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Nuclear Relaxation as a Probe of Electron Spin Correlation
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Adiabatic demagnetization of a nuclear spin system produces a state in which there is considerable cor-
relation between neighboring spins. This correlation affects the nuclear relaxation rate and, in metals, where
nuclei relax via interaction with conduction electrons, can be used as a probe of spin correlation in the
electronic system. For a given lattice temperature the ratio 8 of low- to high-field relaxation rates can be
written in the form 8=2+p, where g is essentially the electron spin correlation function at the nearest
neighbor distance. q can also be related to the nonlocal electron spin susceptibility.

For noninteracting electrons, calculated values of q are more than an order of magnitude too small to
explain the observations (g~0.2 in the alkalis). The electronic spin correlation is considerably enhanced by
exchange. Calculations which include this effect yield the value 0.1. for g.

I. INTRODUCTION

N metals at low temperatures, nuclear spins come
~ - into thermal equilibrium with their surroundings by
means of energy exchanges with conduction electrons.
This process, called nuclear spin relaxation, results from
the hyperfine interaction' between the conduction elec-
tron magnetic moments and those of the nuclei. The
relaxation rute can be measured with nuclear magnetic
resonance techniques. Such experiments are usually
carried out in substantial magnetic fields, but it is also
possible to mea. sure the relaxation rate in zero (or small)
field. Experiments of this type will concern us in the
present paper.

The low-field experiment is complicated by the fact
that the metal sample has no moment (and no resonance
signal) in zero field. Thus one must proceed as follows.
Nuclei are brought to equilibrium in a magnetic field at
low temperature. The external field is then switched off
adiabatically, but in a time short compared to the
nuclear relaxation time Ti. At this point the nuclei are
in zero field and are there allowed to relax. Finally, the
extent of the relaxation is determined by remagnetizing
the sample (again adiabatically) and measuring the
nuclear resonance signal.

For our purposes, the crucial feature of this experi-
ment is the fact that the magnetizations are carried out
in an isentropic way. This means that spin order, which
is initially induced in the nuclei by the external field,
must be preserved as one reduces the field to zero. The
nuclei maintain the order by aligning themselves in each
others' dipole fields, and the resultant state is one in
which there is considerable spin correlation between
neighboring nuclei. This correlation affects the nuclear
relaxation rate and (since the nuclei relax via interac-
tions with electrons) can be used as a probe to study
correlation in the elec/roe spin system. This possibility
was first pointed out by Anderson and Redfield. ' We
here wish to explore the matter further, relating the
relaxation rate to the susceptibility of the conduction
electron spin system and studying the effect of exchange

' See, for example, D. F. Holcomb and R. E. Norberg, Phys.
Rev. 9S, 1074 (1955).' A. G. Anderson and A. G. Red6eld, Phys. Rev. 116,583 (1959).

enhancement of this susceptibility on the nuclear re-
laxation rate.

To use nuclear spin correlation as a probe of electronic
structure one must, of course, know the degree of cor-
relation in the nuclei. It is not possible to calculate this
ab initio; instead, the assumption is commonly made
that the nuclei in the demagnetized state are described
by a spin temperature, even while relaxing. This hy-
pothesis (which we also adopt) is a reasonable one and
fairly well supported by experiment. ' ' It should be
borne in mind, however, that the subsequent analysis
explicitly depends upon its validity.

For cases in which the nuclear spin interactions are
of a dipole-dipole character, the spin temperature theory
predicts that the ratio (8) of low- to high-field relaxation
rates should be 8=2+i), where ~1 is a quantity that
depends upon the degree of correlation between electron
spins at neighboring nuclei. We shall show that g can be
expressed in terms of the spin susceptibility of the elec-
tron system. Experimentally' ' g, in the alkalis, is of the
order of 0.2. Such a figure is too large, by about a factor
of 20, to be explained by the susceptibility of a noninter-
acting electron gas. Exchange effects alter this suscepti-
bility and bring the theoretical value into considerably
closer agreement with experiment. A crude calculation
yields a value p =0.1, with a possibility that a more accu-
rate computation would further improve the agreement.

