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The properties of Pb~' have been determined, using the Brueckner-Gammel-Weitzner theory of finite
nuclei. Self-consistent solutions of the Hartree-Fock equations as modi6ed by Brueckner and Goldman
have been obtained. The properties computed include binding energy, mean proton and neutron radii,
separation energies, spin-orbit splittings, nonlocal and state-dependent single-particle potentials, surface
depth. of density and potentials, and the potential-density relation. Semiquantitative agreement with
experiment is obtained, the maximum difterence between theory and experiment being of the order of
15'Po. Revised computations for Ca~ are reported to permit comparison between our results (with an
improved treatment of the rearrangement energy) and those previously reported by Brueckner, Lockett,
and Rotenberg for 0" Ca~, and Zr~.

L INTRODUCTION
' 'N a series of previous papers by Brueckner and co-
~ ~ workers, ' methods have been developed for the
study of many-fermion systems and have been applied
jn detail to the determination of the properties of nu-
clear matter. Approximate extensions of these methods
to the study of 6nite nuclei were proposed by Brueckner,
Gammel, and VVeitzner, ' and the properties of 0", Ca40,

and Zr~ were calculated by Brueckner, Lockett, and
Rotenberg. ' The IBM 704 at I.os Alamos, on which
these computations were done, did not have the capacity
to do the Pb 8 calculation, and the problem was trans-
ferred to the CDC-1604 at the University of California,
San Diego. A better approximation of the rearrange-
ment energy was used. This paper reports the results of
the numerical study of the properties of Pb'8 and
revised computations of Ca~ (to permit comparison
with the previous calculations by BI.R).

where V;(r,r') is a nonlocal potential derived from the
E matrices of the Brueckner theory and Va(r) is the
rearrangement potential discussed and calculated by
Brueckner and Goldrnan. 4

The computational procedure consists of calculating
a set of radial wave functions E„»(r) from a Saxon well
with approximately correct radius and depth. These
wave functions are used to start the iteration procedure
which consists of two separate parts, HI and HII. HI
takes the wave functions and computes nonlocal poten-
tials V»(r, r'). From these potentials and the wave
functions, R„»(r), HII generates local equivalent po-
tentials F„».(r) and G„&;(r), and solves the Schrodinger
equation for a new set of wave functions (using the
iterative methods developed in BGW). The new wave
functions are then used as input for the next iteration.

The nonlocal potential computed by HI is given by
Eq. (94) of BGW:

II. COMPUTATIONAL PROCEDURE

BG% and BIR discuss the procedure for extend-
ing the nuclear matter calculations of Brueckner and
Gammel' to 6nite nuclei and examine the approxima-
tions involved. Therefore, we conlne ourselves to
stating brieQy the pertinent equations, several of which
have not previously been stated explicitly.

The problem is essentially that of solving the eigen-
value equation:

V»(ri, ri') = V&& &(r„r,')+-,'1V,&»(r„r, ),
2=~+2~

= V&&'&(rg, ri') ——2(1+1)V &~8'(r„r,'),

where, by Eq. (4.17) of BI.R

(2.2)

E;v, (r) = &r, ,(r)+ dr'—V;(r,r') «;(r')

+V~(r) r'(r), (2.1)
~ This work was done in part under the auspices of the U. S.

Atomic Energy Commission.
)Lieutenant, U. S. Navy, on duty under instruction at the

University of California.
' See K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023

{1958),for a list of references.' K. A. Brueckner, J.L. Gammel, and H. %eitzner, Phys. Rev.
110, 431 (1958), hereafter referred to as BGW.

3 K. A. Brueckner, A. M. Lockett, and M. Rotenberg, Phys.
Rev. 121, 255 (1961),hereafter referred to as BLR.

with p, =r~ r~' and x=r&' —r& (see Fig. 1). V' '(r&, r, ')
is given by a similar equation. Vo(r, r ) is graphed in
Fig. 2(a) for r=1.0 F.

We trace the integral (2.3) back to the It matrices
tabulated in BG%' or to an appropriate Born approxi-
mation as follows:

4 K. A. Brueckner and I). T. (xoldman, Phys. Rev. 116, 424
(1959); 117, 207 (1960).
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(1) (r,
I
VIrt') is expanded in I.egendre polynomials, TAszz f. Parameters of the Garnmel-Thaler potentials. The

potentials all have the Yukawa form outside of a repulsive core

(rtl Vlrt') = (rtl Vlrt+x)
Va(rt, x)+ Vt(rt, x) cos(rt, x), (2.4)

where Vaand Vtareobtainedbyevaluating (r&I VIrt+x)
for x parallel and antiparallel to r1.

