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A simple idealized model is formulated for the purpose of deriving the transport properties of a particle
that moves through a lattice primarily by means of thermally activated jumps. In its present form, the model
is designed to represent the gross features of the properties of a "small polaron, "that have been derived from
previous microscopic theories. The model consists of a single particle, confined to a set of equivalent local-
ized states, which may move either by tunneling or by thermally activated jumps. The properties of the
model are solved exactly for the case when there are only two sites. The solution exhibits how the thermally
activated and tunneling processes combine to transfer the particle from site to site. The various transport
properties of the model are then obtained for the cases when the particle is trapped at a color center (ideal-
ized by two-site model} and when it moves through a periodic lattice. These properties are derived from
those of the "natural" motion of the system, in the absence of any applied field, by means of the fluctuation-
dissipation theorem.

I. INTRODUCTION perimental evidence that the properties of carriers in

certain materials may be described by the hopping
polaron theory.

It has also been established' that the carriers responsi-
ble for impurity conduction in certain materials likewise
move by the phonon-activated hopping mechanism.
Here, however, one has the added complications that
the sites where the carriers may be localized are ran-

domly arranged and not mutually equivalent.
To sum up, the previous work has shown that, under

certain specified conditions, the carriers in a solid move

primarily by the hopping mechanism. However, it has
not led to a forrnal theory of the various transport
processes due to this mechanism. Such a theory would

require an analysis of the time dependence of the ob-
servables of the carriers —not merely a calculation, as
in the previous theories, of the jump transition rates.

The object of the present paper is to provide a sim-

plified formal theory of transport properties of carriers
that move primarily by hopping. In order to gain further
insight into the nature of the problems involved, it is
useful to first re-express the earlier theories in terms of
observables of the "dressed" physical particle, i.e., the
polaron, rather than the electron. As will be shown in
the Appendix, this may be done formally by applying a
canonical transformation to the electron-phonon model
employed in the previous theories. This transformation
expresses the Hamiltonian for the model, which we
henceforth refer to as model A, in terms of polaron
creation and annihilation operators and lattice dynami-
cal variables [Eqs. (AS)—(A15)j. In this model, the
carrier is confined to a set of localized states centered
at certain lattice sites. The carrier moves from site to
site as a result of two weak renormalized interactions,
3Cl and 3C2. The former interaction is static and governs
the tunneling motion of the particle. The interaction
K2 couples the particle to the phonons and thus governs
the jump processes.

The mathematical form of X2 is very complicated.

HE properties of an electron in a solid are governed
by its interactions with the static field due to the

crystal structure and with the phonons. The electron-
phonon interaction leads to the formation of a "po-
laron, " comprising the electron and its accompanying
lattice polarization. Theoretical investigations' ' have
shown that, in cases of strong electron-lattice coupling,
the polaron may be described in terms of localized states.
In each of these states, the electron is bound to a site and
is surrounded by the lattice polarization which it in-
duces. Polarons of this kind are often referred to as
"small polarons. "

The polaron may move from site to site as a result of
weak residual interactions, since the original electron-
lattice interaction is not completely accounted for in the
formation of the polaron. Thus, it may move either by
tunnel effect (adiabatic processes) or by phonon-acti-
vated jumps. It has been shown' ' that the latter proc-
esses predominate at high enough temperatures. In this
case, the particle may be considered to hop from site to
site in a random manner, due to its residual interaction
with the phonons. Preliminary calculations' ' have been
made for the mobility of a carrier in a periodic lattice
due to this mechanism. The calculations agree qualita-
tively, as regards order of magnitude and temperature
dependence, with the previously anomalous experi-
mental results" for O.-Fe~03 and N Q. Similar calculations
may be shown to account qualitatively for observations'
of Debye losses in the above oxides and quartz, due to
electrons trapped at color centers. Thus, we have ex-
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Because of this, we simplify the theory by employing a
new formalism that takes account of only the bare
essentials of the interactions governing the motion of
the particle. For this purpose, we first re-examine the
part played by the phonons in determining the prop-
erties of this motion. It may be seen from the previous
theories' "that the essential role of the phonons is to
provide a thermal reservoir which interacts with an
assembly of carriers, via the interaction X2, and brings
them into thermal equilibrium. The hopping motion is
simply the means whereby the free energy of the carriers
is dissipated so that equilibrium is attained. Thus, the
jump processes are thermally activated ones, governed
by the dissipative interaction X2.

Now it is known that the effects of dissipative forces
on a mechanical system generally depend only on certain
gross properties of those forces. " For example, it has
been shown by quantum theoretical treatments'0 "
that the Brownian motion of an oscillator in interaction
with a reservoir depends only on certain gross properties
of that interaction. These considerations suggest that,
in the particular case of the above-described model A,
the dynamical properties of a carrier should likewise
be governed only by the gross properties of the inter-
action, 3C~, between carrier and reservoir. Assuming this
to be the case—and the assumption is supported by
an argument in the concluding section —then we may
obtain the dynamical properties of a carrier on the basis
of a suitable idealized model, which is simpler than A
and which represents certain essential properties of A.