II. THEORY OF SPIN TEMPERATURE

As was mentioned above, our analysis rests squarely
upon the spin temperature hypothesis. Thus we begin
our discussion by reviewing it, following closely the
analysis of Hebel and Slichter.

The spin temperature theory makes the basic assump-
tion that the nuclear spin system, as it relaxes in the
demagnetized state, is describable by a temperature.
That is, if "m" and "e"are any two nuclear spin states
with energies e and e, their occupation probabilities,

p and p„, are in the ratio

(p /p„)=& (~m ~ )l&&—
s L. C. Rebel and C. P. Slichter, Phys. Rev. 113, 1504 (1959).
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where k is Boltzmann's constant and 8, the spin tem-
perature. Such a distribution leads, at temperatures
above those at which the nuclei become ferromagnetic,
to a Curie law for the magnetization

M= CB/8„ (2)

where C is the nuclear Curie constant and 8 the external
magnetic held.

As the nuclei relax, the magnetization approaches
the value

(5)

This is a convenient result, since the spin-temperature
assumption permits one to make a rather straight-
forward calculation of d8,/dt It also gi. ves some feeling
for the meaning of nuclear relaxation in zero field. This
is not apparent from Eq. (4) since M and Mo are zero
in the B=O limit.

To calculate d0, /dt, and thus determine Ti from
Eq. (5), one considers the time derivative of the total
spin energy:

de Be d8. d ( dp„
n&n = &n

dt B8, df dt ~ ~k dt

This formula may be used to evaluate d0, /Ch if one
assumes that the time development of the occupation
probabilities is governed by a transport equation of the
form

Here W is the total transition rate, from state e to m,
caused by the perturbation that gives rise to the nuclear
spin relaxation. It is now a matter of algebra to com-
bine Eqs. (5), (6), and (7) to obtain an expression for
d0,/dt The analysis . is given in detail in reference 3,
so we only quote the final result which is

d /1 (1 1)1—
(

—=] ——[- Q [(e.—e )'~ ]/P(e ') (8)
dt E 8, (8, 0i l 2 nm

This equation is compatible with Eq. (5) and enables
us to write the following formula for the relaxation rate:

~= 1/I'i= l 2 [(~-—~-)'~'-]/2 [~-'] (9)

appropriate to the lattice temperature, 0L,. Experi-
mentally, the approach to equilibrium is described by
the law

dM/dt = (M p M)/T„— (4)

where T~ is the nuclear relaxation time. We will see
presently that this formula is also compatible with the
spin temperature hypothesis. Assuming it to be correct,
one may rewrite the formula [using Eqs. (2) and (3)]
in the form

To make explicit calculations of the temperature and
field dependence of E, we calculate 8' by perturbation
theory. As was discussed in the introduction, nuclear
relaxation in metals is caused by hyperfine interactions
between conduction electrons and nuclear spins. The
dominant part of this coupling is the contact interaction
given by the well-known Fermi-Segre formula:

where

—= 2 [~;a ~&;i'],
jk, nP

(14)

(Ay~)' trace{[Ip,K][Ii,~,X]}
(15)

2 trace{3C'}

is the average over nuclear condgurations, and

2vrl j'64n' l
l(&V.)' 2{a(&i)0(&i—&2)

a)k 9)
X(q i,~.(r~) q 2)(p„~p(r,)y,)} (16)

Here p, and p; are, respectively, the gyromagnetic
ratios of electron and nucleus, e(r;) is the electron spin
density at the position r; of the ith nucleus, and I; is
the corresponding nuclear spin. The transition rate be-
tween two states, fi and f2, due to this interaction is
given by first-order perturbation theory as

Wi2 —(2ir/fz)
~
(pi)Hi/2)

~

'0(Ei—E2), (11)
where E~ and E2 are the energies of the two states. Since,
to lowest order, the electrons and nuclei are uncoupled
we may simplify this expression by factoring the wave
functions into electronic and nuclear parts: fi= yixi',
i/2 (p2+2. After using Eq. (10) one finds