Vo(&t *)= lI (rt I
VIrt+*'t)+(rt I

VIrt —x't)3
(2.5)

Vt(rt x)= aC(rtl Vlrt+xrt) —(rtl VIrt —xrt)j.

(2) In general, (rtI VI rt') is given by an equation of

the form

State

Triplet central even
Tensor even
Spin-orbit even
Singlet even

Triplet central odd
Tensor odd
Spin-orbit odd
Singlet odd

Strength, V
(MeV)

—877.39
159.40

—5000—434.0

14.0
22.0—7315

130.0

Inverse range,
~(F ')

2.0908
1.0494
3.70
1.45

1.00
0.80
3.70
1.00

(rt I
V

I
r, ') = tfr, tfr, 'y*(ra) (rt& I

E
I
rta') y(r, ')

&1+&2 &1 +&2
XS' —,(2.6)

2 2

terms on the left. Ke have appended the subscript "~"
on H~ and HI to indicate this dependence. The density
matrix elements are defined by Eqs. (85), (86), and
(87) of BGW.

= 16m r 12'dr 12

r12 dr12
(-', HN(ra, ra') y

[Eqs. (77) and (78) of BGWj. The (rtaIE I
rta') a.re the

matrix elements tabulated in BGK. The delta function

expresses the conservation of center of mass implicit in

the assumption (discussed in BGW) that the E matrices

have a negligible dependence on the total momentum.

It is apparent that r1, r1', r2, and r2' must form a
parallelogram (Fig. 1).

(3) After performing the ra' integration, one obtains
for the terms on the right of Eq. (2.5)

V,v&'(r, , r,+xr, )

with a similar equation for HI. V~1, is the occupation
number for the state (2j+1 for full shells).

(4) In the computations, the even state E-matrix
elements were used for the S and D states in the
following combination:

(r„IEIr„'),.
(2l+1) (r» I

E~
I
r»'). ..P~(r&2, rt2'), (2.10)

t=0,2

and

0 2~ I
2xr12

XL(r»IEIr»'). .+3(rtaIEI&» )~, a. -atra~]

+ aHp(r r ra')~L(r» I
E

I
r»'),

+3(rt, IEIrta')i, aaaatrat+ , (rtal El rta'). ..
+3(r»IEIrta')t, a, caaualj},

with a similar equation for (r»IEIr»')&„For the D
states, a local equivalent potential was calculated by
hand from the BGW E-matrix elements (see BLR for
the reason and justification for this). The odd-state
central and tensor potentials were not included: They
cancel each other almost completely. As discussed in
BLR, the even spin-orbit term in Zq. (2.8) was also
dropped (its experimental justification being question-
able). For the odd-state spin-orbit contribution in Kq.

Vx& &(rt, rt&xrt)

= 16' r 12'dr 12

* r12 dr].2 &1'&
1—

2xr rl2

X {$Hx (r&,r, ')+(rta
I
E

I
rt&') ~,.as+ aHp(rara')+

XL(rtaI EI r»')f„, rs+ (&» IE I&»')~ .t s)& (2.8)

The proton potentials are given by similar equations
with HN and Hp (the density matrix elements) inter-
changed. These equations are derived in BGW

I Eqs.
(89) and (90)j and in BLR LEq. (4.15)j. The factor
16'. comes from the p integration and the delta function
in Eq. (2.6). Note that ra and ra' appearing above are
determined by r1, r1' and the variables of integration,
including x and the sign with which it appears in the

FIG. 1. Relationships be-
tween variables in the
theory of finite nuclei. 1
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V(r)=Ve ~"jpr. (2.12)

For the spin-orbit term, we obtain (using only the
P-state contribution):

VN&~s&(rg, rg+xr&)

= 16m r gg'drys

r12+2 z

(~g)
2xrg&

X [-', H,;(r,,r ')~+4H„(r, ,r ')~]3P,(r», r,.')
&(r»—ri~')

(L8)
(Ls)r

(2.13)

The factor g is an approximation t.o the (1—r& r2/rp)
term in Eq. (2.8). The appropriate expression is ob-
tained by expanding H(r2, rm') about r& and ignoring
derivatives higher than the 6rst (which is justi6ed by
the near locality of the spin-orbit E matrix), and then

by averaging over the angles which occur in the sub-
sequent integrations. This procedure leads to

=g-', (r, :q'r, ) cos(x,r,2)(1 2r)2'/—x) (2.14)

This approximation reduces to the Thomas expression
if V(~~' is independent of /. The corresponding proton
potential is obtained by interchanging H~ and HI in