In the present paper, we propose such a model, which
is referred to as 8, for the purpose of studying the
dynamical properties of thermally activated hopping
motion. At this stage, 8 should be regarded as a heuristic
model, designed for the purpose of studying the hopping
mechanism rather than for direct application to any
real solids. Nevertheless, it is argued in the concluding
section that the resultant transport theory, in which
the transport properties are expressed in terms of
phenomenological constants, should apply to small
polarons in solids.

The model 8 consists of a particle confined to a set of
equivalent sites. "The particle moves from site to site
as a result of two weak interactions. The first inter-
action, Hi, is static and leads to tunneling. The second
interaction, H2, couples the particles to a thermal
reservoir, F. In this idealized model, there is no need to
regard F as consisting specifically of phonons. The im-
portant thing is that II~ and H2 are so chosen as to
contain the principal gross properties of BC' and BC2 of
model A. Thus, the particle in the new model corre-
sponds qualitatively to a small polaron, not an electron.

"I.R. Senitzky, Phys. Rev. 119, 670 (1960), cf. discussion on
dissipation in Sec. I."J.Schwinger, J. Math. Phys. 2, 407 (1961}.

"The equivalence of the sites prevents our theory from being
directly relevant to impurity conduction (reference 9},where the
carriers are con6ned to randomly arranged impurity sites.

where y and Q are phenomenological constants repre-
senting thermally activated and tunneling processes.
The temperature dependence of these contants is such
that

y&Q for T& T„
y& Q for T& T„

(1.2)

where T, is a certain critical temperature. It follows
from (1.1) that P approaches its equilibrium value, -'„by
damped oscillations. If y& Q, i.e., if T& T„the exponen-
tial term predominates over the oscillatory one, so that
the particle moves primarily by thermally activated
jumps. In this case qp may be interpreted as a jump
frequency. On the other hand, if T&T„ the oscillatory
motion predominates, so that the particle moves
primarily by tunneling.

In Sec. IV we use the fluctuation-dissipation theorem
to obtain the frequency-dependent dielectric constant
of the same two-site model, which may be considered to
be an idealized representation of a carrier trapped at a
color center. These properties are found to be very
simple, and to correspond to those of certain classical
systems which, in the absence of any applied field,
approach thermal equilibrium via damped oscillations.
Thus, in the notation of Eqs. (1.1) and (1.2), the model
behaves as a Debye dielectric of T&T„ i.e., if the
particle moves primarily by the jump mechanism. On
the other hand, if T&T„ the system absorbs energy
very strongly from fields of frequency close to the
tunneling frequency Q.

In Sec. V, we derive the frequency-dependent elec-
trical properties for an assembly of particles in a periodic
lattice, again using the fIuctuation-dissipation theorem.
We confine our calculations to cases where the carriers
move primarily by thermally activated processes so
that tunneling may be ignored. It is shown by a wave-
mechanical treatment that, to a very good approxima-
tion, the relation between the static conductivity and
the jump frequencies, ~y, is the same as that for an
assembly of particles which hop from site to site in a

Our procedure in deriving the theory is as follows: In
Sec. II, we define the formalism for the model B.In the
subsequent sections, we investigate its properties by
means of a quantum-theoretical treatment which is free
from the ad hoc assumption, made in previous theories,
that the particle moves from site to site in a Markhovian
manner. Accordingly, in Sec. III, we investigate the
problem of how the agencies of tunneling and thermal
activation combine to transfer the particle from site to
site. Ke treat this problem on the basis of a two-site
model whose properties may be solved exactly. The
basic question concerned with this problem is: What is
the probability, P(t), that a particle, known to be
initially at one site, is to be found at the other site at
time t? It is shown that I' may be expressed in the form

P(t) = -', (1—e &' cos01),
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Markhovian manner. This Markhovian property of the
jumps was assumed ad hoc in previous theories. ' 5 We
also show that the frequency dependence of the ac con-
ductivity is negligible unless the period of the applied
field is comparable with a certain parameter r that
corresponds to a jump transit time. In relating the gross
properties of the model to those of model A, we 6nd
that 7- is of the order of magnitude of some mean period
of the lattice vibrations in a solid. Consequently, we see
that the electrica1. conductivity is not significantly de-
pendent on frequency ~ unless co is very large, i.e., com-
parable with the phonon frequencies in a solid.

In Sec. VI, we derive the thermoelectric power and
thermal conductivity for the model of Sec. V. The
calculations of these coefficients are greatly simpli6ed
by the circumstance that the carriers may be treated as
monoenergetic, to a high degree of approximation, since
the interactions leading to level broadening are very
weak. Because of this, the ratio of the heat current Q to
the electric current J is a constant, independent of the
driving forces. Thus, it is a simple matter to relate the
thermoelectric properties of the model to this constant
ratio, as may be seen by considering the Peltier eftect.
It may also be seen that, in the monoenergetic approxi-
mation, the thermal conductivity of the model is zero,
since the particles cannot transport heat without carry-
ing an electric current, i.e., because Q=O when J=O.

In the concluding section we provide arguments that
the main results of our theory should be applicable to
small polarons in real solids.

In the Appendix, we reformulate the previous
theories' "(model A) in terms of observables of the
polarons rather than the electrons.