/2m 64m'
(&v.)' 2 [(&v')(&v )

ka

X(v, -( )q )(y (')p)
y(x„I,-x,)(x„I,sx,)0(E,—E,)]. (13)

An expression for the nuclear relaxation rate is obtained
by substituting this expression into Eq. (9). If one
neglects the very small nuclear energy change, the sum
over states appearing there factors into two terms, one
referring to the nuclei, the other to the electrons. The
nuclear average reduces to a trace of known operators
and can be calculated directly. That referring to the
electrons is evaluated by averaging over a canonical
ensemble with the temperature of the lattice. As will be
seen in a moment, the resultant expression is directly
related to the electron spin correlation function.

Since both Hebel and Slichter, and Anderson and
Redfield have discussed this averaging process in detail,
we will not repeat the analysis here but merely quote
the pertinent results. The expression for the nuclear
relaxation rate takes the form
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is the average over the electronic portion of the wave
functions. In these formulas 3C is the Hamiltonian of the
nuclear system, p is the equilibrium density matrix for
the electron system, and the square brackets in Eq. (15)
indicate commutators. The expressions are written as
tensors in the coordinate indices n and P. In many
circumstances these tensors will be diagonal. To simplify
the succeeding analysis we assume that this is the case
and henceforth omit the indices n and P.

For a given nuclear Hamiltonian the quantity .V, &

may be directly calculated. Assuming 3C to consist of
the Zeeman energy and a dipole-dipole interaction, one
finds the formulas

2{p(El)~(E1 Es) (pl rr(rj) I'2) (vis ir(re) Ill)} (22)
1,2

The delta function in this expression may be rewritten as

1
6(E,—Es) =— e'is' s'i'dt-. -

27r
(23)

here is a direct consequence of correlation in the
nuclear system.

The averages which appear in Eq. (21) may be related
to spin correlation functions and the spin susceptibility.
To demonstrate this point, we consider the quantity

(8'+28p')
~(fly~)',

k 8'+8 pI

If H, is the Hamiltonian of the electron system, we
then find

»'(j&&)- (&v~)'I(1+1)/(Bs+8o')(1/r, ~s), (18)
p

where r, /, is the distance between nuclei "j"and "k,"8
the external magnetic field, and

(,e' " (r;)e ' " (r )&p )—
27r

1/2l
Bp=(ay~) I(I+1) P

i rikpl
(i &&)

(e(r, t) .e(ri0))dt

where we use the notation

(24)

&=2+[2'(&'/r ")/2'(1/&") j (20)

where

the held due to dipole-dipole interactions. These
formulas relate the equilibrium values of »& (large 8)
to those in the demagnetized state (8 small compared
to Bp).The terms»i, (j&k) describe correlation between
nuclear spins located at sites "j"and "k". These are
induced by the dipole fields, and are only important
when these fields are not greatly exceeded by the ex-
ternal field. This result is clear from Eq. (18) which
indicates»i, —+ 0 as (8/Bp) becomes large. Since we

are hoping to use nuclear correlation as a probe of spin
correlation in the electronic system, it is clearly essential
to make use of data obtained in the demagnetized state.

It is of particular interest to calculate the ratio of the
relaxation time at high field (where the nuclei are in

equilibrium with the lattice) to that at zero field (where
the effective nuclear temperature is well below that of
the lattice). This ratio is given by

(0)= traceLpOj. (28)

We see, therefore, that b, k is the time integral of the
temperature-dependent spin autocorrelation function.
It may also be related to the spin susceptibility of the
electron system. The susceptibility is determined by
the response of the system to an infinitesimal external
field. 4 If we choose this field of the form

B=Bob(r—rk) e'" & (26)

we may easily verify that, to first order in Bp, the
induced spin density at position r, is given by