Eq. (2.13).
(5) The core contribution, as computed from Eqs. (54)

and (56) of BGW, is

(2.8), and for the even-state terms outside the nonlocal
region (e.g., outside the range of the tables in BGW),
the Born approximation was used. The Born terms
were calculated from the potentials in Table I, and for
S and D states they are

(r»~& ~r, 2') = V(r~2')&(r, 2' —r&2)/4ar&2r&g', (2.11)

where, in terms of the para. meters of Table I, V(r) is

of the form

for all values of rj' simultaneously; e.g. , for each point
in the x integral, the terms were computed for every
value of r~'. This sequence was repeated for each of the
50r~2 points. The total time for this phase of the com-
putation was 70 min. The meshes were (in fermis):

50 points 0.2 (0.2) 10.0

125 points —1.55 (0.025) 1.55

x 43 points 0.0 (0.05) 2.1

r» 13 points 0.4 (0.1) 1.0 (0.3) 1.6 (0.5) 3.6
r»' 17 points (r&s—0.60) (0.05) (r&2+0.20).

An intermediate step between HI and HII was

required for the lead calculation. The nonlocal pote&-
tials were generated by HI and stored on magnetic
tape as four matrices (neutron and protons, j=l&2)
of dimension 7X 125 (f,r') for each of the 50 values of r
(here we change notation from r~ to r and rq' to r'). The
intermediate code reordered these records on magnetic
tape to 22 sets of V»(r, r') in the order in which HII
treated each state. [Of the 38 states involved in this
calculation, 16 differ from some other proton or neutron
state only in the principal quantum number, n, and
thus have the same V»(r, r').]This intermediate opera-
tion took 15 min.

Two calculations were perfornled by HII. The first
calculation was of the potential functions Ii and G
[Eqs. (4.24) and (4.25) of BLR]:

V,, (r,r')
F„(,(r) =4rrr r'dr' — R„„(r')R„„(r)

D„» (r)

dR„t, (r') dR„»(r)-
+a' — +V.(r), (2.17)

dr' dr
and

Vt, (r,r')
G» (r) = 4a.a'r r'dr'

D.»(r)

g(r, .—r,)b(r„'—r, ) (1—ft/1. 07)
(r, ~Z ~r.)=W, (2.15)

4i.f.2 (1—&/«) where

dR„(, (r) dR„t, (r')-
X R( »')rR„t,(r), (—2.18)

dr dr'

with 3 = 215 or 257 MeV-F and 5=0.488 or 0.459 F for
singlet or triplet states, respectively, and

ro [3/4n p(r)]'". —— (2.16)

The density, p(r), is the diagonal element of the total
density matrix, e.g., HN(r, r)+H&(r, r).

Because of the magnitude of the problem of com-
puting the nonlocal potential for Pb'0', some modihca-
tion of the order of integration from that of BI,R was
necessary. For a given value of all the variables of
integration, the appropriate terms were calculated for
r~' ——r~+x and r~' ——r~ —x. Then the r~2' and r~2 integra-
tions were performed, the r~~' integration being inside
the rl. integration. The x integration was then done

D~»(r) = [R„t,(r)]'+a'[dR„»(r)/dr]', (2.19)

and V, (r) is the coulomb potential. The constant a was
chosen to be 1 F (the order of the range of the non-
locality of V (r,r')), as in BLR. Representative potential
functions F(r) and G(r) and radial wave functions,
R(r), are plotted in Fig. 2.

A simple iterative method for solving the radial eigen-
value equation derived from Eq. (2.1) is described by
BGW. It leads to an equation for the (n+1)st iterate
of the radial wave function R„g;(r) in terms of the nth
iterate values of the F(r) and G(r) given by Eqs. (2.17)
and (2.18):

Ho) (R"+' (")/r) = [F"(r)+ Vz (r)][R "+'(r)/r]
+[G"(r)jr][dR "+'(r)/dr]. (2.20)
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We have used an improved approximation to the

rearrangement potential, V~(r), which is suggested by
the analysis of Brueckner and Goldrnan, ' who deter-

mined the dependence of the rearrangement potential

on the single particle momentum (as a fraction of pp).
In BLR, Vg(r) was approximated as a constant factor
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Fzc. 2. Representative potential and wave functions for Pb~', (a) Nonlocal potential, 4TFrr'I'(r, r') for r = 1.00 F, illustrating variation

with strength of hard core potential (90 and 100~/Q of normal) and diRerences between neutron and proton potentials; (b) Potential
function F(r) for s states, indicating the variation with principal quantum number and differences between neutron and proton func-

tions; (c) Potential function G(r) for s-state neutrons, indicating dependence on principal quantum number; (d) Radial wave functions,

