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Denterons from High-Energy Proton Bombardment of Matter
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The results of a process of formation of high-energy deuterons from targets exposed to 25-30 BeV proton
beams are evaluated. The formation mechanism involves the pairing of a neutron and proton from the cas-
cade of nucleons which develops within the struck nucleus. The interactions responsible for the deuteron
formation are 6rstly the average nuclear interaction seen by the cascade nucleons within the nucleus, and
secondly the normal neutron-proton interaction. A magnitude of 25 MeV for the modulus of the real and
imaginary nuclear potentials is suf5cient to ensure good agreement with experiment for all energies of the
outgoing deuterons and for all emerging angles.

s. INTRODUCTION

''N this paper we amplify our previous remarks'
- ~ concerning the process of formation of high-energy
deuterons from targets exposed to 25—30 BeV proton
beams ' s

The formation mechanism we propose involves the
pairing of a neutron and proton from the cascade of
nucleons which develops within the struck nucleus.
With this mechanism there is an immediate connection
between the momentum distribution of deuterons
emerging at a given angle, and the corresponding
distribution of protons at that angle. Let the momentum
distribution of emerging protons at an angle 1st with
respect to the incident beam be p(ir); it may then be
assumed that emerging neutrons have the same
distribution.

The interactions responsible for the deuteron for-
mation are firstly the average nuclear interaction seen
by the cascade nucleons within the nucleus, and
secondly the normal n pinteraction. Ho-wever, the
recoil momentum which the nucleus can absorb in the
deuteron formation process is relatively small; similarly
the relative momentum of the two nucleons must be
small. Hence the deuterons are formed from pairs of
neutrons and protons which have roughly equal
momenta.

The probability of formation of a deuteron of
momentum K is thus to be expected to be proportional
to ps(K/2). Other momentum-dependent factors in the
proportionality are determined by calculation; the
resulting momentum dependence of the deuterons is
in good agreement with experiment.

In addition, the deuteron formation probability is
proportional to

) Vs)s, where
~
Vs( is the magnitude of

the optical potential depth. A quantitative comparison
with experimental results thus permits of a deter-
mination of

~ Vs ~ . It is found that in ail cases a value of
25 MeV for

~
Vs~ gives excellent agreement between

'S, T. Butler and C. A. Pearson, Phys. Rev. Letters 7, 69
(1961);Physics Letters I, 71 (1962).'V. T. Cocconi, T. Fagxini, C. Fidecaro, M. Lemros, ¹ H.
I ipman, and A. W. Morrison, Phys, Rev. Letters 5, 19 (1960).' V. I . Fitch, P. Piroue, S. T. Meyer, and M. C. Williams (to
be published).

the observed and calculated deuteron momentum
distributions. This value of the potential strength is
in good agreement with that obtained by Bjorklund
et a/. 4 when fitting the high-energy proton scattering
data at 300 MeV. In our case the magnitude

~
Vs~

includes both real and imaginary parts, i.e, , it is the
magnitude of the full complex potential; the results at
300 MeV indicate4 that the main contributions must
be absorptive and arise from the imaginary term.

The present comparison with experimental results
suggests that the main features of the optical potential
are energy independent for proton energies between
300 and 900 frfeV; the increase in

~
Vs~ over this energy

range appears to be at most 10%.
The alternative suggestion that the high-energy

deuterons are produced primarily in elementary
nucleon-nucleon collisions' does not account for the
observed features of the deuteron production from
nuclei. The ratio of deuterons to protons of the same
momentum is found to be approximately constant over
a wide energy range. ~ On the other hand, the predictions
of the nucleon-nucleon collision model are extremely
energy-dependent. Moreover the experimental results
include measurements of the momentum spectrum of
deuterons emitted at 90' in the laboratory system. '
Such deuterons cannot come directly from nucleon-
nucleon collisions, but must be produced by a secondary
process within the nucleus. However, the deuteron and
proton momentum spectra are related at 90' in exactly
the same way as at the smaller angles and the results
at all angles yield an optical potential depth

~ Vs~ ~25
MeV.