(oi(r;)) = —~P 8&» e"" "(La&,(r, t),a„(ri,0)])dt. (27)
Z 8 p

The susceptibility (which here is a nonlocal quantity)
is given by

xl,„(r;,ri„.pi+is)

trig e&'" '&'(La.i(r, t),o„(rs0)))dt. (28)&ii,

1,2
{p(El)~(E1 E2) (+1&(r ') p2) ' (pp2 ir(rk) pl) }

P{p(E1)~(E1 E2) (pol ir(rj) po2)' (%2 &( j)%r1)}
1,2

Equations (24) and (28) involve similar, but slightly
different temperature dependent Green's functions.
The relations between such quantities have been ex-
tensively investigated by Zubarev' and we may now

(21) ' Such response functions are discussed by R. Kubo, J. Phys.
Soc. Japan 12, 570 (1957); M. Lax, Phys. Rev. 109, 1921 {1958);

As we shall see below, K, i is directly related to the spin V G 1;t,k;; „'d A M. d I S,. t'Ph JETP 7'96 (1958)
correlation function for the electrons. Its appearance &D. N. Zuhsrev, Soviet Phys. —Uspekhi S, 320 (1960).
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use his work to make a connection between Eqs. (24)
and (28). Equation (28) is precisely his definition of the
retarded Green's function so we write

Xi,„(r;rs, oi+i e) =G„"&(r,rk, &u+ie)

By making the changes of variable t~ —3, j~k,
tz ~ ) in Eq. (28) one may also relate the susceptibility
to Zubarev's admeced Green's function. After some
simple manipulations one Ands

(o.i,(r,t)o.„(rs0))= Jz„(r,rj„ co)e ' 'd&u.

Zubarev's relations between 6„,G, and J are

1 " (e~"—1)J(co')dc''
G,(co+ze) =-

2zr „(o~—(o'+is)

1 " (ee"'—1)J(co')de'
Gg(oi ze) =

2zr „(oi—o&' —ie)

(32)

(33)

X„i,(rsr, ; co—+is) =G,"I"(r,rl„oi is—) (30)

We may now use Zubarev's work to relate x to the
Fourier transform of the autocorrelation function.
Following his notation we write

where P= 1/kT. Subtracting these equations gives the
result

iLG„(or+is) —G.(&u
—ie)]= (e~ —1)J(oi). (34)

Thus Eq. (14) for b;& takes the form

bp, "&=Ji,„(r;rs, 0)

( i ) Xi,„(r,rs,. o~+Ze) —X„),(rir;; oi+ie—)
=lim

/

—
/"-' k2 I (ee"-1)

(35)

kT)
b(Q) = lim ~P Ln(k+Q) —n(k) j

—k' (k+ Q)'
X~ ——III. ELECTRON SPIN CORRELATION

In metals such as lithium and sodium the properties
of the conduction electrons are, for many purposes, very
well approximated by those of a free-electron gas. It is
of interest, therefore, to consider the coefFicients b, ~,

"& for
such a system. The free-electron gas is translationally
and rotationally invariant so, for it, b, I,

~& is a multiple
of the unit tensor (as far as the indices ), tz are con-
cerned) and a function of r=r, —ri alone. We denote
this function by b(r). In these circumstances it is usually
simpler to work with the Fourier transform of Eq. (35)
which takes the form

2m

= LkT/(2zr)'j(m'/Q) for Q&2k~

for Q) 2kp, (38)

where k~ is the Fermi momentum. Inversion of this
formula gives the result

(39)E,i ——sin'(k s r;s)/(k pr;s) '

of references 2 and 3. The value of E;~ predicted by
this equation is too small, by more than an order of
magnitude, to explain the observed deviation of 5 from
2. We may conclude, therefore, that electron-electron
interactions induces considerably more spin correlation
than that predicted by the free-electron model.