E(r), for the s-state protons and neutrons; (e) Potential function I'(r) for neutrons and protons for two representative states; (f) Radial
wave functions, R(r), for neutrons and protons for selected states illustrating the variation with orbital quantum number; (g) Potential
function F(r) for both core strengths for selected states illustrating the spin-orbit splitting; (h) Radial wave functions corresponding to
the potential functions of 2(g). Unless otherwise indicated, all data are for core strength 90~jq of normal.
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TAaLE II. Properties of Ca~ calculated with the new rearrange-
ment energy approximation (this paper) compared to the previous
calculations of BLR and to experiment. Energies are in MeV,
distances in F.

where

Rotai= Q F-;— dr R,2(r)(-', F;(r)+Vg(r))
i a11

particles

Property

Separation energy
neutron
proton
difference

Calculated value
Pl evlous

This paper (BLR)

—13.5—4.9—8.6

Experi-
mental
value

—15.63—8.34—7.29

dR; (r)+2 R;(r)G,(r), (2.23)
dr

a result which is easily derived.

m. RESUr.TS

Total energy per particle —6.55 —6.12 —8.55

Rms radii
total
neutron
proton

Spin-orbit sp&tt»g
1P1/y, -1P3/2

neutron
proton

8/2 1~5/2
neutron
proton

2.99
2.98
3.00

3.6
3.5

49
4.8

2.88
2.84
2.91 3.52~0.07

6.1
59

7.1
6.7

times Q(r) O'. Our new approximation is

&s(r)
=(26 14L(—F-.~/"" Fb t—t. )/(~t. p &b.t—t. )j}

X[@(r)/p(ra=1.0/)]'. (2.21)

p(ro ——1.07) =0.19488 particles/F'. This equation inter-
polates in terms of the energy eigenvalues between the
rearrangement energy corresponding to the approximate
mean momentum of the deepest state and the energy
appropriate to the top state (e.g., between 26 and 12
XfeV, respectively, at normal density). This improved
treatment of the rearrangement energy is the only
essential diBerence between our calculation and that
of BLR.

The solution of Eq. (2.20) is discussed in detail in
BLR. The procedure starts with choosing an appro-
priate trial eigenvalue and doing a Runga-Kutta inte-
gration out from the origin to an intermediate radius,

Egesta ~
and in from a very large radius to E«,t. The

latter integration starts with the logarithmic derivative
of R„„(r)set equal to that of the appropriate asymp-
totic solution of the Schrodinger equation. This inte-
gration is done with successively better estimates of the
eigenvalues until the logarithmic derivatives of the
wave functions match at Et„t. The wave functions are
then normalized to unity. The entire HII calculation
had to be repeated three or four times per iteration to
obtain satisfactory convergence. This minor iteration
procedure took about 25 min, ten of which were re-
quired for calculating the Ii and G.

The total energy per particle quoted in the next
section (and in BLR) is given by

Z~,t,q ~„~ &;,q, =E„t+(number of particles), (2.22)

A. Comparison with Previous Rearrangement
Energy Approximation

In order to check our revised code and to ascertain
the effects of the new treatment of the rearrangement
energy, we calculated the properties of Ca" and com-
pared our results with the original code used by BLR
at Los Alamos, both with and without the new energy
treatment. The agreement between the BLR code and
our code was good: —6.78 vs —6.55 MeV mean energy
per particle, 3.00 vs 2.99 F rms radii, and 0.7 AIeV or
less difference in the eigenvalues. The di6'erences are
entirely attributable to a few minor coding errors in the
original program. Table II compares the new results
with those reported in BLR. The net effect of our im-
proved rearrangement energy approximation is slightly
better agreement with experiment for almost every
property tabulated: separation energies, total energy
per particle, and rms radii. In addition, the spin-orbit
splittings are more nearly proportional to the (2/+1)
separations generally expected. However, the magnitude
of the total energy per particle is still not large enough
(—6.55 'AIeV vs the experimental —8.55 3feV), ' the
proton rms radius is too small (although it is increased
by 3'Pz to a new value which is 83'%%uo of the experimental
value), ' and there is slightly too much difference
between the separation energy of the last particle and
the total energy per particle (1.1 MeV compared to the
previous 1.2 MeV and the experimental 0.2 3feV).
Comparative potential energies and eigenvalues are
given in Table III for every state of Ca~ with the old
and new approximations. The range of eigenvalues has
been reduced from —70.1 through —4.9 MeV to —48.7
through —5.5 MeV. This reduction in spread of energies
indicates that the previous approximation reproduced
the absolute magnitudes of the energy spectrum quite
poorly except near the top levels; the otherwise close
agreement between the two calculations indicates that
the approximation employed in BLR was adequate
for the computation of the average properties of the
nuclei (such as mean energies, rms radii, etc), and that

' The experimental energies quoted in this paper are calculated
from experimental masses tabulated by L. A. Konig, J. H. K.
Mattauch, and A. H. VVapstra, Nucl. Phys. 31, 18 (1962).