We, thus, believe that the mechanism considered in
this paper, which requires the presence of nuclear
matter for the deuteron production, to be the pre-
dominant one at all angles.

2. SECOND-ORDER MATRIX ELEMENT-
NONRELATIVISTIC

%e Grst perform the nonrelativisCic perturbation
calculation. The extension to include relativistic e6ects

4 F. Bjorklund, I. Blandford, and S. Fernbach, Phys. Rev. 108,
7'95 (1957).

s R. Hagedorn, Phys. Rev. Letters 5, 276 (1960),
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can then be carried out quite simply, and we do so in

Sec. 4.
Consider two nucleons (neutron and proton) of

momenta Ak~ and Ak~, respectively, so that the initial
wave function fo is

&0= (1/L') exp[i(ki. ri+k2. r2)], (1)

where I is the linear dimension of a normalization cube.
The final wave function P describing a deuteron with

momentum K is then

l l

KI

i l

l

I I

l

, k,

g . .(~)~. (~)

fi .~&&& —P
E;—F.f

(4)

where H;,") and H, y") are first-order matrix elements
to and from an intermediate state j, respectively. We
devote the remainder of this section evaluating H;f ".

There are three types of contributions to (4), corre-
sponding to the three diagrams of Fig. 1. We consider
first the term, say [H;r"&)&, for which particle 1, with
wave vector ki, is scattered by V(ri) into an inter-
rnediate state, k~', and, thereafter, joined to particle 2
in a deuteron by &&(r). For this term we have

1
[II;,&'&]&——— dri exp[i(k& —k, ') r,)V(ri)

L'

1=—g(~ ki —ki'
~ ),II

where g is the Fourier transform of V.
Similarly, we have

[8&f&'&]&= dr&dr~ exp[i(ki' ri+k& r&)]I8LI/O

X&&(r)x(r) exp( —iK R)
(kr)~

b(K' —K) dr exp( —ik' r)&&(r)&&(r), (6)
L $LI/2

&t
= (1/LI&')&&(r) exp(iK R), (2)

where R is the c.m. coordinate -', (ri+r2), r is the relative
coordinate r~ —r~, and g is the internal deuteron wave
function.

The transition probability ~(K)dK that after time t

the optical potential V(ri)+V(r2), combined with the
internal neutron-proton interaction n(r), produces a
deuteron of wave vector K in the interval dK is

41st" Izsin'(&w&ft)
&d(K)dK= p(K)dK.

ft' r&&;t'

Here H;f(" is the second-order matrix element involving
the product (V,&&), p(K) is the density of fi»al states,
and

kN;f= 8;—Ef,

where E; and Ef are the initial and final energies,
respectively.

The second-order matrix element H;f(') is given as

Fro. j.. Diagrams {a), {b), {c) illustrate the simplest means of
deuteron formation. RI, 4 are the momenta of the proton and
neutron in the initial state, q the recoil of the nucleus, and K the
deuteron momentum in the final state. In case {a) the neutron
and proton interact first with each other to form an intermediate
deuteron state. This deuteron is then scattered by the nucleus
into the final state. In case {b) the neutron is scattered into an
intermediate state by an interaction with the nucleus. The
scattered neutron and an unscattered proton then interact with
each other to form a deuteron. In case (c}a scattered proton pairs
with an unscattered neutron.

where
K'= k~'+k2

~&—~r = (ft'/m) f(s K—k2)'+v'] (10)

Thus after summing over intermediate states we
find our first contribution [H,r&'&)i as

4 C g(~K,—K~)
[ff'i"']&=—,(11)

L'L'&2 [k,+-,' (K—K~)]'+y'
where

K;=kg+kg

k, = x, (ki—k2).

Thus K; arri k, are the initial c.rn. and internal wave
vectors of the two free nucleons.

The second contribution, [B;I&'&]~, with particie 2
being scattered into the intermediate state k2', is

k'= -', (k,' —kr).

