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A "two-center" model is proposed for the description of meson production in high-energy nucleon-nucleon

collisions. In this model the effect of one nucleon on the other is replaced by an equivalent interaction which

frees pions "bound" in the second nucleon. The model takes into account "peripheral" collisions only and

does not include mesons emanating from core-core collisions. A transverse momentum {pz) distribution is

obtained as a function of only the impact parameter and core radius. Our distributions agree well with

experiment, the most probable pq being 0.3-0.4 BeV/c. The angular distribution obtained does not deviate
much from an isotropic distribution in the center-of-mass system of the emitting nucleon.

I. INTRODUCTION

S EVERAL models have been proposed to explain the
various properties of the pions formed in very high

energy (~&10" eV) nucleon-nucleon collisions. Koba
and Takagi' have given a review of these together with
relevant experimental results. In most observed high-

energy nucleon-nucleon collisions the angular distri-
bution is decidedly anisotropic in the center-of-mass
system, being peaked heavily in the forward and
backward directions. This led Cocconi, ' Ciok et al.'~
and Niu' to the so-called "fireball" model in which the
result of the collision is the formation of two centers of
emission, the pions being emitted isotropically relative
to each center. As proposed, the model was purely
empirical and the authors, in general, interpreted the

emitting centers to be moving more slowly than the
outgoing nucleons.

Another two-center model is the "isobar" or "excited
nucleons" model where particles are emitted from the
moving nucleons which have become excited during the
interaction. ' A recent article discussing the relation-
ship between the isobar and fireball models is that of
Pernegr et ul. ' In the earlier forms of the theory of the
"isobar" model (e.g. , Takagi') the theories of Fermi'"
or Heisenberg" were used for describing the phenomena
of emission of the secondaries from both centers.
Recently, some authors have considered the excitation
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as being caused by exchange of pions (cf., Romanov
and Chernavskii). "

Much attention has been given experimentally to the
distribution of pg, the transverse momentum of the
secondary particles. "—"It has been found that there
is a peak in the pr distribution at approximately
0.3—0.4 BeV/c. However little has been done on the
basis of a two-center model to derive a theoretical Pr
distribution. Most of the models by their very nature
are unable to give a pr distribution independent of
arbitrary parameters (see, for example, the recent
article by Gramenitskii et al.17 for nucleon-nucleon
interactions at 9 BeV). The model we wish to introduce
gives pr distributions at very high energies independent
of arbitrary parameters, together with angular dis-
tributions in the center-of-mass system of each nucleon.
These results are in good agreement with experimental
observations.

The nucleon-nucleon cross section for inelastic col-
lisions is approximately 30 mb in the range 10—50
BeV""; however, McCusker and Roesler" and
Brisbout et al." contend that a higher energies (3500
BeV) the cross section for meson production has become
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approximately geometric. It can be seen then that the
majority of collisions vrill be peripheral collisions, that
is, involving the meson clouds. It a&ill be shown that
such collisions produce a reasonable proportion of the
mesons produced in all nucleon-nucleon collisions. For
example, in a diametrical transversal of a silver nucleus

by a high-energy nucleon, the average number of mesons
produced may be at least six to eight (see Sec. III for
further discussion of this), half of them being of high
energy. (This number moreover makes no allowance
for additional mesons produced by cascading eBects-
it is the number produced directly by the initial primary
alone. )

The model we wish to introduce is for pion production
from high-energy nucleon-nucleon peripheral collisions,
that is, collisions which do not involve the nucleon
"cores." In this model the eBect of one nucleon on the
other is replaced by an equivalent potential which frees
pions "bound" in the second nucleon (see Sec. II.2).

The agreement which we obtain with the experi-
mental transverse momentum distribution can be
understood qualitatively in the following manner.
%hen a meson is "freed" by the interaction with the
other nucleon it still sees an absorbing core of radius,
say, ro. Since the meson is in a p state it is to be expected
that its momentum distribution relative to its parent
core show a maximum for kro 1, or k 1/ro.

The angular distribution of both incident and struck
nucleons tends to be close to the incident direction, in
vievr of the high forward momentum brought in by the
incident nucleon. Thus the transverse momentum (pr)
distribution of all emitted mesons, in any frame of
reference, tends to be peaked around pr A/ro. With
choice of ro in the vicinity of 0.5 F, we would anticipate
a pr distribution peaked a little below 0.4 BeV/c; with
smaller values of ro the pr maximum would be expected
to occur at correspondingly higher values.