6 The proton radii and surface depths quoted in this paper are
the electron scattering values summarized by R. Hofstadter,
Rev. Mod. Phys. 28, 214 (1956), and by D. G. Ravenhall,i'. 30, 430 (1958).
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TABLE III. Calculated potential energies and eigenvalues for Ca~ with the new approximation to the rearrangement energy (this
paper} and with the previous approximation (BI.R}.The core strength was 90'$0 of the normal value. All energies are in MeV.

State
Potential energy

Neutron Proton

This paper
Eigenvalue

Neutron Proton

Previous calculation (BLR}
Potential energy Eigenvalue

Neutron Proton Neutron Proton

»1/a
2P3/2
1pl/5
2~5/e
2~1/2
1d5/2

—58.4—51.4—48.5—43.0—38.1—37.9

—51.1—44.1—41.1—35.5—30.2—30.3

—48.7—34.0—30.4—17.5—14.8—12.6

—41.4—26.7
2302

—10.3—7.6—5.5

—82.4—65.2—59.3—48.3—40.5—39.6

—72.1—55.1—49.3—38.2—30.0—29.6

—70.1—44.7—38.6—20.6—16.0—13.5

—60.0—35.1—29.2—11.6—7.3—4.9

further improvement in this direction would not be
likely to change such properties appreciably.

B GeQcx'a~ properties of pbmos

In Table IV we tabulate the principal properties of
Pb' ' as calculated by the theory for hard-core strengths
equal to 90% and 100% of the normal strength. The
100% core data is the result of a single full iteration
from the 90% data. Experience with the rapid con-
vergence of these computations indicates that the
properties tabulated are very near the values we would
obtain with further iteration (e.g. , probably within 0.1
MeV for the mean energy and 0.01 F for the rms radii).
Since the individual energy-level predictions (next
section) are subject to slight fluctuations on the 6rst
iterations, they are not quoted for the full core. The
90% core was chosen to permit comparison with the
calculations in BI.R. In those calculations, the reduced
core contributions were arbitrarily employed as a means
of improving the binding energies. As we see in Table V,
too little binding was obtained for the smaller nuclei
even with the reduced core strength. However, for lead
with the 90% core the binding energies of the last
particles are a fraction of an MeV too great (—8.8 vs
—8.4 MeV for the top neutron and —8.9 vs —8.0 MeV
for the proton), and the magnitude of the total energy
per particle (10.0 MeV) is 2.1 MeV greater than that
calculated from the masses. The energy of the top
nucleon differs by 1.2 3IeV from the total energy per
particle, compared with the experimental value of 0.5
MeV. For the 100% core, the magnitude of the total
energy per particle is several MeV less than the energy
with the 90% core, and is 1 MeV less than the experi-
mental value.

The rms proton radii are 16 and 15% too small (for
the 90 and 100% cores, respectively). Similar errors
were reported for Ca~ and Zr~. The surface depths are
1.8 and 1.9 F for the proton distributions and 1.9 and
2.1 F for the total distributions. (We have taken the
surface depth to be the distance over which the density
falls from 90 to 10% of its maximum value in the
vicinity of the center of the nucleus. ) The computed
depths are slightly smaller than the experimentally
deduced (2.2&0.3) F for the charge distributions and

(2.45 O. iq+ ') F for the nuclear distribution. ' The small
discrepancies might vanish with the correction of the
error in the rms radii.

TABLE IV. Properties of Pb~' calculated for core repulsion
strengths 90% and 200'P0 of normal values. Energies are in MeV
and distances in F.

Separation energy or
top eigenvalue

neutron
proton
difference

Calculated
90% core 100j0 core

—8.8—8.9
+O.i

Experi-
mental

—7.38—8.04
+0.66

Total energy
per particle

Total rms radius
neutron radius
proton radius

Surface depth

total

neutron
proton

—10.00
4.67
4.74
4.56

1.9
1.9
1.8

—6.86
4.75
4.84
4.62

2.2
2.3
1.9

—7.87

S.42~0.11

2 45+0.45—0.15

2.2 +0.3

L. R. B. Elton, Rev. Mod. Phys. 30, 557 (1958}.
M. G. Mayer and J. H. D. Jensen, Elementary Theory of

Nuclear Shell Structure (John Wiley 8z Sons, Inc. , New York,
1956}.