If we write x(r) in the Hulthhn form

X(r) = (C/r) (e- " e '), --
the integral in (6) can be readily evaluated to be

—4W(A'/m) [1+(k"+~')/(k"+f')] (S)

where m is the nucleon mass, and A'y'/m is the deuteron
binding energy. We have actually found the e6ect of
the second term (involving f') to be quite small, and
hereafter employ simply the asymptotic form for the
deuteron wave function. For normalization of y we have

C' y'/2&r.

For the term under consideration, the energy
denominator E,—Ef is simply expressed by noting
that k&' ——K—k2. We find



identical to (11) except that +2 (K—K,) becomes
—-', (K—K~) in the denominator.

Finally the third contribution, in which a virtual
deuteron is formed with wave vector K' in the inter-
mediate state, has matrix elements

LQ, oi]3—
L»L»/2

drdR expl ~(K; R+k;.r)] )Ot

Xs(r)x(r) exp( —iK 'R)
4n.C A'—(2~)eb(K,—K')

L»L»12 m

LH;~(')],=— dr, dr, x(r) exp(~K' R)
I»

XC:V(ri)+ V(r~)]X(r)S-'* a.

We make the approximate replacement V(ri)+ V(ri)
~2V(R) so that

-2
IO

C& "'] = (2/L')g(IK —KI)

After summing over intermediate states K' we find

2x4 cg(IK,—Kl)
I.&'I"i]3=+

L»L»" kP+y2

The total second-order matrix element is thus

H g&'& = g(2x)
J»L»/2

(12)

t
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NUCLEAR BAD~US (fermi)

Fro. 2. The function I LEq. (22)j is plotted as a function of the
nuclear radius. The full curve is for a square well, and the dashed
for a Saxon potential.

Thus, we finally have a deuteron distribution per
nucleus n(K)dK with

where

X (13)
AP+y' (k~+x)'+y' (k;—x)'+y'

L» 4 3L»
n(K)=- dkidk2 p(ki) p(k2)

2m A' 4~R()»
sin'(-', w;rr)

(16)

x=-,'(K;—K). (14)

3. DEUTERON FORMATION PROBABILITY

Ke now wish to evaluate the probability of deuteron
formation when the total number of cascade nucleons
of each type per nucleus has the distribution p(k)dk
so that we have p(k)dk of each type of nucleon with
wave vector between k and k+dk within the nucleus
at any one time. Thus, we must multiply our transition
probability (3) by

( Ls
p(ki)dkip(k, )dkml

E4 R,I/3&

where Eo is the nuclear radius, and integrate over all
kj and k2.

We wish to find the number of deuterons n(K)dK
which are formed in a time v for one traversal of the
nudeus by each pair of nucleons whose c.m. momentum
is close to K. Thus we have approximately

7 ~4iriRO/AE,

where ~ is the nucleon mass.

with r given by Eq. (15).
If we make the transformation dk~dk2~ dK;dk;, we

have p(ki)=p(~K+k, +x) and p(k~)=p(2K —k;+x).
But in view of the large values of E involved, and the
relatively much smaller values of k; and x, we may
clearly take the p factors outside the integral as
CP (2K)]'.

Thus we find

1
n, (K)= (6C/A)' Q(-,'K)]' dK;dk, l g(2x)]'

(2irRO')I

X
A ~+y' (k +x)'+y' (k;—x)'+y'

sill (w,yr)x . (»)

Ke can rxnv integrate immediateLy over the mag-
nitude of K,, noting that

E,dE; = (2m/A) dw, y.
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From the energy-conservation factor in (17) we have

E,2=Ep 4(—I/,2+yp)~E2
and thus

x= P K—K,
~

E sin(e/2) Ee/2, (20)

where 0, the angle between I and K;, has very sma]1
contributing values.