In this paper we carry through the calculation in

detail for the simple model in which we assume only
one type of meson (zero isotopic spin). The pr distri-
butions are essentially as anticipated from the above
arguments. It can, of course, be shown that the pr
distributions are not dependent vrhatsoever on the
model of isoscalar mesons, and also follow when the
three isotopic spin states for the mesons are included;
the results regarding multiplicities, however, would

become slightly modi6ed, but not so as to greatly change
our conclusions in this regard.

initial symmetrical wave function of the nucleon we put

where s=+ or —denotes the spin of the nucleon as
+ 1/2 and ri, . , r~ are the coordinates of the X pions
present at any instant. X is taken to be constant during
the short period of the nucleon-nucleon interaction.

f, (Ã) is then expanded in terms of states of the
remaining nucleon when one pion (say the ith) has been
extracted and single-particle wave functions for the ith
pion, i.e.,

(2)

where (X—i) represents all coordinates of the X pions
apart from the ith pion, the f., (X—i) are normalized
and symmetrical and the g,, (r;) are normalized wave
functions of states t& of the ith pion in the potential
field V~'(r;) (see next paragraph). Because of the sym-
metry of $.(1V) we have

We may also expand P„(X—i) as

(4)

where g~'(r;) represents a normalized wave function of
the state t2 of the jth pion in the potential 6eld
V~,'(r,). We think of V~'(r;) as being a good average
of the interaction of the ith pion in the nucleon and
V~ (r;) of the jth pion in the nucleon with the ith
pion removed. Since X is large,

V~ (r) = V~'(r) = V'(r)

so that, substituting Eq. (4) in Eq. (2),

It will be noted here that we have neglected the inter-
action between the ith and jth pions. This is reasonable
outside the core vrhere the e8ect of the interaction is
small compared to the effect of V'(r).

In the region outside the core we approximate to
f, (1V) as

f,(!7)= Q C)i(g,s; si,mi)P„(cV i)Bhi(iver;)—

II. FORMULATION OF THE MODEL

1. Nucleon Wave Function

As we are only considering m production due to
peripheral collisions we take our nucleon wave function
as a function of the coordinates of the pions. These
pions may be either inside or outside the core. For the

where P„(1V—i) represents the ground state of the
nucleon (in our model this is the only state with all
mesons bound), r;) ra= core radius, C is the appropriate
Clebsch-Gordan coeKcient, hj, is the spherical Hankel
function, F] 1 is a spherical harmonic„and 8 is a con-
stant such that P, ($) is normalized; that is, B' measures
the probability of any given meson being in the cloud.



SEMI —PHENOM ENOLOGI CAL MODEL FOR MESON PRODUCTION 845

The ith pion is bound to the nucleon with zero binding

energy, that is,
0= fz'(ia)'c'+m 'c'

thus

~=m.c/iz,

where m is the pion rest mass. We only have terms
h~F~ since the nucleon remains in an l=o state
(although its spin may change) and the pion is pseudo-
scalar. Other terms, h~F~ for l) j., are taken to be
negligible outside the core. We shall measure momentum
in units of m c/it (140 MeV/c) and lengths in units of
fz/m c (1.4 F).

As vre are only to be concerned with terms outside

the core, we de6ne the function g (i) as

g (i) lzz(kr, )Fz„(8,, pp;) (1o)

for r;) ro and a smooth function Gtting to this form for
r; & ro such that

g„,'(z)g„,(z)dr; =B '8„—,„,

Then Eq. (7) may be written

f~(X)=a3 ' 'BfP~(N i)gp—(i)
—2"V+(&—z)g (z)]. (12)

Continuing expanding using Eqs. (2), (6), (12), for zz

even,

4+(&)= & - -8+(&—z —"—m)cg (z)go(j) —2g ()g- (j)]" Lgo(f)go(m) —2g (f)g- (m)]},
(I+1)'Izzz!

and for n odd,

4+(&)= I';;...pi (Q+(& z . —m)g—p—(m) 2"Q—(1V i . ——m)g&—(m)]
(zz+ 2)'"zz!

X$gp(z)g p(j ) 2g&(i—)g, (j )5 Lgp(k)gp(l) —2g&(k)g &(l)]}, (14)

where P;;...r, ~ =sum over all permutations of the e
pions i, j, k, l, m. Terms which give zero on per-
forming P;,...p~ have been eliminated. The P+(X) are
normalized.

It is quite obvious, of course, that the wave function
expressed by Eqs. (13) and (14) will only be a good
approximation vrhen n&&S. It is only reasonable when
there are few mesons outside the core radius. As we
shall see later, however, we do indeed obtain maximum
contributions from terms which involve few mesons
only outside the core, consistent with the idea that the
average number of mesons in the nucleon meson cloud
is only a little above unity.

s(r') =e-", (17)

where lengths are in units of the pion Compton wave-
length. It will be seen that our results are reasonably
unchanged when other shapes of v(r') are taken

3. Final Wave Function

The question now arises as to what form vre shall
take for s(r'). This involves more detailed knowledge
of the vr-nucleon interaction than is available at the
present. Hovrever, taking into account the eBect of the
Lorentz contraction of e2 and the range of the x-nucleon
interaction it does not seem unreasonable to take

2. Nucleon-Nucleon Interaction

We consider one nucleon, e~, as being at rest and the
other, e~, approaching with impact parameter b. The
eBect of e~ is to free some pions from e~, the interaction
between n2 and a pion in the cloud of e~ being replaced
by an equivalent potential V(r) which is syzn~etrical
about a line parallel to the s axis (dehned by direction
of motion of zzz) and at a distance fp from it (Fig. 1).
This neglects any elastic scattering of e& by n&. Strictly
this potential depends on both z and t. However, at
high energies we can take V(r) as a constant potential
applied for a time t where ct is approximately the
thickness of e2 in the direction of motion.

We shall put
V(r) = Vs(r'),

where

The 6nal wave function vrill be

8u,

Z AXIS

FIG. 1. Relationship
between r', 5, and r.

POSIT)OH
OFv)~

PATH
OF
Ng

r'= (b'+r' sin'8 —2br sin8 cospp)'~' (16)
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where the u 's are given by

uo=!t "(&),
u»=& '"2'0" (&—z)C.,(r'),

u»o, =[X(X 1)]—"'Q"!t' (X—z—g)
XC»(r, )C»(rt), etc.

4. P„(k)b), P„(b)

We will now define P (k,b)dk as the probability of
n mesons being emitted, one of these having momentum

(19) k, for a given impact parameter fi, that is,

P„(k,b) = (zz!)-'
I b». ..o„l'B(k—ki)dki dk„

Here Co(r) is the normalized wave function of a free
pion which has the asymptotic form e'"', and P,. is a
normalized symmetrical wave function of the remaining
nucleon which we shall assume is the same as the corre-
sponding f, in the initial nucleon wave function, Eqs.
(13), (14), with possible spin change of the nucleon.

The I 's are orthonormal, that is,

=—(u!) '
I b, ... „I'ti(k—k,)dk, . dk„. (22)

P (b) is the probability of u mesons being emitted at a
given impact parameter b, that is

u*» )„u.».. o;d. .r.z drzo=ti„g Q b(kz —k ). (20) P.(f)= P.(k,b)dk

The eBect of the core on our model is to absorb any
"free" mesons which may pass through it, and we
therefore approximate Co(r) as

= (u!)-' (23)

Co(r) = (2') olzeio r (r)ro)
=0, (r& ro).

The factor (zz!) ' is needed since by definition of u by
Eq. (19) we have

In this form the Ci, (r) are not exactly orthonormal.
However Eq. (21) is only used in evaluating integrals.

In Appendix A we derive the perturbation formula
used to calculate b .

b jr 1 ~ ~ e Q 5P (jr g
o ~ a Q ) &

where P is any permutation of k&, , h„.
If we define

(24)

I„(k)= (2or)otz(4zr/3)'I' Co*(r) exp[ zt Vii(r')/—A]g (r)dr,

L,.;= P, (X z ———t) g {exp/ ztVo(r; )/—A]g;(t!t i ——l—)do~
i &(i&s" ~ '&)

(26)

where ~, , l are r pions and put

we have, in general,

f= (3/2)'"8/4or',

d= tV/ft„

(27)

(28)

bo& o,„=f"( C.n. ./zz!) (m+1) Lne'+Piz. ..a g Po(kot z)Io(koan) 2Ii(ko~z)I z(koi)]
a~I

for e even, and

(rt-I)/2
&» '.=f"( C--/ut)" (zz+2) "'&12 n{ II po("kz. z)Io(ko~) —2Iz(ko i)I,(k„)]

s~1

(29a)

for e odd.
If we define

XPo(4)L„;+—2'I'Ii(k„)L„, ]) (29b)

(30)

where zu zuizuo and
I

zzzz
I
=

I zuo
I

(the integral is zero for
I oui I & I zuo I), and perform the sum over final and average
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over initial spin states, we 6nd for the e-even case

P-(kb)=(l )!(' —1) tf:( +1)!?'"C-f'"(2)"-"(IL I'+IL-I')
l

(lC A $n-l —1A saA l-m2$)P(&+ f) n—ptC

l~o m~0

and

(1+1)' Ax(lh)'+ II-i[') 2A-x ReIi*I i-
X Ap i Ip )'+ +

(e—2/ —1) prp+1 l—ppp+1
(31a)

P (b)=L(-'~)!O'L(~+1)!j '~C (3BP/4pr)"(jL~)'+)L~(') Q Q P'Ct~(('C Ap&~'Ag"A g'-™j'2".(32)
E~O m 0

In Eqs. (31) and (32) we have slightly altered our notation by putting

If as a 6rst approximation we put

L„„=L~, (s=s')
=L, (s= —s').