II. THE MODEL B

As explained in Sec. I, we de6ne the model 8 as one
that consists of a single particle, which is con6ned to a
set of equivalent localized states, and which moves as a
result of two interactions. The first interaction Hi is
static and leads to tunneling. The second interaction
H2 couples the particle to a therma1. reservoir F and
leads to jumps. Thus, the Hamiltonian for the model is

H= Hp+Hi+H2+H p, (2.1)

where Hp is the basic Hamiltonian for the particle,
whose eigenstates are localized ones, p, centered at
sites A with position vectors a; and Hp is the Hamil-
tonian for the reservoir. This reservoir need not be con-
sidered to be formed by phonons in the case of the
idealized model 8—as was pointed out in Sec. I. The
form of H is chosen so as to possess certain gross features
of the model A, given by L(A8)—(A15)j in the Appendix.
Thus, the particle of model 8 corresponds to a polaron,
not an electron.

We stipulate that the thermal conditions are ar.pro-
priate for a classical treatment of F. Further, we neglect
the influence of the weak interaction H2 on the prop-

erties of I'. (Actually, it is argued in the concluding
section that the form of our resultant transport theory
does not depend on these simplifications. ) Thus, we
treat F as the source of a classical Quctuating field, C,
that acts on the particle. The statistical properties of C

then depend on F. However, as we are concerned with
the dynamical properties of the particle, not F as such,
we define our model in terms of postulated statistical
properties of C rather than F. This enables us to elimi-
nate the F variables from our theory, since the relevant
properties of the reservoir are buried in those of C. Our
definitions of the properties of C are based partly on
specific properties of model A, partly on general prop-
erties of thermally generated fields.

The interaction between particle and C may now be
represented by a given time-dependent contribution,
H2', to the Hamiltonian for the particle. The form of
H2' may easily be obtained from H2 and Hi, using the
methods adopted in the Appendix for the classical
treatment of the reservoir in model A Lsee derivation
of (A23)]. Thus, the properties of the particle may be
obtained from the Hamiltonian

H'=H, +H,+H, ', (2 2)

which involves the particle coordinates and time only.
Since, in our model, the particle is confined to the

localized states p, discussed above, it follows that the
Hamiltonian H' may be completely speci6ed in terms of
matrix elements between those states. Now the part
Hp has been defined to be diagonal with respect to the
p 's. Also the eigenvalues of Hp must all be equal, since
the sites A are mutually equivalent. These eigenvalues
may therefore be arranged to be zero, simply by meas-
uring energies from a suitable standard value. In this
case the diagonal, as well as oG-diagonal, matrix ele-
ments of Hp will be zero, so that

Hp ——0. (2.3)

We define the matrix elements of Hj, H2', as having
the same general form as the corresponding ones for
model A, given by (A23c, d). Thus, we define

and

(4.*lHg l4 p) =-,'fin. s, cxwP,

0)

(2.4a)

(2.4b)

(2.5a)

(2.5b)

where the 0's are constants and the F's are fluctuating
functions of the time t. We assign the same value to 0
in (2.4) as that obtained for model A in earlier theories
(i.e., -', hQ is the quantity denoted by W, calculated in
reference 2). The functions F(t) are defined to be real
fluctuating functions of time, whose statistical prop-
erties are de6ned below. The functions F will rot be
equated to the corresponding ones, 5, of model A. It
may, in fact, be seen from Eqs. (A11), (A12), (A15),
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(F p(t))r=0. (2.6a)

Also, we define the autocorrelation function, governing
the statistical properties of Ii p, by the equations

(A18), and (A21) that F is not real T.he main thing,
however, is that the parameters characterizing the phe-
nomenological properties of II2 are defined so as to
equal the corresponding ones for 3C~. This suKces to
ensure that the gross properties of the dissipative forces
are the same for the models A and B.

Since the statistical properties of the I's depend
ultimately on I", we denote the mean value of any
quantity G, formed from the F's, by (G)r. Thus, corre-

sponding to the fact the mean value of F for model A is
zero [Eq. (A22)] we postulate that

The parameter y p is a very significant one which
will be shown in Sec. III to correspond to twice the
transition rate for jumps from A to Ap. Therefore, in
relating the model to previous theories, we simply
equate p to twice the polaron jump frequency, as calcu-
lated in those theories on the basis of model A.

Thus, we see that the properties of the model are
defined in terms of parameters y, 0, r, to which we
assign values that equal the corresponding quantities for
model A, and which have been calculated in the earlier
theories. ' ' This enables us to specify the properties of
these parameters. First we note that, in model A, y and
0 are much less than either the phonon frequencies of
kT/k, where k is the Boltzmann constant. Thus, the
parameters of the model 8 satisfy the inequalities

(F-p(t~)F-p(t2))r=f-p(t~ —t~)=f«p(t2 —ti) (26b) y,Q«r ',kT/k. (2.9)

g p(t)= f p(t')dt' (2.7a)

t t

h.,(t) = g.,(t')dt'=- f.p(t' t")Ct'Ch". —(2.7b)
0 2 0 0

The equivalence of the two forms for k, given in the
last equation, follows from the fact that

f(t —t )=f(t —t').