After performing the integration over m;f—which
extracts a factor ~~mr—we can also immediately inte-
grate over all angles of h~, and over the azimuthal
angle of I;.The integration over 0—the angle between
K; and K—can be taken from 0 ~ ~, and we find

482/Cm)2 Vp)2
~(K) =2

~

—
~
I(Ro)LP(2K)1', (21)

) Zi
where I(Rp) is a dimensionless number, which is, how-
ever, a function of Ro. We have

I(Rp) = 2/dp/PG(2/)]'

X 12&) +
(f2+o2)2 (f2++2+op) 1 2~2

1

nl'(I'+~') (I'+-'n'+~')el')
o'+ (1+v/2)'

Xln (22)a'+ (0 n/2)' ——
Here we have defined
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FIG. 3. A comparison of the observed and calculated momentum
distributions for deuterons produced from a Be target at an angle
of 45' in the laboratory system by protons arith incident energy
30 BeV. Curves 2 and 3 are the observed and the calculated
deuteron distribution (34). Curve 1 is the experimental distri-
bution of cascade protons used to calculate (34).The experimental
data are those of Fitch et al. (reference 3).

If we also multiply the deuteron numbers by the spin
factor 4, we have finally

and
G(2/) = (Vo/42/Ro')g(2//Ro), (23)

/pp(K) =
(

—
( (

—)I(Rp)L/J„(-,'K)j' (25)
) E) E~)

where Vo is the central depth of the optical potential.
Thus for a square well, for example, we have

G(2/) = (1/2/2) (sin2/ —
2/ cos)/). (24)

The function I(Rp) has been evaluated numerically
for a number of diferent radii using Silliac, both for a
square well, and for a Saxon potential with surface
thickness 0.6 F. The function is plotted in Fig. 2, and
it is seen that the results for the two potential shapes
are very similar. The deuteron formation probability
is essentially the same in each case, the diR'erences
lying within the accuracy of the experimental results
with which we shall make comparisons.

All experimental results have been stated in terms of
a number of particles per unit solid angle, per unit
momentum (1 BeV/c) per circulating proton. Let these
distributions be designated n~ and nq for protons and
deuterons, respectively. Then if q be the eSciency of
the target, we have

I„(k)= 2/kpP (k),

ppp(K) =IJZ'pp(K).

where I(2= m Vp/)22 and where A is a wave number corre-
sponding to 1 BeV/c. The value of the efficiency for
the Brookhaven experiments' is thought to be approxi-
mately —,', i.e., q

4. RELATIVISTIC CORRECTIONS

A relativistic calculation is simplified enormously by
the fact that contributions to our matrix elements arise
only from small relative momenta (internal deuteron
momenta). Thus it is only the c.m. motion of the two
nucleons which must be treated relativistically. Only
one time t need be considered, which we still measure
in the laboratory system —i.e., in the frame of reference
in which the optical potential is at rest. All relativistic
corrections then appear in terms of the factor F, with

P —(1 V2/c2) —i/2~(1 v 2/cp) —1/~(] v 2/cp) —i/2 (26)

where V is the c.m. velocity of the two nucleons (almost
unchanged by the deuteron formation), and vi and vp
are the & initial velocities of the two nucleons,
respectively.
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in which the center of mass is at rest. Thus

W IO

I!
W

IO
Cl

NI C3
I

~K

"IO~
Ol

I-

in place of (9).
C' 2s1'/p (30)

(3) Matrix Elements

Each matrix element of the form

X(r)-Ce-'"/r'

C exp( —yLx +y +1"s'1'~}

SR+ys+P2z2} 1/2

where (x,y,s) are the Cartesian components of r, and
s is the direction of motion of the center of mass. The
requirement that x be normalized to unity in the
laboratory system thus yields

:8
"0 Q

IO
I 1

I.O 2.0
MOMEN TUM BeV/c
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Fro. 4. As in Fig. 3, the deuterons are produced from a Be target
at an angle of 30' in the laboratory system by protons with
incident energy 30 BeV. The curves are labeled as in Fig. 3, and
the experimental results are those of Schwarzschild and Zupankik
{reference 6).