At least two authors~ have studied the effects of
electron-electron interactions on the spin susceptibility
of an electron gas. These investigations are carried out
within the Hartree-Fock approximation (which, for this
problem, is the same as the generalized random phase
approximation) and yield equivalent results. The sus-

ceptibility is determined by the solution of an integral
equation which, in general, is quite complicated. It can,
however, be solved if one approximates the electron-
electron interaction by a delta function. Since the
effective interaction is actually a screened Coulomb
potential this assumption is probably not badly in-

( i -g(Q, ~+is) —X(—Q, ~pie)—
S(Q)=km ~—"-' I2

. (36)
(e'"—1)

For the noninteracting electron gas x(Q,&u) is easy to
calculate. A straightforward generalization of the work
of Ruderman and Kittel, and Yosida yields the
formula'

Xs(Q,o~) = Xs(—Q, —oi)

n(k+Q) —n(k)
(37)

(k'/2m) —L(k+Q) '/2m) —oi

where n(k) is the Fermi factor for the state of mo-
mentum k. With this approximation for y, g(Q) takes

In succeeding sections this relation between the cor- the form
relation coeKcient, b, I,~I", and the spin susceptibility
will be used to make estimates of b.

' M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954);
K. Vosida, ibid. 106, 893 (1957).

7 We set 4=1 in these formulas.
' A. W. Overhsuser, Phys. Rev. Letters 3, 414 (1959); P. A.

WolG, Phys. Rev. 120, 814 (1960).
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correct. The corresponding susceptibility is given by
the formula

x(Q,-)=x (Q, )/[1- x (Q, )j, (40)

where xo(Q,~) is the Ruderman-Kittel susceptibility of
Eq. (37), and v is a parameter that measures the strength
of the delta-function interaction between electrons. We
will later estimate 8 by comparing the measured spin
susceptibility of Li and Na to that calculated with the

free-electron model. In this way we force our formula
for x(Q) to be correct at Q=O, and only rely on it to
determine the shape of the x vs Q curve. This procedure
will improve the reliability of Eq. (40), but it should be
kept in mind that the formula is an approximate one.

We may now use Eq. (40) to obtain a formula for
E;~ that takes account of exchange enhancement. As
before x(—Q, —cu)=x(Q, co) so that Eq. (36) takes
the form

t'1 —k2 (k+Q)~
kT lim—

~

—P [n(k+Q) —m(k)$8
2m 2m

ikT /1 -
xp(Q, co+i&) xo(Q, (o—ie)

b(Q)= lim ~—
2n. " ' &(u 1—vxp(Q, (u+ic) 1—vxo(Q, (u —ie)

[1—vxo(Q 0)1'

kT m' 1
for Q&2kr

(2 )' Q-1—x (Q)-

=0 for Q) 2kr. (41)

This is just the result for the free-electron gas multiplied
by a factor [1—Nxo(Q) j '. The inversion integral is

where
(1—q') 1+@

f(q)= 1+ ln (44)

d3Q

Q [1—vxo(Q))'

4m ''r sin(Qr)dQ
(42)

0 [1—vxo(Q)3'

4~(2kp)' ' sin(qx)dq

x 0 [1 ~f(q)]2
(43)

1.0
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FIG. 1. Plots of spin density vs distance for various values of o..

This integral may be simplified by making the changes
of variables Q=2krq, 2krr=x, becoming

and a is a positive dimensionless constant proportional
to v. Since f(0)=2, u must lie in the range 0 0&m&. 05.
For m=0.5 the susceptibility goes to inanity at Q=O.
At this point, and for larger values of 0, the electron
gas is ferromagnetic and the calculations which lead
to Eq. (41) are no longer valid.

If n= 0 Eq. (43) may easily be evaluated. One obtains
the formula for E,& [Eq. (39)] quoted previously. For
e/ 0 we have calculated the integral numerically.
Curves of E(r) vs r= (r;—r~) for the values n=0 2, 0.3, .
and 0.4 are shown in Fig. 1. The principal effect of the
exchange term in the denominator of Eq. (43) is to
fill in the zeros of Eq. (39). For monovalent metals
(Li, Na, Cu) the quantity (2k~r) is close to 2m when r is
the nearest neighbor distance. Thus, in the noninter-
acting electron model, E,& is nearly zero for those nuclei
which are most strongly correlated. As a consequence,
exchange enhancement is important in just that portion
of the E(r) curve at which it can do most to improve
agreement with experiment. We will use the result
given above in the next section to make a comparison
between theory and experiment.