Vi'e define f p so that it represents general gross fea-
tures of the statistical properties of a fluctuating field
due to any thermal source. Thus, we postulate that
f p(t) is a decreasing function of

~

t ~, which contains a
temporal parameter v p. This parameter represents a
decay time for f p, i.e., a "memory time" for the
fluctuating quantity F p(t). Hence,

It may be seen that f must depend on t& and t2 only
through their difI'erence simply because the thermal
conditions for I' are stationary in the situations under
consideration. It is convenient to introduce two time
integrals of f, namely,

Further, in model A, y and 0 are temperature depend-
ent, possessing positive and negative temperature co-
efhcients, respectively. It has been shown' that, for A,
y& or &0 according to whether T& or &T„a certain
critical temperature, and that the range where y/11=1
is very small. Thus

for T& T„
y«Q for T& T„

(2.10a)

(2.10b)

(2.11a)

except in a very narrow transition region around T,.
%e likewise incorporate these relations into our defini-
tion of model 8.

In order to specify completely the statistical prop-
erties of F p, we require the average values of products
F p(tq) F p(t„) for all n We ch. oose our definitions so
that they represent general phenomenological properties
of fluctuating fields due to thermal sources. Thus, we
define the statistical properties of Ii p to be equivalent
to those commonly ascribed" to the thermally generated
fluctuating field acting on a Brownian particle; i.e., we
postulate the relations'4

f.p (t) and f.p(t')dt' 0 for t»r.p. (F-p(ti)" F-p(t2-)).

It follows from (2.7) that we may write, for t))r p,

g p(t)=g p(~)=y p (2.8a)

k-p(t) =v-pt. (2.8b)

In order to relate the model to previous theories, we
define v as some mean period of a lattice vibration, since
that would be the "memory time" for a fluctuating field
generated by lattice vibrations. [This may easily be
verified for model A on deriving the statistical properties
of 5 p(t) from Eqs. (A10), (A15), (A18), and (A21)].
More precise specification of v beyond its order of
magnitude is not necessary for the purposes of the
present theory.

pairs

An important quantity, whose value we subsequently

"M. C. Wang and C. E. Uhlenbeck, Rev. Mod. Phys. 17, 323
(1945).

'4 It should be noted that the relations (2.11) would not be
applicable to any reservoir, for all times tI, ~, t . However,
they would be valid for any reservoir whenever no three of these
lie within an interval of the order of the "memory time" ~, since
then one could neglect triple-time correlations. This restricted
validity of (2.11) would suKce for our purposes, since we shall
be concerned only with time intervals&)r, so that triple-time
correlations would be unimportant, whatever the reservoir. It
may, in fact, be con6rmed that this restricted validity of (2.11)
would yield our Kq. {2.12). This can be demonstrated by means
of methods employed in notes at the end of the paper by G. E,
Uhlenbeck and L. S. Ornstein, Phys. Rev. 36, 823 (193Q),
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require, is

xxp x p,x(t)Ct' ) .~

~

0 r

exp i px(f)Ch' ) =e "«'&~

~

0 r
(2.12)

This completes our formulation of the model in the
absence of any applied Geld. The application of an
electric field, E(t), leads to an extra term

On expanding the exponential in an ininite series,
averaging the resultant terms according to (2.6) and
(2.11), and using (2.7b), we obtain the equation

H'=-', LQ+F(t))~g, (3 4)

where the sufBxes on 0 and F have been dropped. The
dynamical properties of the model may be expressed in
terms of the evolution operator, U(t), which satis6es
the Schrodinger equation

ih/dU(t)/dt)=H'U(t), (3.5a)

U= 1 at t=0. (3.5b)

since any 2 by 2 matrix may be expressed as a linear
combination of the above matrices.

It may easily be seen from Eqs. (2.2)—(2.5) that, in
the above representation, the Hamiltonian for the sys-
tem is given by

H.pp
———m E(t) (2 13) It follows from Eqs. (3.4) and (3.5) that

U(t) =expg~i8o ~)= 1 cos(8/2)+io ~ sin(8/2), (3.6a)

8=Qt+ F(t')dt' (3.6b)

%e now treat the problem of the transfer of the
14) particle from site to site. Given that the particle is

initially in the state &I, its wave function at time t is

&4-' Iml A) = —«a.8.e.

in the Hamiltonian, where 1 is the dipole moment due
to the particle. For an elementary point particle, 1 is

wherethe product of electric charge and position vector. In the
case of the present model, we de6ne m so that it corre-
sponds to the value for a polaron, given by model A

LEq. (A24)). Thus

III. THE BASIC PROCESS

%e now investigate how the agencies of tunneling and
thermally activated processes combine to transfer the
particle from site to site. For this purpose, we derive the
properties of the model, formulated in the previous
section, for the case when there are only two sites A I and
A~. Defining the corresponding localized states gi and
p2 as in Sec. II, we see that the basic problem to be
solved is: What is the probability, P(t), that a particle,
known to be in the state p& at t=0, is to be found in
the state $2 at time t?

It is convenient to describe the two-site model in
terms of a matrix representation. Thus, we represent
the state vectors f by

4 (t)=U(t)~

Hence, by (3.1), (3.3), and (3.6a)

Q&(t) = @~ cos(8/2)++2 sin(8/2).