9 B.J. Malenka, Phys. Rev. 86, 68 (1952}.
'0 A. A. Ross, Hans Mark, and R. D. Lawson, Phys. Rev. 102,

1613 (1956}.

C. Energy Spectrum

Table VI gives the energy spectrum for the reduced
(90%) hard core strength. The ordering of states is
generally in accord with that deduced from experiment
for the shell model. s Up through the 1g9/2 state, the Pb~
level assignment is the same as that calculated for Zr~
(and differs from the Ca~ order in the 1dsim and 2s&~2

states). With the new rearrangement energy treatment,
the spread in energy levels and the coarse level spacing
are probably the most accurate calculated to date.
Thus, we compare our spread in eigenvalues of about
70 78eV with those determined in the shell-model calcu-
lations with central potentials and spin-orbit coupling
of (for example) Malenka' (about 30 MeV) and of
Ross, Mark, and Lawson" (less than 40 MeV). In
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appreciable neutron-proton difference for the light
nuclei (BLR) and the slight difference noted for lead
are compatible with experimental results. " Quantita-
tively, for lead we conclude from pion and nucleon
scattering calculations' that Ev E„—=(0.2+0.2) F,
where E is the half-density radius, in agreement with
our calculation. This 6gure does not include that part
of the difference which results from the 6nite extension
of the nuclear potential beyond the matter distribution
when the radii are determined from separate nuclear
and charge-dependent interactions. Ke discuss this
difI'erence next.

1pI/2 —1p3/2

2 pI/2 —2p3/2

3 pI /2
—3p3/2

1A/2 —1&s/2
2d 3/2 2d 6/2

1fs/2 —1f7/2
2 fs/2 —2fz/
1g7/2 —ig9/2
ih9/2 —ihII/2

Neutron

1.3
2.1
2.1
2.0
2.6
3.0
3.2
4.2
5.5

Proton

1.0
1.7

1.8
2.3
2.7

3.8

TABLE VII. Spin-orbit splitting for Pb~3 in MeV. The core
strength was 90'P0 of its normal value.

E. Density-Potential Relations

In Fig. 4 we have plotted the potential function F(r)
for the two top neutron states against the density
distribution. The top proton potential is not shown
because it lies inside the neutron potentials, a conse-
quence of the smaller proton distribution. The separa-
tion between total density and potential (0.5 F) is
slightly less than that of Ca4' and Zr~ (0.75 F); the dif-
ference between the proton half-density point and the
nuclear potential half-maximum is 0.7 F. These results
agree within the limits of experimental error with the dif-
ferences between Ep (1.18&0.02) —4—'"= (7.00&0.14) F
from electron scattering' "and from p, mesonic atoms, "
and E&——(1.25~0.05) A'"= (7.41~0.30) F from low
and high energy neutron scattering. " IA'ilets" has con-
cluded from neutron and proton scattering that the
difference between the nuclear potential radius and the
matter radius is independent of A and is (1.0&0.3) I'.
This difference in radii is largely due to three effects
previously discussed, "ns, mely, (a) finite range of inter-
action; (b) nonlinear variation of potential energy with
density (Wilets effect)'"; and (c) nonlocality of the
effective interaction.

F. Comparison with Surface Predictions of
Other Theories

It is interesting to compare the character of the
nuclear surface as predicted by previous semiempirical
theories with our results (which are essentially from
"first principles" if the concept of a two-body nuclear
potential is valid). We will mention only two previous
calculations to indicate the degree of precisionobtain-
able. One is the pure Hartree-Fock calculation by

"W. N. Hess and B. J. Mover, Phys. Rev. 101, 33I (1955};
R. W. Williaxns, jbkL 9S, 1387 (1955}.' K. W. Ford and D. L. Hill, Ann. Rev. Nucl. Sci. 5, 25
{1955)."E.M. Henley, Rev. Mod. Phys. 30, 438 (1958}."S. Fernbach, Rev. Mod. Phys. 30, 414 (1958); J. H.
Atkinson, W. N. Hess, V. Perez-Mendez, and R. Wallace, Phys.
Rev. 123, 1850 (1961).

'3 L. Wilets, Rev. Mod. Phys. 30, 542 (1958}.
'6K. A. Brueckner, Phys. Rev. 103, 1121 (1956); Rev. Mod.

Phys. 30, 561 (1958)."R.A. Berg and L. Wilets, Phys, Rev. 101, 201 (1956};L.
filets, i'. 101, 1805 (1956).