M'= dr exp(iX r)r/(r)x(r)

now has m(r) and x(r) simply expressed in terms of r'.
By changing the variable of integration form r to r' we
have

1
M =— dr' exp(iX' r')s(r')X(r'),

r
where X' is related to X by orentz transformation.
Thus by the evaluation as carried out previously, we
have

(1) Energy Denominators

Consider, for example, the energy denominator (10)
relating to the matrix element $P,/"'l~. This has the
relativistic form

g —gy = (Pl&I/y~~c2+ r//2c4) &/I+ (f/2II Pc&+M2c4) &/&

—O('E' 'c+M~ c)' /,2(27)
where M* is the deuteron mass, and m the nucleon mass.

Ke recall that h~'=K —k2. %e know that contri-
butions arise from lr2~$K, and can, therefore, expand
the terms of (2'7) around lt2 yK, and——also in terms of
the binding energy ~ of the deuteron. VVe 6nd

E; Ez c'[ft'—(-,'E)——'c'+ra'c'] '/'-
x P &(gK—14)'+m.j

= (1/1') (@'/~)L(kK —1.)'+~'j. (2g)

This is the same as the nonrelativistic result (10),
apart from the factor 1/I". The same is true for the other
energy denominators.

CO
X
I

I.'

e. lo
41
O.

lK
W
CL

IO
crI
LaJ

I

3/I= —(1/F) 4n C///'/m,

I I I I I I—

(31)

(2) Internal Deuteron Coordinates

The deuteron wave function x now assumes its
simple spherically symmetrical form only in terms of
the relative coordinate, say r', in the frame of reference

I 1 I

.2 .4 .6 .8 I.O I.2 t.4
MOME k TUM 8 eV/ c

Fxo. 5. As in Fig. 3, the deuterons are produced from a Be
target at an angle of 90' in the laboratory system by protons
with incident energy 30 BeV. The curves are labeled as in Fig. 3,
and the experimental data are those of Fitch et al. {reference 3).
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which replaces (8). This factor of 1/I' is cancelled by
that from the energy denominators.

(4) Integration over X,

Instead of (18) we now find

E;dE,='(2m/Ei) I'dw;g.

(5) Time ~ of Nuclear Traversal

Instead of (15) we now have

r 2RO/V= 4mROI'/AK.

After collection of all I' factors, we 6nd that the
deuteron formation probability is multiplied by I'.
Thus our 6nal result is

Xl(Ro)L~, (-'K)j'. (34)

5. RESULTS
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By choosing as the radius for the target nucleus
Ro ——1.2A"' F and using the appropriate value for I(RO)
from Fig. 2, we have compared the expression for the
expected deuteron momentum spectrum (34) with
those measured at various angles. These comparisons
are shown in Figs. 3—8„together with the experimental
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FIG. 6. A comparison of the observed and calculated momentum
distributions for deuterons produced from an Al target by protons
with incident energy 30 BeV at an angle of 45' in the laboratory
system. The curves are labeled as in Fig. 3. The experimental
results are those of Fitch et gl. {reference 3).

FIG. 7. As in Fig. 3, the deuterons are produced from a Be
target at an angle of 90' in the laboratory system by protons
with an incident energy of 10 BeV. The curves are labeled as in
Fig. 3, and the experimental results are those of Fitch et al.
{reference 3).

proton distributions which have been substituted in
(34)

By comparing (34) with the observed deuteron
momentum distributions we can determine the mag-
nitude and energy dependence of the optical potential
strength

~
Vo~ which are necessary to fit the experi-

mental results. In Figs. 3—6 we have used for the
magnitude of the optical potential at all energies the
constant value

I Vo~ = 25+5 MeV found by fitting the
expression (34) to the observed number of deuterons
with momentum 1.1 BeV/c scattered from a Be target
at an angle of 45' in the laboratory system shown in
Fig. 3. The target efliciency was taken to be 50%%uo.