Ao=Ag=A,

A )=0,

(33)

(34)

(for justification see Appendix 3), we have

P.(k,b) = l "C.(3BP/4 )"A" '(2~) '(IL~['+ IL-I')([Ipl'+ II~I'+ II-~l')

P-(b)="C-(3B'A/4~)"(IL~I'+ IL-I').
It should be noted that we have used the relation

$n,

2 " "Cl-~2"= (~+1)'L(-'I) '?'.

(35)

(36)

(37)

For n odd and using the approximation (34) we find that P„(b) is the same but there is a slight change to P„(k,b):

P (k b) =-'(3B'A/4 )"A" '(2~)-' "C.{(IL~l'+IL I')(IIpl'+ II~I'+ II-rl')
—(2 "/pp) Re(L~*L ) Re(Ip*(I~+I &)j). (31b)

In Appendix C we show that

so that
)P= (1—3B A/4 )9™,

P (b) ="C„(3B'A/4pr)" (1 3B'A/4pr)" "—

(38)

(39)

This is the result we would have obtained if we had let x be the probability of freeing any given meson so that

Hence we see that x is given by 3B'A/4nr.
We now define I „(k) by

P.="C„*.(1 x)N— (40)

I-(k)=2 L(—pd) "/~'jI-(k),
vs~1

(41)

that is, I „is given by expanding exp( idv) in p—owers of d. Then making the approximations given by Eqs. (7),
(10), and (21), we have from Eqs. (25) and (41),

I„(k)= dr

where

d y exp{pkrLcosx cos8+sinx sin8 cos(o —y)))v" ({b'+r' sin'8 —2br sin8 cosy)"')

X (1+r)e-'(b„p cos8+8~~~ ~2-'" sin8e' &) sin8, (42)

k= (k,x,n).

On making use of various relationships between the I„„(lr)for related x and. e, for example

*(k,x,e) I .(k, pr —x, a+pr), (43)
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~e hand that

lI„i~do=4

ReIo*(Ig+I g)do =4 LI„*(I,,.„,+I .. . „.=i r!(2n+1 —r)!n=l
(45)

That is„

II-I'd =4 d Ld'II- I'+O(d')3, (44a)

ReIo*(Ig+I g)do=4 Iu+ — — '(I»+I »))+O(d')j.' I»+I n) —Iom' »do (d'/2!) Im(Iog (I»+ (45a)

ne
'

h her orders t an d',ne lecting ign and odd vie have, negThus for e even an o ne

do I'.(k,b) ~ lIo~I'+ II»l'+ II-~|l')do. (46)
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i 0
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(r„=2n. (P„(b)bdb.
bo

(49)

From Appendix 8 and Fig. 40 we see that for a core
radius of 0.25,

6e—"d', (50)

duced for an impact parameter less than bo, where bo

is approximately twice the core radius. Then we have
that 0„, the cross section for production of n mesons,
is given by

I

~l

~C

so that x in Kq. (48) will be given by

x= (18lPd'/4n)e "
Ke put

(51)

(52)

o'
0 Q2 OA 0.6 ag

P, {SeV!c)
FIG. 6. As for Fig. 5, except for core radius of 0.5.

and have calculated a„for n= 1, 2, 3 and various values

~+

gC

b Q2 OA OA Q ~.0
& ~8evlr.. h

FIG. 4. As in Fig. 2 except for impact parameter 1.0
and angle of emission ~4~.

00 Q7. Q4 0.6 0.8
&,{SeV/c)

1.0

FIG. 7. Transverse momentum distribution of pions averaged
over all angles of emission for impact parameter 1.0 and core
radn r of 0.25 and 0.5.

TABLE I. Cross sections for 1, 2, 3 pion production for different
values of &a (Eq. 52) and minimum impact parameter bo. The
cross sections are given in millibarns and bo in units of 1.4 F.

O0 Qg OA 0.6 CN

P~ {SeV/c )
t.o

FIG. 5. Transverse momentum distribution of pions for angles
of emission g equal to $~ and ~4m in the center-of-mass system of
the emitting nucleons and for a core radius of 0.25 and impact
parameter of 1.0. The dashed line shows what the distribution for

$m would be on the basis of the distribution for y =$~ assuming
isotropy. The distributions have been averaged over all azimuthal
angles.

1.0

2.0

5.0

bo

0
0.2
0.5
1.0
0

0.2
0.5
1.0
0

0.2
0.5
1.0
0

0.2
0.5
1.0

24.6
23.7
19.8
11.8
406
40.0
35.1
22.4
60.6
60.4
56.7
40.4
89.0
88.7
88.0
76.9

2.52
2.18
1.25
0.32
7.00
6.36
4.11
1.18

15.2
14.7
11.3
4.1

29.1
28.9
27.7
16.2

0.33
0.22
0.08
0.009
1.61
1.28
0.54
0.06
5.46
4.90
2.70
0.42

14.3
14.2
12.2
3.9

of X and 0.. It was found that the results depended
only on the product Xn (within 1%%uo) and in Table I
we give the results for diBerent values of bo and Xa.
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GI. DISCUSSION OF RESULTS

This model gives a transverse momentum distri-
bution and energy and momentum distributions in the
center-of-mass system of each nucleon, as a function
only of the impact parameter and the radius of the core
of the nucleon. For an impact parameter of 1.0 (i.e.,
1.4 F) and core radii of 0.25 and 0.50, the most probable

pr are 350 'A~IeV/c and 280 MeV/c, respectively. With
an impact parameter of 0.6 and the same core radii,
the most probable pr a,re 450 MeV/c and 340 MeV/c,
respectively. These values are averaged over all angles
of emission.

These results are in agreement with the experimental
results" "except that the "tail" in our results is longer.
This is to be expected as we have not introduced any
energy limitations in the pion production, Such an
energy limitation would shorten the tail and also
decrease slightly the value of the most probable pr.
This is suggested by experimental observations at lower
energies. Blue et ul.~ obtained a most probable pr of
90 MeV/c for 4.2-BeV proton-proton collisions. This
is an energy where we expect energy restrictions to be
very important. In comparing our results with experi-
ment we also need to remember that our model is based
on nucleon-nucleon collisions and most experiments
involve nucleon-nucleus collisions. However, we expect
the pr distributions from such collisions (particularly
distributions for the high-energy pions) not to be much
diferent. This has been shown experimentally by
3 Iatsumoto. ~

The angular distribution of the emitted pions is
almost isotropic (Figs. 5 and 6) with respect to the
center of mass of the emitting nucleon. Such a distri-
bution could not be distinguished from an isotropic
distribution with present experimental techniques.

Fle I-F

TABLE IL Average multiplicity 0 as a function of &x
Lace Eq. {53l].

0.1 0.2 0.5 1.0 5.0
1.04 1.21 1.58 2.31 10.01

This can be seen directly by comparing the %alker-
Duller plot'4 (Fig. 8) for an isotropic distribution,
f(e)=1, and for the distribution, f(e)=2'(1+sine), to
which our calculated distribution approximates. In the
center-of-mass system of both nucleons the distribution
is, of course, strongly peaked in the forward and back-
ward directions.

Ke now turn to the multiplicity distribution, that is,
(P as a function of n Usin. g Eq. (48), the average value
of n is 2%x; on correcting (P„so that n=0 is not in-

cluded, we have

n= 2$x/[1 —(1—x)'~j (53)

In Table II we have n as a function of Nx. It is seen
that the multiplicity distribution is determined only
by Nx, that is, the product 8'NA. To determine 8'N
we note that with our approximation in Eq. (7), the
average number of mesons outside the core is Np, where
No=2. 738'N for core radius of 0.25, and No=0.928'N
for core radius of 0.5. Thus, using Eq. (51) we have,
for a core radius of 0.25,

Nx 0.52d'e '~N o. (54)

The experimental observations at very high energies
suggest that the inelastic nucleon-nucleon cross section
is geometric. "" Allowing for a minimum impact
parameter of 0.5 (twice core radius 0.25) and a cross
section for inelastic core-core collisions of no more than
one-quarter geometric, we see on comparison with
Table I that N0.~1.5. %'e will have then, from Eq.
(54), O'ED~3. Thus, we have that d is approximately
unity.

To relate d to V, the strength of the effective per-
turbing potential, Eq. (28), we have that ctiny 'X14.
F, where y is the Lorentz contraction factor for one
nucleon relative to the other. Hence

V 14&yd MeV. (55)

FIG. 8. Walker-Duller plot for an isotropic distribution f(8) =1
(shown by dashed lines) and for the distribution f(8) =$(l+sin8)
(shown by solid lines). Lines are shown for y= 10, 100, and 1000
where y is the Lorentz factor for emitting center in the laboratory
system.

~ M. H. Blue, J. J. Lord, J. G. Parks, and C. H Ysao, Nuovo
Cimento 2Q, 274 (1961).~ S. Matsumoto, J. Phys. Soc. Japan 17, 1 (1962).

Thus 140d MeV is approximately the average strength
of the eGective x-nucleon potential at low energies.

For No. = 1.5 and an impact parameter of 0.5 we have,
from Eq. (54), %~0.55. From Table II, we see this
gives an average multiplicity for a collision with such
an impact parameter of 1.6. An approximate calcu-
lation for a diametral collision with a silver nucleus
gives an average of six pions, 3 of high energy and 3 of
low, produced according to this model by the incident
primary nucleon; to this would have to be added all

~ N. M. Duller and W. D. Walker, Phys. Rev. 93, 215 (1954).
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additional pions produced by cascading effects within
the nucleus.

%hile our model is unable to produce the high multi-
plicities observed in experiment without introducing
core-core collisions, yet it is seen that it does account
for a significant proportion of the mesons produced. %e
would contend, from a study of Table I, that most of
the low-multiplicity nucleon-nucleon collisions are
described by this model. Moreover, if there is any
cascading within the nucleus, the pions formed by these
secondary collisions would have the same pr distri-
bution.

In order to determine the sensitivity of our model to
the original shape of the effective potential r(r') we
have also considered the square-well case e(r') =1 for
r'&R and s(r') =0 for r'&R. Results for the function
(~IO~('+ (In('+ (I &~(')k'sinx are plotted in Fig. 9
for b=1, g= ~x, 0.=0, and for the two ranges 8=0.25
and 0.5. %e see that the over-all behavior of the results
is again achieved and that there is again a peak in the
transverse momentum distribution —this time, how-

ever, at a somewhat higher value. Thus, for detailed
comparison with experiment, the shape v(r')=e "' is
preferable to the sharp square well.

The present model is clearly in the category of an
"isobar" model, in the sense that pions are emitted
independently from a parent excited nucleon. It has
been suggested that a "fireball" model is applicable
rather than an "isobar" model, ' although this has not
been demonstrated conclusively owing to experimental
uncertainties involved in determining energies. The
present model ignores outgoing pion-pion correlations
due to pion resonances; while important at the par-
ticular resonance center-of-mass energies, the total
contribution of the resonances is considered not to be
of dominant importance after integration over all out-
going energies is performed.

Thus, in proposing the present model, we are able to
obtain momentum and angular distributions essentially

independent of arbitrary parameters; although not
yielding the observed multiplicities, the model is appli-
cable to a signifi. cant proportion of the pions produced.

APPENDIX A. PERTURBATION FORMULA

The following derivation is an extension of that given

by Schi6.25 Suppose that

H=H0, t&0, t&to

=Ho+tt, 0&t &to

+ON o= ~a+n)

(Ho+ h)w, =E„wk,

(A1)

where zc„, zan, are a complete orthonormal set of functions

t &0: $=S„a„u„exp(—iE„t/A),

0 &t &to. P=Sgctwk exp( iEpt/It)—,

P=S„b„g exp( —iE„t/ft),

(A2)

where S„denotes sum of discrete m and integration of
the continuous part of its range.

Continuity conditions at t=0, t= to give

b =S„a„ (Sawa wa

XexpL —i(Eg E )to/Ag)N drdr', (A3)

where the prime denotes a different set of coordinate
variables of integration. If the system is initially in a
state No, a =S„oand
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b = I ~exp —itohh Nods, (A4)

0„
fs
OC

00 0.2 04 0.6 Q, I
K, R, (SeV(c.)

Fzo. 9. Transverse momentum, pz, distribution for a square-
~eli effective potential for a=O, x=$~, b=i, and E=O.25 and
O.5 (see text).

where we 6rst use the property

f(H p+h)wg= f(Eg)wl.

and then the closure property

Sgwl, (r')wg~(r) =b(r —r').

In our model,
Ã

tt=P Vs(r ),
(AS)

Ill L. I. Schi8, Qcceetzce Rechecks (McGram-Hill Book Com-
pany, Inc. , Nevr Vork, 1955), 2nd ed. , pp. 217-8.
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so that Eq. (A4) gives

b = u„*expD i—tp/A)g a(r,')5gpdrg -.(A6)

APPENDIX B. SIMPLICATION OF A

Combining Eqs. (25) anti (30) we have

A„= (4tr/3) C„(r,)Cp*(r,)

Xg„,(r,)drtdr, dk. (81)

I.et us perform the k integration first.
The Ct, (r) and the bound-state wave functions form

a complete orthonormal set so that
0

CLS 1.0 1.$

p (Impact Parameter)

&0

Ck(fl)Ck (fp)d}t=b(ft r2) p 8 g (rl)g (f2) FIG. 11.As for Fig. 10 except for core radius of 0.5.