Rotenberg" with X=Z=92. It yielded surface thick-
nesses of 2.7 and 3.1 F for Caussian and Yukawa wells,

respectively, and predicted a marked dip in the proton
distribution near the origin (which is absent in our more
exact calculation). The calculated separation between
the rms radii of the particle density and of the self-

consistent collective potential in this model was less
than 0.2 F. An intermediate step between the pure
Hartree-Fock calculation and the BG% theory is the
semiempirical model of Berg and filets. ""This model
yields RN —Rp=0.2 F (in agreement with our result)
and E(potential) —R(nucleon)=0. 7 F (compared to
our 0.5 F).

G. Summary of Results for the Four Nuclei
Studied to Date

The following is a summary of the general features of
the results for full-shell nuclei (0", Ca~, Zrw and Pb"')
studied in this paper and in BI,R.

(1) The magnitudes of the total energy per particle
and of the separation energies are smaller than their
experimental counterparts.

(2) The difference between observed and calculated
energies decreases with increasing nuclear size.

(3) The energy spectrum is in general agreement with
experiment, and the computation of the coarse spacing,
with the new' rearrangement energy approximation, is
probably the most accurate to date. However, the
detailed spacing between close levels, particularly when
widely different angular momenta are involved, may
not be correct in every instance.

(4) The energy spectrum is quite sensitive to any
changes in the calculation (as, for example, the changes
in the treatment of the rearrangement energy and in
the core strength). This is to be expected, because the
single-particle energies are to be compared with po-
tential wells of the order of 70 3'1eV. Thus, a 3IeV
change in particle energy is less than a 2'f/~ change in
potential energy.

(5) The radii of the nucleon distributions are in
good agreement with experiment for 0",with full core,
but are about 15'%%uo too small for the other nuclei studied.

(6) These radii are relatively insensitive to changes

~3 &, Rotenberg, Phys. Rev. 100, 439 (1955}.
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in the calculation, a stiffness" which has been observed
in the calculations of SLR and of this paper.

(7) The theory predicts the details of the internal
density distribution, and the calculations have brought
out a remarkably uniform ratio of neutron and proton
densities in the lighter nuclei, with only minor variance
in Pb"'. To date it has not been possible to verify the
detailed internal distributions of these nuclei experi-
mentally, although the analysis of Ford and Hill"
indicates that the charge distribution for lead is prob-
ably reasonably uniform (and especially that there is
no dip in the center as deduced for gold), ' in agreement
with our results.

(8) The calculated surface properties are compatible
with present experimental evidence. In particular, the
surface depth, neutron-proton radius differences, and
the matter-potential relations at the surface are quanti-
tatively predicted.

IV. CONCLUSIONS

The surface depth of the nucleus is now known ex-
perimentally to within about 10%.' Our results are
compatible with experiment and form a theoretical
explanation of its shape from first principles. Indeed,
there is a need for further refinement of the experiment
to verify the internal structure of each nucleus and to
ascertain the surface shape consistent with it. There
is also a need for further refinement of the BGK theory
to obtain better rms radii, with the result that the
surface depths predicted might be more accurate. In
addition, our theoretical knowledge of the neutron and
proton density ratios and of the potential-density rela-
tion at the surface is compatible with, and at present
more definitive than, experiment. A feature of the
surface which this theory does not describe is possible
existence (discussed by Wilkinson)" of nucleon clusters,
possibly "alpha" particles„ in the nuclear surface. Super-
fluidity in the low-density region, if present, is also not
treated, but it is believed to have negligible effect on a
gross property such as surface depth.

For the remaining properties (binding energy, mean
proton and neutron radii, separation energies, and spin-
orbit splittings), the theory is in semiquantitative agree-
ment with experiment, the maximum errors being of the
order of 15%%uo. The sources of these errors can be grouped
into three categories: (1) the numerical procedures, (2)
the input (i.e., the phenomenological potentials), and
(3) the theory itself (both the Brueckner theory of
infinite nuclear matter and the HGW theory of finite
nuclei). The 6rst of these (the numerical procedures) is
rejected as a source of major error on the basis of the
thorough tests by BLR of the meshes employed and the
improvement of the results with nuclear size in spite
of the fact that any errors from the numerical pro-
cedures probably increased also.