In Figs. 3, 4, and 5 the expression (34) is compared
with the experimental deuteron distributions from a
Be target struck by 30-BeV primary protons, observed
at angles of 45', 30', and 90' in the laboratory system.
The experimental results in Figs. 3, 5, 6, and 7 are those
of Fitch eI, al. ' and in Fig. 4 those of Schwarzschild and
Zupandik. ' In Fig. 6 the expression (34) is compared
with the experimental results for deuterons produced
(at an angle of 45' in the laboratory system) from an
Al target by protons with incident energy 30 BeV; the
same value of

~
Vo~ is employed.

In Fig. 7 the expression (34) is compared with the
number of deuterons produced from a Be target at 90'
by protons with incident energy 10 BeV. Since the
e%ciency of the target was not known for 10-SeV

' A. Schwarzschild and C. Zupancic (to be published).
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FIG. 8. A comparison of the calculated deuteron momentum
distribution (34) arith that observed for deuterons produced from
Al and Pt targets at an angle of 16.9' in the laboratory system by
Cocconi et al. (reference 1}.Curve 1 is the experimental distribu-
tion of cascade protons used to calculate (34). Curves 2 and 3 are
the calculated expression (34) and the observed deuteron momen-
tum distribution. Because the experimental proton distribution
employed was unnormalized, all the curves are in arbitrary units.

protons the calculated and experimental curves were
made to correspond at I BeV/t, .

In Fig. g the expression (34) is compared with the
deuteron distribution measured at CERN by Cocconi
eI, al. Here the deuterons were observed at an angle of
10.9' and the energy of the incident protons was 25
BeV. Because the measured proton distribution was not
normalized in this experiment all the curves are plotted
in arbitrary units.

In all the cases shown in Figs. 3 to 8 the expression
(34) satisfactorily represents the measured deuteron
momentum distribution, if

~
Vo~ is taken to be a

constant independent of energy. At 90' deuteron
production from direct nucleon-nucleon collisions is
kinematically forbidden, and deuterons must neces-
sarily be produced by a secondary process such as we
have described. The expression (34) reproduces not

only the momentum spectrum of deuterons at 90' in
the laboratory system, but also reproduces the spectra
of those deuterons observed at smaller angles using the
same value of

~
Vo~. It seems clear that the mechanism

we have described must be responsible for the majority
of deuterons at all angles.

The value of
~

Vo ~, 25&5 &leV, used to fit the
experimental data in Figs. 3—6 is the same as that found
from a previous analysis of the emulsion data and is in
reasonable agreement with the (mainly absorptive)
potential used by Bjorklund et al. to fit the proton
scattering data at about 300 MeV.

The result (34) depends on the radius of the target
nucleus through the integral I and through the Qux of
cascade protons e„(2K).Cocconi et al.2 found that the
ratio of deuterons to protons of the same momentum
increased slightly with increase in the radius of the
target nucleus. The value of I decreases rather rapidly
with this radius, and we are, therefore, dependent on
the observed e~(-', K) increasing suKciently with nuclear
radius to be consistent with the CERN result.

It must be remembered, however, that in our model
we have obtained the incident Aux by assuming that
the protons in the nucleon cascade are scattered
randomly throughout the nuclear volume. It would

probably be more realistic to imagine that the nucleon
cascade occupies only part of the nuclear volume and
that as the target nucleus increases in size, the volume
occupied by the nucleon cascade increases more slowli
than the nuclear volume. The Aux of incident neutrons
and protons representing the nucleon cascade in the
model would be consequently increased and the en-
hanced deuteron production could also contribute to
the CERN result.

Such an improvement in the model could perhaps
effect a small reduction in the depth

~
V0~ of the optical

potential we have used to fit the expression (34) to the
experimental results, although such an alteration would
not aGect the energy dependence of this potential.

The magnitude of the optical potential necessary to
explain the observed deuteron momentum spectra is
approximately constant for incident nucleon energies
between 300 and 3000 3IeV.
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