The probability that the particle is to be found in the
state py at time t is, therefore,

P(t) = (sin28/2) r.

Consequently, by (3.6b),

1 C

P(t)=—Re 1 exp i—Qf+ F(t')dt'
2 0 r

and
and, therefore, by (2.12)

3.1
P(t) =-,'L1 —e—"&'& cosQ). (3.7)

and the observabies $ by 2 by 2 matrices

(3.2)

This equation enables us to analyze the roles played by
thermal activation and tunneling, since the exponential
and cosine terms are due, respectively, to the former
and latter processes. First we note that, by (2.7)—(2.9),
unless t))r,

It is useful to introduce the Pauli matrices and the
unit matrix and

h(t) &yt((1.

Consequently, it follows from (3.7) that P differs
(3 3) significantly from zero only for times t&)r. For such

times it follows from (2.9) and (3.7) that

0 —1 0 P(t) = 2'L1 —er' cosset) for t&)r, (3.8)
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so that P(t) approaches its equilibrium value -', by
damped oscillations.

This result may be explained very simply. For the
static interaction H~ alone, in the absence of H2, would

lead to a splitting of the levels of the two-site model.

The energy levels of the model would differ by hQ, so

that the motion of the system would correspond to
oscillations of frequency Q. The "switching-on" of the
interaction H2 between particle and reservoir mould

then lead to dissipative processes which damp out the
oscillations. The significance of the term k(t), rather
than yt, in the exponential term in (3.7) when t& r, is

that the interactions governing the dissipative processes
have a duration = v, and that consequently the proc-
esses are not Markhovian" until a time & 7 has

elapsed.
Let us now analyze the formulas (3.7), (3.8) further.

It follows immediately from (3.8) that the thermally
activated processes predominate over tunneling in

transfering the particle from site to site if y&&Q, i.e., by
(2.10), if T) T,. In this case the formula (3.8) may be
written

By Eq. (2.13) the application of the held E(t) along
Ox leads to an extra term

H.„= ttt—E(t), (4.1)

in the Hamiltonian, m being the dipole operator. Since
the coordinates of A~, A~ are ~—,'a, it follows from

(2.14) and (3.3) that, in the representation of Sec. III,
m= —Ce003. (4.2)

The mean dipole strength at time t, due to the applica-
tion of the field, may be written

K (t—t') E(t') dt',

is given by

where

E(t) =E(co)ec"'

m(t) =K(co)E(co)ec '

(4 4)

(4.5)

where the response function E is determined by the
dynamical properties of the model. Thus, the mean
dipole moment induced by a simply periodic field

which is formally identical with that for a classical

particle confined to a pair of potential wells that are
separated by a barrier. "

It is of interest to interpret the significance of the
parameters v and y with regard to the jump mechanism.

For this purpose we note that, in cases mhere tunneling

may be neglected (0 —+ 0), Eq. (3.7) reduces to

It follows from this equation and (2.7b) that, if p (t)
(et= 1, 2) denotes the probability that the particle is in

the state p at time t, i.e., if

then
P,(t),P,(t) =1-P(t),P(t),

dP2/dt = dPi/dt = —-', g(t—)(Pg(t) —Pi(t) j.
This signifies that 2g(t) may be regarded as the transi-
tion rate at which the particle is transferred from site to
site. Now, by (2.7a) and (2.8a), g(t) increases from zero
at t =0 to a steady value +~y in time t = r. Consequently,
we may regard r as the jump transit time and ~~y as the
steady-jump transition frequency attained after time v.

'~ Cf. I.. Van Hove, Physica 23, 441 (1957); and R. Zwanzig,
Phys. Rev. 124, 983 (1961), for general treatments of non-
Markhovian effects in irreversible processes.

IV. DIELECTRIC PROPERTIES

In this section, we derive the dielectric properties of
the two-site model. For this purpose, we obtain the
response of the model to classical applied electric field,

E(t), directed from A~ to Ai. We take this line to be the
x axis, with 0 as the midpoint of A2A I. Thus, the x co-
ordinates of A~ and A2 are a and —a, respectively,
where 2a is the distance between the sites.

K(c0) = K(t)e ~'dt (4.6)

Hence, by (4.7)

K(t) = —(1/2kT)(d/dt)(Trg. (tN(t), m)+j)r. (4.8)

"R.Kubo, J. Phys. Soc. Japan, 12, 570 (1957). Actually, the
exact form of the response of' a quantum-mechanical system is
not, in general, given by the above equation (4.7). Instead, the
right-hand side, C(t), say, of (4.7) is generally replaced byJ'„"C(t')x(t —t')Ct', where x(t) = (4rrttT/A) log coth(vrkT~t~/tt).
However, if the conditions are such that kT/A is much greater
than any other frequency concerned, then we may replace g(t)
by B(t). These conditions are certainly fulfilled in the present
case. For, since F and the applied field may be treated classically
for the given model, kT/A must be much greater than either or

or the natural frequencies of F (e.g., v '}. In addition, it is
much greater than y, 0, by (2.9}.