'9 D. H. Wilkinson, I'roceedings of the International Conference
on Nuclear Structure, Eingston, t"angra (University of Toronto
I'ress) Toronto, 1960), p. 20,

However, some of the error may arise in the choice of
the phenomenological two-body nuclear potential. Re-
cent calculations~ of the properties of nuclear matter
show that different phenomenological potentials which

apparently give "equally good" fit to scattering data
do not necessarily lead to identical nuclear properties
for the many-body system. It is possible that a better
potential would resolve some of the discrepancies be-
tween our calculations and experiment. It should be
noted that of the seven potentials employed in the
calculations of reference, " the potential of Table I
gives the best agreement between the calculated and
semiempirical properties of infinite nuclear matter. This,
however, does not mean that this potential is the
"correct" one, and more work in phenomenological
potentials is indicated. Further, in the more accurate
calculations of Brueckner and Gammel' this potential
yielded for nuclear matter a slightly smaller binding
energy (—15.2 MeV) than the semiempirical value
(best value —15.8 MeV, but values from —15.5 to
—17.0 are also quoted)" and an equilibrium spacing
that was 5% too small (1.02 vs 1.07 F). These e8ects
undoubtedly influence the computations of BLR and
of this paper. In addition, there is some question
whether the hard core should be nearer 0.4 F (as in the
Gammel-Thaler potential we use) or 0.5 F (as sug-

gested by more recent determinations of phenomeno-
logical potentials). ~ A potential with a larger core
might give lower density saturation and larger nuclear
radii.

The improvement with increasing mass number of
the computed binding energy strongly suggests that
the principal source of error is in the treatment of the
"surface" energy, which is considerably too large. It
should be emphasized that the "surface" energy, in our
calculations, does not arise solely from the classical
effect related to the density variation in the surface.
The rearrangement energy, which is essential in the
6nite system in the determination of the wave function
and density, and hence indirectly in the determination
of the total energy, does not appear in the uniform
system. Thus, its effect in the 6nite nucleus is, in fact,
a "surface" eGect. The methods of IIlLR and of this
paper are at best a treatment of the rearrangement
problem based on plausibility', they are not rigorously
proved. Further investigations of this many-body
problem peculiar to the finite system are clearly
needed.

In conclusion, we have ascertained that the BGW
theory of 6nite nuclei is in semiquantitative agreement
with experiment, the agreement improving with nuclear
size. Further, we have seen that our state-dependent

~ K. A. Brueckner and K. S. Masterson, Jr., Phys. Rev. 128,
2267 (1962).

~'A. K. S. Green, Rev. Mod. Phys. 30, 569 (1958};A. G. W.
Cameron, Can. J. Phys. 35, 1021 (195'I}.

~ K. E.Lassila, M. H. Hull, Jr., H. M. Ruppel, F.A. McDonald,
and G. Breit, Phys. Rev. 126, 881 (1962}.
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approximation to the rearrangement energy correction

gives appreciably better results than those obtained
in the previous calculations. Finally, it appears probable
that much of the residual error in the results can be
removed by improvements in the phenomenological
two-body potential upon which the calculations are
based, and by improvement of the "surface" energy.
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He'+ f Reactions*f
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The energy distributions of alpha particles and of protons from the He'+t reactions have been measured
for 1.9-MeV incident tritons at laboratory angles of 30' for alphas, and both 30' and 90' for protons.
Absolute cross sections are obtained. The spectra are discussed in terms of a model which assumes that
uncorrelated three-body breakup and several two-stage processes all contribute independently to the cross
section. The calculations based on this model are in excellent agreement with the observed spectral shapes.
The neutron-proton correlation corresponding to the unbound singlet state of the deuteron is observed. The
binding energy of He~ (for breakup into a neutron and an alpha particle) was found to be e= —0.79&0,03
MeV.

INTRODUCTION

ECENTI.Y, there has been considerable interest
in the interpretations of reactions of the type

a+2 ~ b+c+d.
Each of the three particles in the Anal state has a
spectrum of energies. The shape of the spectrum de-
pends on the nuclear forces acting in the system and
for this reason has not yet been derived exactly. Never-
theless, such reactions as d+p —+ p+p+n, d+n —+

p+n+n, t+d —+ t+p+n, u+d ~n+ p+n, t+t ~
a+n+n, Beg+p~n+n+d, E +p —+E'+m +p, and
Z—+d~ (h.' or Z')+n+n' '~" are often discussed

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

t This work represents part of a thesis prepared in partial
ful61lment of the requirements for the degree of Master of Science
at the University of New Mexico.
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in terms of the cluster model which suggests that
three-body decay can be treated as a time sequence
of two-body interactions4 —' or in terms of final-state
interactions among the reaction products. ~"

The T(t,a)n, n reaction for triton energies below 2.1
MeV has been investigated in some detail at this lab-
oratory, ' and the alpha-particle energy spectra were
fairly well explained by a two-stage process calculation.
The present experiment is a similar study of the
He'(t, a)p,n reaction.

When helium-3 is bombarded with tritium, the follow-
ing reactions are the only ones possible at low bom-
barding energies:


