~ 0.
It appears that this approximation is valid in the

weak-binding and high-density limit in which, more

precisely, the relative binding energy m is small com-

pared to P which, in turn, is small compared to unity.
This conclusion is consistent with the considerations

needed for the Thomas-Fermi derivation of the Yukawa

potential.
This weak-binding limit, as we have defined it, may

actually go beyond the region where ZP is less than

unity, a restriction imposed by our original perturbation

approach. This extension of the domain of validity of

the perturbation theory may be ascribed to the fact
that in avoiding the problem of the infrared divergence

at low momentum transfers we have summed over an

infinite set of polarization diagrams.
A number of interesting and important questions

remain open and deserve detailed study. These ques-
tions are, for example, (a) a mathematically more

rigorous delineation of the domains of validity of the
perturbation expansion, (b) the extension of the pertur-
bation calculation to higher orders, (c) alternative
nonperturbative treatments, (d) the elaboration of the

theoretical model to physically more "realistic" situ-

ations and, 6nally, (e} the question of the experimental
verification of the results concerning the single-particle
excitation spectrum.

In concluding the present section, we would like to
comment briefly and qualitatively on a few rather
isolated aspects of problems coming under the headings

(b), (d), and (e).
It is easy to see what diagrams are expected to

enter into the next higher order of perturbation theory.
Formally, at least, these are diagrams with an extra
dotted line or external potential vertex since such
diagrams have extra factors of P or PZ. These diagrams
are the three polarization diagrams of Fig. 6 and the
four mass-operator or exchange diagrams of Figs.
5(b)-5(e). This approximation already goes beyond the
"h approximation" discussed in I, since the operators
corresponding to diagrams M~ and M, of Fig. 5 are
non-Hermitian and energy dependent.

From the point of view of physical applications, the
present ideal model has the usual advantages and
disadvantages of ideal models: It is simple enough to
give a rough description of a, variety of physical
situations. On the other hand, if we wish an accurate
account of any particular physical example, the model
must be refined and extended.

Speaking in general terms, the model can be applied
to situations in which a fixed or slowly moving point
inhomogeneity of charge, or "source, " is present in a
dense neutral system composed of positive ions (the
"background" ) and electrons at temperatures low
enough that the electrons (but not the ions) form a
degenerate Fermi gas.

The point "source" can be either an "impurity"
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nucleus of atomic number Z, which is the most straight-
forward interpretation, or it may represent a particular
nucleus of the background. "

If the electron density is suSciently high, the back-
ground atoms will be completely ionized. At the lower
densities of incomplete ionization the theoretical sepa-
ration of the background is more arbitrary. In this
case, it is natural to regard only the unbound electrons
as belonging to the electron gas and the partially
ionized "cores" as belonging to the background. The
degree of ionization can be estimated, self-consistently,
on the basis of results obtained here and the remark of
the previous paragraph.

The chief deficiency of the model is in the simplifying
feature of the uniform background. In applications to
dense crystalline matter such as metals it would be
desirable to generalize the model by replacing the
uniform background by a suitable static periodic
potential.

In applications to systems where the positive ions do
not form a regular lattice, as in white dwarfs, it would
be desirable to take into account the Auctuating electric
fields due to the random motion of the positive ions. "
ft should be mentioned also that at the high densities
sound in ~hite dwarfs, relativistic corrections are
Iometimes appreciable, making a relativistic general-
ization of the model desirable. "

There are several physical processes which are
directly sensitive to the single-particle energies, life-
times, and wave functions discussed in this paper.

One example is the x-ray emission or absorption
spectrum of atoms in metals for bound hole to hole
transitions. The transition energy should be given by
the difference of the corresponding single-particle ener-
gies. Because of the relatively small or moderate
coupling of the electron system to the radiation (and
phonon) fields, one expects that an appreciable fraction
of the linewidth of this radiation is determined by
interelectronic processes.

Another example is that of orbital electron capture
by a nucleus in a dense medium. One can picture this
process as resulting in a bound-hole excitation of the
electron gas. One expects then that the single-particle
energies (in addition to determining the accompanying
x-ray radiation spectrum) contribute additively to the
energy of the emitted monoenergetic neutrinos. 3lore-
over, the capture rate should be proportional to the
square of the single-particle v ave function at the
nucleus. "'4

In principle, many details of the decay process of
the bound hole, as implied by the estimates of Table I

or by the general level-width formulas, are subject to
direct experimental veri6cation. VVe mention, in partic-
ular, the angular correlation of the decay products and
the branching ratio for plasmon emission.

A specific prediction following from the numerical
estimates given here is that for "good" metals (defined,
of course, as those to which the present theory is
applicable) x-ray emission or absorption lines involving
transitions to or from a bound state with binding
energy lying in the single, unaccompanied plasmon
emission range should be considerably broadened or,
preferably, missing entirely.

APPENDIX

Lowest Order Evaluation Of Level Width I
9 e wish to evaluate the expectation values

I',=p' Im(M;(w)), (A1)

in the limit P ~ 0, with y axed at a value greater than
that needed for binding, for diagrams M~ and M, of
Fig. 5.

The expectation values are, with respect to the
"unperturbed" bound-state wave functions ip, solutions
of (43). A factor of P' is separated off for convenience
in order that the expectation value be non-vanishing
in the limit P~0.

If M; is diagonal in a momentum representation,
which is true of diagrams Md and M„(A1) can be
written in the form
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l, =p'Im Zp ~(p~p)~ M, (p,~), (A2)

where M;(p', w) is the diagonal element of M, (u).
Performing now the transformation p —+ (yp)'"p,
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P-+0. The integrations in (A10) are elementary and
one obtains for I', using (A3):

we obtain

I',=p' Im d'p
I Q, I p) I'M;(»p'; »w, ), (A3)

1
r, =P'-Dn(~/4P) —1+(~/2) vC I

w. I+(P')~/2j j (A11)
where P, is a normalized scaled wave function, which,
in the limit P-+ 0, is a solution of (55), and w, is the
corresponding discrete eigenvalue.