The function K(t) may be related to the spontaneous
thermal fluctuations of the dipole moment by means
of the Auctuation-dissipation theorem. Thus"

(4.7)

where m(t) is the Heisenberg operator corresponding to
m, { ) + denotes anticommutator, and ( ),„denotes
equilibrium thermal average for the closed system com-
prising particle and I', in the absence of any applied
field. The Hamiltonian H for this closed system is given
by (2.1). Since the weak interactions Hi and H2 lead
to particle level broadenings hO, hy which are much
less than kT (by (2.9)j, it follows from (2.1) that we

may replace the averaging operation ( ),„by the
product of averages over the particle system Ho and
the reservoir F. Thus, if po is the equilibrium density
matrix for Ho, then
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In order to evaluate E(t), it remains for us to derive
the properties of pp and m(t). The particle density matrix

pp is simply equal to Z exp( —Hp/kT), where Z is a
normalization constant. Therefore, by (2.3), (3.3)

Pp= ~i. (4.9)

The Heisenberg operator m(t) may be expressed, in a,

usual way, in terms of the Schrodinger operator m and
the evolution operator U(t), defined by (3.5). Thus,

m(t) = f'(t)mL'(t),

which reduces, by (3.3), (3.6a), and (4.2), to

m(t) = —aep(o. p cos8 —a.
p sing).

Therefore, by (3.3), (4.2), and (4.9)

pp(m(t), m)+ ——epPa' cos&9.1.

On substituting this formula into (4.8), we obtain

K(t) = —(e 'a'/kT)(d/dt) Re(e")r

Hence, by (3.6b) and (2.12),

ent dielectric properties of the model from (4.6) and
(4.12).

V. CONDUCTION IN PERIODIC LATTICE

In this section we obtain the response of the particle
to an external field when it moves through a periodic
lattice. This enables us to derive the electrical properties
of an assembly of n such carriers in the lattice, provided
that m«S. For in this case, the particles may be treated
as moving independently of one another. Thus, the
current density J, due to the applied fields, is related
to the mean drift current j of a single particle by the
equation

J=epj,

where np is the number density of particles. We may
relate j, and thence J, to the applied field by means of
the Quctuation-dissipation theorem. Thus, denoting
rectangular coordinate components, by p, , v, and pro-
ceeding as in Sec. IV, we see that the response of the
system to an applied field

K(t) = —(e 'a'/kT)(d/dt)[e ""rosnt]. (4.10)

%e shall, henceforth, restrict the theory to cases where
the frequency of the applied field is much less than

is given by

where

E(t) —F (p&)i~&

J„(t)= o „„(p&)E„(p&)e'"'

(5.1)

(5.2)

~«r '. (4.11)
o„„(p&)= o„„(t)e ' 'dt, . (5.3)

This signifies that we are concerned only with ap-
plied fields whose frequencies are much less than
typical phonon frequencies in solids. It may be seen
from (2.9) that the condition (4.11) does not prevent p&

from exceeding the frequencies, y, Q. Now, by (2.8b),
(4.6), and (4.11),we may replace h(t) by yt in (4.11), i.e. ,

f&. (t) = —(ep'a'/kT)(d/dt), [e &' cosQtj. (4.12)

This result is formally identical with that obtained by
Frohlich" for the dielectric properties of certain classical

systems which approached equilibrium, in the absence
of an applied field, by damped oscillations. Therefore, in
interpreting our formula for E(t), we may make direct
use of Frohlich's analysis of the properties of dielectrics
with response functions of the above form.

Thus, if p»Q, i.e. , if thermally activated processes
predominate over tunneling, the system behaves as a
Debye dielectric and leads to appreciable dielectric
losses whenever the frequency of the applied field be-
comes comparable with the jump frequency p. On the
other hand, if Q»y, i.e., if tunneling processes pre-
dominate, then the system absorbs energy very strongly
from fields whose frequencies are close to the tunneling
frequency 0 (resonance absorption!). Thus, it follows
from (2.10) that one obtains Debye losses or resonance
absorption according to whether T& or &T,.

It is a trivial matter to obtain the frequency-depend-

"H. Frohlich, Theory of Lhelectrics (Oxford University Press,
New York, l949), p. 98.

p

and
o„,(t) = (np/2kT)(Tr[pp(6, „(t),m„(0))~]&r. (5.4)

The equilibrium density matrix for H p is easily seen to
be given by [c.f., (4.9)j

(0-'I pp I
A&= (1/&)&-e

Hence, by (5.4),

op. (t) =(npliVkT) Re+ ((&t *Im„(t)m„(0) Ip ))r.
Since all sites are equivalent, the terms in the above
contribute equally to 0-

~ Therefore, we may write

o„„(t)= (n,/kT) Re((&t p~ Im„(t)m„(0)
I &t„&)r,

where @p is the state centered at Ap, say, which is
chosen to be the origin of' spatial coordinates. This
formula may be conveniently expanded in the form

o„„(t)= (n,/kT) Re P.((@p*!m„(t)
I @.&

x (@.*Im,(0)
I y,»r. (s.s)

Equations (5.3) and (5.5) express the frequency-depend-
ent conductivity o„,(p&) in terms of the "natural"
motion of the system in the absence of the applied field.