Hence,
(III=0, a1). (82)

depends only on the relative signs of m& and m, 2. Thus, if

I: = (4tr/3) g„,*(1—e '"')g„,dr,

Xexp{idLp(rt') —p(r-')5}g *(«)

Xg„,(r,)dr,dr, . (83)
On putting

g„(r)=E(r)Yt (e, pp)

we see that the integral is zero if ~IIpt~ W ~mp~ an&

where ~n=mtIIIp,
)
mt [

=
) mp), we have that

Ap=2 ReEp —(38'/4tr) iEpi',

At ——2ReEt (38/4r){[—Et('+)E t['} (85)
A t ——2 ReE t —(38'/4tr){EtE t*+E tEt*}.

KVe now put Lcompare Eqs. (41) and (42)5

( id)"—
h „ (86)

that is,

6„„=(4 /3) g„,*p"g„,dr, (86a)

and observe that 8 „is real. We could similarly put

so that

e,p„= S,p„—O(B'). (88)

I.O 1,5
s OmPact Ptmmaetat)

2,b

Fro. 10. 8,q~ fsee Eq. t',86a)jas a function of impact parameter
b, and for core radius of 0.25. Curves are drawn for m=0, ~1;n~1, 2. For comparison, the curve given by 6e~f!' is also drawn.
b is given in units of 1.4 F.

Ay=do=A,
A g=o,

even for d approximately unity.

(89)

In Figs. 10 and 11 we have plotted 8 2 and 8 4 as a
function of the impact parameter b. Ke see that it is a
reasonable approximation to put
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APPENDIX C.

'd r the case when. Let us consi er

r+1—)!(X—r) .7-

)
' '—1 I 2 I (C1)

'—1,(22))dr, drN gx,11 PI (v r) o 1 (22) 2gl(22 1—g I 211 — ' PI...(,v, ) I go(2i — goX J.l expL —ids(r/) j~l" (N- )
2 1

'n E . (26) the defimtlon of l.„,have given in Eq.e
' nE.

o
'—1 (2i) —2gl(2i —1 g I i.'4 "(&I.. (N r) O+2(N-r)L(i!)'I sss'—

into then extra termintroduced an e

ed of all

re ll for po bl p

extra term say, v X, in

I-et

y 4 —ide(~)y, d+ (s= s')Q, e

=(2, (S=—S')

(C3)
so that

CX I'+ I~ I'=1

0d to obtain E„similar to that use oThen in a way simi ar
Eq. (32), we have

m t-tn2l 2

N-f )
'C DQD $(N-r) —ID mD — )—I N-r 2(C~ L C2(N-r)r (Q r+1) —

C)(N )
—I—~~2(N-r (C4)

where

2)21 ——2)22
I ).d (2)2=2)2)2)22;

I
2)2II =*e 'd'g ., r, vs=g

—d

From Eq. (84) we see that

D = ...8-2—(3/42r)E. ,

so that
L„I2+II., I'=(1 382'/4r "-".— (C10)

sot a,h t approximately,

D =Dg=D; D-z= .0

With this appro)nmat)on,

s. ,C6) and (85) we haveAl combining Kqs.SO S. R

g4IDI2=1 321 g/ ~

(C7)

(C9)

ERICAL INTEGRATIONAPPE . E

The numerica method use
an extensionE . 42 was

nsions.ia'o to three dlmensNe to Co p
f th 'lits equ ale to fitting a

d I toRnd gRve Sm2 Rn y 0
For 8 „we note that

'8 I sin28+-28-, I sin'8 cos222) sln8.")(1+2 ) (8 o cos 8+28~1 sill 2 ~ I 2 s2 slrl8.d8 d r) exp( )or' 2r——
0

(D1)

first calculated J~„given byFor I „we rs

J .(k,x,a) = )3

s 9- oint formula ind the Newton Cotes -p
'Hence we use

two ways:

1

(D2)
0 0

so that

k X, —(I). (D3)(2 =J „(k,X,(r)+J „„

These values were u
=o, kX, r oe

d (45a), was pe orm(I, Eqs. (44a) an a,

dg 0 ~ ~

2 0

(D5a)

(D5b)$0 ~ ~ ~

0

u8$ de acC ocul Eumarsque (e, H. Mineur, Techeiq' See, .g.,
Beranger, Paris,

dg r ~ ~ do" ~ ~ = $0 ~ ~ ~

8 12 I)2 sin8e'~") sin8,(1+r)(h o cos8+8( (I—lk d8 do)[exp(ik r nr —r—
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Comparison of the results from (DSa) and (DSb) gave
an idea of the accuracy with which we had calculated
the integrand. Agreement was found to be better than