As p approaches zero with y 6xed, provided that

M;(0,0) exists, we obtain from (A3)

I";(P=0)=P' ImM;(0, 0). (A4)

This is the same expression that we would obtain for
the level width (inverse lifetime) of a source-free hole
excitation of zero momentum and energy.

It turns out that ImM(0, 0) does exist for diagram
3f, but is logarithmically infinite as P ~0 for M~.
This requires one to use the more general formula
(A3) for M~.

Diagrams of The Type M&

8'e consider first the totality of diagrams of the type
Md with an arbitrary number of inertions in the dotted
line.

For reasons given in the text, the plasmon contri-
bution to I'q is technically of higher order in p than the
pair portion and, therefore, we consider here only the
pair portion. |A'e take as a starting point the closed
expression (70):

where the symbol ( )„denotes an expectation value
with respect to scaled wave functions, solutions of (54)
with eigenvalue m„ for fixed y.

I

ImFg= d3q d'P g'(P, q)o(q P )
1&I&Ij I+el

+plasmon mode, (A12)

Diagram M,

In this case we are interested only in the limit
ImM(0, 0) which turns out to exist, of the imaginary
part of matrix element M(p', w) of (A2) for diagram M,.

The simplest way to calculate F, to lowest order is
to use the expressions (60) and (61) to compare the
value of ImF, for zero momentum excitations to the
coeKcient of ln(1/P) for I'o.

Alodifying these formulas for application to the
particular case of the decay of a zero momentum and
energy hole excitation one obtains the following
expressions, disregarding a common constant of
proportionality

2 ImQo(q, h)
M (p', w) =— d'q 8(1—

I p —qI). (A5)
I qo+4orpgo(q, d) I'

1

ImFe= d g d'p,
&&&&lu&+el

e(1—
I P—

qI ) tt(1 —q),

q'+4orpgo(q, hE) ~ q'+4p/or,

(A7)

(A8)

1
Imgo(q, lLE) ~—{»I

w,
I /q+»p /2q+q/2) . (A9)

2'
Thus,

1 2
M(vpp', vpw) =

2Ã m

According to (A3), in calculating the corresponding
value of F; we have also to make the replacement

p ~ (py)' 'p, w ~ (p'r)w, . (A6)

The real and imaginary parts of Qo are given in
(32) and (33). An examination of these expressions,
taking into account (A6), shows that in lowest order
in p we can make the following replacements in (A5):

q=p~ p~ p~— (A14)

The coupling constants g to lowest order in p are
given by

g(p, q) =con«P/(q'+4p/ )j. (A15)

To lowest order in P we have then from (A15),
(A14), (A13), and (A12), dropping the plasmon mode
and common constants of proportionality,

Xg(p, q)g(p, q)b(q p,). (A13)

The factor of ——', for the exchange interference diagram
3f, is due to the Pauli principle.

Note that because of conservation of energy and
momentum the two holes in the final state come oG at
right angles to each other.

In (A13), q is the "exchange momentum transfer"
which in our case is

(» I
w I/q+~pp'/2q+q/2)

X 8(1—q). (A10)
(q'+4p/or)'

J3g
d'p~&(q pi),

g Pt (& &!Pt+{tl
(A16)

The term q/2 in the numerator leads to u lnP contri-
bution to F. The other terms are 6nite in the limit

j. d'3g d'Pcr.--$p b(q pg). (A17)
o q v«t&toi+ot l pal
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In evaluating the above expressions we are concerned contributes and for this term the s integration can be
with integrals of the form carried out immediately, yielding

I(q) = d'P f(p')8(I P+ql 1)—8(1 P-)&(q P) (.A») I(t)-t " dy f(1 r)—8(r) (A24)

Integrals of this type are easily evaluated in the
following way (we again neglect constants of propor-
tionality).

First of all, the angular average of 8(q p) is given by I(t)-t-' 'tdy f(1 y)— (A25)

Since t is less than unity the 8 function may be dropped
and we obtain the 6nal result

1 1 1 1
(8«p)) =—— 8(*)d*=-—

qP2 2qP
( )

For Mz, f is unity while for 3E„ f(x) = 1/x. For iV&
then I(t) t'I'=q and we verify from (A16) that I'd

where x is the cosine of the angle between q and p diverges like lnp in the limit p —+ 0.
In the remaining factors of (A18), we can assume that From the preceding work we obtain for the ratio
p and q are perpendicular and we obtain I',/I'~ in the limit P -+ 0:

1

I(q)-- Pdp S(P')8(p'+q'-1)8(1-P') «20)

Next we perform the change of variables

I',
ln(1/P) = —-', qdq r (q),

I'g 0

where the ratio r(q) is given by

(A26)

s= p' t=q'

Substituting this into (A20), we obtain

(A21)

r(q) =
o 1

—ln (1—t) —ln (1—q2)
dy= . (A27)

I(t) t " ds f(s)8(s+t —1)8(1—s). (A22) Thus

Ke employ now the partial integration formula

8(s+t 1)=8(s——1)+ dy 8(y+s —1). (A23)

F, 'dt 1r
ln(1/P) = —

~~ —$—ln(1 —t)j= —
~4 —. (A28)

Fg o 6

Since, from (A11), the coefficient of ln(1/P) for I'q is
P'/x we obtain from (A28) the final result

If we substitute this into (A22), only the second term 1.=(tl'/ )(—.')( '/6) (A29)