We now determine the electrical properties for cases
where the thermally activated processes predominate
over tunneling, i.e., where T& T,. Thus, in deriving the
dynamical properties of the system we ignore HI, i.e.,
by (2.2) and (2.3) we put H' equal to Hp'. The evolution
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operator U is then given by

ift(d/dt) U(t) =H p'U(t), (5.6a}

inequality (4.11) is satisfied. In such cases we may put.

with f.,(h)e -~dh= f.p(t)«= v.p,

U(t) =1 at t=0. (5.6b)

Now we may express the Heisenberg operator dm(t)/Ch
in terms of U(h) and the Schrodinger operator m by
the equation

m(t) = U*(t)mU(t).

Hence, by (5.6a),

where
o„,(cu) = (npep'/htT)D„„,

n
Dyv 4 ~a Pao~ay&at ~

(5.11a)

(5.11b)

by Eqs. (2.7a) and (2.8a). Consequently, Eq. (5.10)
reduces to

It is seen from these equations that the dependence of
0- on co is negligible for frequencies &&r '. The significance
of this may be seen from the fact that, as shown in
Sec. III, v is a jump transit time. Consequently,
Eqs. (5.11) imply that o is negligibly dependent on cv

whenever the period of the applied field is much greater
than the jump transit times —an obvious result, since,
under these circumstances the particle responds to the
external field as though the latter were static.

It is of interest to analyze why the onset of frequency
dependence of electrical properties occurs at ~=y for
the two-site model and at cv = 7. ' for the periodic lattice.
In the former case, the application of the electric field
leads to oscillations in the occupation probabilities for
the two sites—this is how the polarization is generated.
Therefore, the electrical properties become appreciably
frequency dependent whenever ~ becomes comparable
with the natural frequency with which the site occupa-
tion probabilities become equalized, i.e., when co=p. On
the other hand, in the case of a periodic lattice, the
application of an electric field to an equilibrium dis-
tribution of carriers leads to an electric current but not
to a density gradient. Thus, it does not lead to oscilla-
tions in the site occupation probabilities; and, therefore,
the natural rate at which these probabilities become
equalized is not relevant to the onset of frequency
dependence. Consequently, the electrical properties
become appreciably dependent on frequency only when
the period of the applied field becomes comparable with
the jump transit time, i.e., when co=v '.

The properties of o, given by (5.11), may be inter-
preted very simply. For, as shown in the discussion at
the end of Sec. III, ~p 0 is the jump frequency for
transitions from Ao to A when there are no other sites
present. Thus, in the case of the many-site model, 2+ p ls
the value of that frequency given by the approximation
where processes involving intermediate states on other
sites are neglected. Thus, it follows from (5.11b) that,
in this approximation, D» is the diffusion tensor for a
particle performing a random walk through the lattice.
Equation (5.11a) is then simply the Einstein formula
that relates conductivity to diffusion.

Summing up, the approximations we have used in
order to calculate o lead to the result that would be
obtained from a treatment where it is assumed ad hoc
that (1) the particle jumps from site to site in a Mark-
hovian manner, and (2) the jump transition rate be-

t hdm(t)/dt = U*(t)Lm Hp'] f (h), (5 7)

where L ] denotes a commutator. The operator U
may be expressed as a power series in H. ', i.e., by
Eqs. (2.5) a,nd (5.6)

1
&~-*I U(h) I4e) =&-e- F-e(h')«'

0

+higher order terms. (5.8)

In the calculations that follow, we include only the low-
est order contributions to r. This approximation, which
is discussed further at the end of this section, is justified
in view of the weakness of the interaction H2'. Thus,
we calculate U and nt(t) to zero and first order, respec-
tively, in Hp', i.e. , we shall approximate (5.8), (5.7) by

U(t) =1,

ihtdm(t)/dt =[ Hm,.'] .
Hence

»&e.~ lcm(h)/«, e.}
Ze L(C-*Iml~e}&~e* H ' ~.}

-(~.*,H '
~e)&~e'iml~. )]

It follows from this equation, (2.5), (2.11), and the
definition of Ao as origin of spatial coordinates that

&d.*ldm(h)/dh l thp) = ——,'fe tt.Fp. (t).p(5.9a)

Hence, also

&pp ldm(t)/Chip }= ,'iepa F p(t), —(—5.9b)

since Ii is dedned to be real. On substituting appropriate
components of (5.9a, b) into (5.5), we obtain the
equation

o (h) = (npep /4kT)g tt „o „(F p(t)F p(t))

This formula may be greatly simplified for all cases
where the period of the applied field is much greater
than the decay time r of the function f, i.e., where the

where u „, c „are p, v components of a . Hence, by
(2.6b) and (5.3), the frequency-dependent conductivity
is given by

thpgp
00

o„„(co)= P a.„a.. f p(t)e 'dt (5.10)-'.
4kT
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tween any pair of sites is unaltered by processes in-

volving other sites. These assumptions were made in

the previous treatments. ~' It is clear that, in higher

orders, there would be corrections to our results due to
indirect processes in which a particle moves from site
to site via an intermediate state on a third site. Such
processes have already been taken into account by
Friedman" using a model of the type treated in the
earlier theories, in order to investigate the Hall eBect
for thermally activated polarons.