IV. COMPARISON OF THEORY AND EXPERIMENT

Before using Eq. (43) to make numerical estimates
of 8 we must consider to what extent the free-electron
gas may serve as a model for a real metal such as Li or
Na. If one ignores electron-electron interactions the
transition from plane to Bloch waves can be made quite
easily and, if r; and ri, are lattice vectors, one obtains
(see reference 3) Eq. (39) for K,". It is not so clear,
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however, that Eq. (42) will give the correct exchange
enhancement in a real metal. We now consider this
point.

In the alkalis the conduction electron wave functions
are plane waves over the major part of the unit cell,
but show large modulations near the nuclei. Correspond-
ingly, the potential seen by a conduction electron is
uniform over most of the cell with a small, strongly
attractive region near the core. These wave functions
are perturbed by the hyperfine interaction which pro-
duces a weak delta-function source term in the Schrod-
inger equation. To calculate the exchange-enhanced spin
density one must (in principle at least) integrate this in-
homogeneous equation —taking into account all modi-
fications of the self-consistent field—from the source to
that point in the crystal at which ones wishes to know
the spin density. If this point is at a lattice site different
from that at which the source is located, much of the
integration of the Schrodinger equation proceeds
through a part of the lattice in which the crystal po-
tential is nearly constant. In this range, exchange en-
hancement of the induced spin density should arise in
much the same way that it does in a free-electron gas.
Thus, we may anticipate that at these lattice sites
Eq. (42) will give a fair estimate of the induced moment.
This will not be the case at the central site, however.
The induced spin density there is determined by the
behavior of the conduction electron wave functions near
the nucleus where the crystal potential is large and
highly singular, and far outweighs the exchange Geld
of the conduction electrons. The perturbation in this
wave function will be peaked at the origin (as the zero
order wave function is) but this peak will not be
ampli6ed by exchange. It is only as one proceeds away
from the origin through regions in which the crystal
potential is uniform that the modification of the ex-
change energy can produce enhancement of the type
predicted by Eq. (42). Thus, in using this formula to
make comparison with experiment we will set n=0 in
computing the spin density at the central lattice site.

This state of aGairs may be viewed from another
point of view. Imagine that we apply a small, sinusoidal
magnetic field, 8=Roe'~', to the metal and seek, by
perturbation theory, to compute the response. The
interaction Hamiltonian is of the form

(45)

where, in the usual way, we may expand the electron
field operator, P(r), in the form

(4u)
k, p,

Here the yk, „'s are Bloch functions and the ak, „'s the
corresponding annihilation operators. If the wave vector
Q is small the important matrix elements that appear in
Eq. (45) are diagonal in band indices and Hi takes the

form

Hi Q Lai,+g,„ui, ,„(e Bp)].

In this limit we have essentially a single band problem
and one may derive a formula exactly analogous to
Eq. (42) for the spin susceptibility. On the other hand,
for large Q (that is, for short distances) there are
important interband matrix elements of H~ that couple
wave functions that differ by energies large compared
to the conduction electron exchange energy. Thus, this
energy becomes relatively less important and we expect
a smaller exhange enhancement of the susceptibility.

The arguments given above are qualitative in nature.
A detailed integration of the perturbed Schrodinger
equation (taking account of modifications of the self-
consistent potential) would be required to make them
quantitative. This is a formidable task and, in view of
the many uncertainties involved in our considerations,
hardly seems warranted at the present. We will be
content, therefore, to accept Eq. (42) as correct for
lattice sites other than the central one, but will set
n=0 in computing spin density at the origin.