The results plotted in Fig. 7 (integration over 0 and

x) were obtained from the results shown in Figs. S and
6 by noting that the pz distribution for g=Q is not

far di6erent from what would have been predicted from
the distribution for y= ~m assuming isotropy. Curves for
=& ~, —,'s, $n, (S/12)n were plotted using this fact
and the calculated distributions for y= ~~a and 2'& and
then the integration performed numerically from the
graph. Errors involved in this procedure are negligible
compared to other approximations already made.
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Production of Tritons, Deuterons, Nucleons, and Mesons by 30-GeY
Protons on Al, Be, and Fe Targets*

A. S~wAazs~ .n mn C. ZnpANMt

Brookkaeee NaNonaE Laboratory, Upton, Eno Fork
(Received 2 August 1962)

The momentum spectra of particles emerging at 30' to a 30-GeV proton beam impinging upon various
targets mere measured using time-of-Bight techniques. Intensities of protons, antiprotons, w mesons, g
mesons, deuterons, and tritons in the range 1 to 3 GeV/c are given. Particular attention is given to the
tritons and deuterons emitted from the di8erent targets. Possible mechanisms for their production are

lscussed.

I. INTRODUCTION
'
~[URING the initial investigations of the composi-

tion of secondary particle beams emitted at
various angles from internal targets in the 33-GeV
alternating gradient synchrotron (AGS) at Brookhaven
National Laboratory, we analyzed the beam emerging
at 30' by measuring the time of Qight of particles after
momentum selection by magnetic deQection. The re-
sults of the beam surveys at other angles were performed
by other groups and have been reported. "Our results
on the intensities of emerging beams of pions, protons,
antiprotons, and E mesons are presented mainly for
the practical interest in these investigations for the de-
sign of future experiments at the AGS.

The copious production of deuterons and mass-three
nuclei, discovered at CERN during the observation of
forward secondary beams, was also observed at 30'
with very little change in intensity relative to pions
and protons. If these particles were produced in nucleon-
nucleon collisions, one would expect, on the basis of

~Work performed under the auspices of the U. S. Atomic
Energy Commission.

t On leave from the University of Ljubljana, Ljubljana,
Yugoslavia.' W. F. Baker, R. L. Cool, E. W. Jenkins, T. F. Kycia, S. J.
Lindenbaum„%. A. Love, D. Luers, J. A. Niederer, S. Ozaki,
A. L. Read, J.J. Russell, and L. C. L. Yuan, Phys. Rev. Letters
7, 101 {1961).' V. L. Fitch, S. L Meyer, and P. A. Piroue, Phys. Rev. 126,
1849 (1962).

'V. T. Cocconi, T. Fazrini, C. Fidecaro, M. Legros, ¹ H.
Lipman, and A. %V. Merrison, Phys. Rev. Letters 5, 19 (1960);
L. Gilly, B. Leontic, A. Lundby, R. Meunier, J. P. Stroot, and
M. Szeptycka, Proceedings oj'the LNO Conference on High-Energy
Physics at Rochester, (Interscience Publishers, Inc., Ne~ York,
1960}.

kinematical arguments, that their yield would decrease
rapidly at the larger laboratory angles. The large ob-
served yield suggests strongly that the production of
these particles involves cooperative phenomena in-
volving several nucleons of the target nucleus. %e have
studied the momentum distributions from 1 to 3
GeV/c of these particles (at 30') from various target
nuclei. The main subject of this paper is a report of
these measurements and a discussion of the results in
terms of existing models.

II. EXPEMMENTAL TECHNIQUE AND RESULTS

1. Counter Arrangements and Electronics
A schematic diagram of the beam layout is given in

Fig. I. The beam of secondary particles emerging from
the internal target at 30' from the AGS beam passed
through a hole ( 6-in. XS-in. cross section) in the main
machine shielding wall. Thirty-eight feet from the tar-
get the beam passed through a lead collimator 30 in.
long with a 1 in. wide and 2 in. high aperture. A 35-in.
variable 6eld magnet immediately following the collima-
tor analyzed the particles with respect to their momen-
tum. The two scintillation counters used to determine
the time of Bight were placed on a line making an 8'
angle with the collimated beam. The back counter posi-
tion was 6xed at 33 ft from the center of the bending
magnet. The forward counter position was varied from
6 to 20 ft from the back counter according to the de-
sired resolution.

The first scintillator was $ in. X~2 in. X&4 in. Pilot B
mounted directly on one of its smaller surfaces to an
Amperex M AVP photomultiplier placed perpendicular