We are now in a position to calculate 8 from Eq. (42).
For this purpose one must know n. As indicated above,
we will obtain its value by comparing Eq. (40) (for
Q= pp=0) with the measured spin susceptibility of the
alkali metals. Measurements of spin susceptibility for
Li and Na have been made by Schumacher, Carver, and
Slichter. ' Comparison of their results with the free-
electron values indicates that for both metals n 0.2.
The corresponding value of 8, calculated according to
the scheme outlined above, is b=2.1. This is to be
compared with the experimental value which, inboth
cases, is about 2.2. Thus the calculated correlation
correction is about a factor of 2 too small to explain the
observed value. A possible reason for this discrepancy
can be seen from Eq. (43). As mentioned earlier, at the
nearest-neighbor distance x is close to 2m. and the inte-
gral is carried over one full cycle of the sine function.
If all values of q were equally weighted, the result
would be zero (or nearly so). It differs from this—
though not greatly —because the denominator of Eq.
(43) is smaller near g=0 than at g=1. We have seen,
however, that this formula is incorrect, in a real metal,
for large q. For q~1 the exchange enhancement should
be even smaller than that predicted by Eq. (41). This
effect will further reduce the cancellation which leads to
a small value of b(r) at the nearest neighbor distance.

Finally, a word should be said about the measure-
ments in Al and Cu. Here the 5 values are of order 2.5.
No spin susceptibility measurements have been made
on these metals so it is not possible to carry out the
above analysis for them. Nevertheless, it seems very
unlikely that the exchange enhancement would be

sufficiently big to explain a 8 of 2,5. We must look

R. Schumacher, T. Carver, and C. P. Slichter, Phys. Rev.
95, 1089 (1954).
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elsewhere for an explanation of the large values of 8

in these metals.
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Elastic Constants of Strontium Titanate*
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The elastic constants c~~, cj2, and c44 of single-crystal strontium titanate have been measured as a function
of temperature from 300 to 108'K by determining the velocity of an ultrasonic wave. At 108'K the strontium
titanate undergoes a phase transition to a tetragonal structure which causes a marked change of the elastic
properties and the appearance of a domain structure, but does not cause a discontinuity of the dielectric
constant. The phase transition is free of hysteresis. The dependence of the elastic properties on a dc electric
Geld parallel to the velocity of sound propagation was measured and found independent of the dielectric
properties. The implications of this result are discussed.

I. INTRODUCTION

S TRONTIUM titanate is a cubic material above
108'K with the perovskite structure which exhibits

paraelectric properties. Its dielectric constant follows
a Curie-Weiss law and is dependent on an external
electric field. ' It has been suggested by Cochran' and
verified by Barker and Tinkham' that the high dielec-
tric constant in SrTi03 is connected with a "soft mode, "
an optically active lattice vibration which has a tem-
perature-dependent resonance frequency. The assign-
ment of this mode to a specific type of vibration is still
debated. 4 5 The temperature dependence of the effective
spring constant for this k=0 mode is believed to be
connected with the near cancellation of the short-range
repulsive forces with the long-. range Coulomb inter-
action; thus both the long-range and short-range forces
are equally important.

For this reason we measured the elastic properties
and their field dependence in SrTi03 to obtain more
information about the short-range forces. As a conse-
quence of the small effective spring constant for the soft
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mode, the pertinent ions can move relatively large
distances under an external electric field. The ions move
into new equilibrium positions with different effective
spring constants because of anharmonicities. This is
apparent from the nonlinear dielectric behavior. The
dielectric constant decreases with electric field, indicat-
ing a stiffening of the effective spring constant of the
soft mode. Since sound velocity measurements can be
carried out relatively accurately, a measurable effect
on the elastic properties through the influence of an
electric field may be expected although in this case only
the short-range forces are involved.

II. MEASUREMENTS

The elastic constants of a cubic material can be
characterized by three stiffness constants, c», c», and
c44.' These constants are related to the velocity of
propagation for longitudinal and transverse waves along
various crystallographic directions, so that by measur-
ing velocities for various orientations the elastic con-
stants may be determined. In Table I the equations
relating velocities of propagation and elastic constants
used for the measurements on strontium titanate are
given.

At 108'K where the strontium titanate becomes
tetragonal, v six elastic constants are needed to specify
all the elastic properties. When the strontium titanate
passes into the tetragonal phase, however, it breaks up
into domains which are the order of the wavelength of
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(D. Van Nostrand Company, Inc. , Princeton, New Jersey, 1958).' L. Rimai and G. A. deMars, Phys. Rev. 127, 702 (1962).' K. A. Milller, Helv. Phys. Acta 81, 173 (1958).