in an approximation where H~, H2 are ignored. When
these interactions are taken into account, they lead to
contributions A~, A2 to the particle level width. Thus

Ag=hQ,

62=by,

(6.2a)

(6.2b)

since 0, p are tunneling and jump frequencies. It is
important for our purposes to compare the order of
magnitude of e with those of hJ, h2. First, we note that
the requirement, stated in Sec.V, that the mean number
of particles per site «1, signi6es that

exp( —e/k T)«1,
and therefore e)kT. Consequently, by (2.9), e))hQ
and hy, and hence, by (6.2),

(6.3)

These inequalities signify that the particles may be
treated as monoenergetic, to a high degree of approxi-
mation. Thus, we treat the particles as each having
energy e relative to the chemical potential. This means
that, if Q and J denote the thermal and electrical current
densities of the particles due to the application of an
electric 6eld K and a temperature gradient V'T, then

Q = —(e/eo) J. (6.4)

This equation enables us to evaluate the thermoelectric
power 0. and the thermal conductivity E for the
assembly of particles. For these coef6cients are dehned"

' L. Friedman, thesis, University of Pittsburgh, 1961
(unpublished).

'9 S. de Groot, Thermodynamics of Irreversible Processes (Inter-
science Publishers, Inc. , Neer York, 1951) p. 144. It should be
noted that the above deGnition for a is valid only on condition

VI. THERMOELECTRIC POWER AND
THERMAL CONDUCTIVITY

In the present section, we evaluate the thermoelectric
power and thermal conductivity for the model treated
in Sec. V. Our derivation does not depend on whether
the particles move primarily by tunneling or jumping.

We denote the chemical potential for the particles,
in interaction with I', by f'. Thus, it follows from (2.1)
and (2.3) that the energy of a particle, as measured
from this potential, is given by

(6.1)

a= e/Tep,

E=O.

(6.5a)

(6.5b)

The lack of thermal conductivity, in the monoenergetic
approximation, follows from the relation (6.4) where

Q is a constant multiple of J.This means that the parti-
cles can transport heat by convection only.

CONCLUSION

We have constructed a simple model (8) of thermally
activated hopping motion, and have derived a formal
theory of transport properties of the model. This formal
theory expresses the various transport coefBcients in
terms of phenomenological constants p, 0, r [Eqs. (3.7),
(3.8), (4.12), (5.11), (6.5)].

The model is formulated so as to represent the es-
sential properties of small polarons, as obtained from
earlier microscopic theories. ' ' (model A). Criteria for
the applicability of those previous theories to carriers
in real solids were given in the papers concerned. We
now argue that the formal theory, derived in the pres-
ent paper, should apply to the same systems as the
earlier theories, despite the fact that the microscopic
properties of model 8 differ from those of A. It may be
seen from Sec. II that the di6'erences are comprised by
the classical treatment of I", the reality of F p and the
postulated relations (2.11). These latter relations were
justihed in footnote 14.

It suSces to base our argument on the analysis of
Eqs. (3.7) and (3.8), which describe the principal dy-
namical properties of the carrier for model B.Our main
point is that the validity of those equations is inde-
pendent of the detailed microscopic properties of the
interaction B2 between particle and reservoir; and that
the equations would, therefore, apply also to model A.

First we note that, as explained in the discussion
following (3.8), the properties of the two-site model
depend on the fact that, in the absence of the interaction
H2 the motion of the system (Ho+H, ) is oscillatory;
and that the "switching-on" of the interaction between
particle and reservoir leads to damping of the oscilla-
tions. Now this damping eBect is a general phenomenon
that occurs whenever a mechanical system is subjected
to dissipative forces, due to interaction with a thermal
reservoir. In particular, the natural motion of a
harmonic oscillator becomes exponentially damped
when brought into interaction with a reservoir —as has

that the Bow of carriers, due to the applied Geld, does not lead
to a heat current in F (by a "phonon-drag" type of eGect). This
condition is satisGed, to a very good approximation, in the present
model, because of the &weakness in the coupling between carriers
and P.

by the relations

Q= n—TJ when VT=O.

Q= EV—T when J=0.

It follows immediately from these relations and (6.4)
that
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been shown by quantum-theoretical treatments. ' "
Consequently, since our two-site model (Hp+Hi) simu-
lates an oscillator, it is to be expected that its motion
will be similarly damped' when brought into interaction
with a reservoir —irrespective of the microscopic prop-
erties of that interaction and irrespective of whether the
thermal conditions are appropriate for a classical treat-
ment of the reservoir. " Thus, we consider that Eqs.
(3.7) and (3.8) should apply to model A, as well as to 8,
since the former model also contains interactions 3C~, 3C2,

which similarly lead to oscillation and dissipation. One
may similarly argue that our other results for the trans-
port properties of the model depend only on certain
gross properties, and would thus be valid for 3 as
well as B.

Finally, we observe that the present theory, like the
previous ones, takes no account of excited states of the
carrier. We now argue this is not a significant omission.

Firstly, we note that, in a real solid, the frequencies co,

corresponding to transitions of a carrier into excited
states (interband transitions) are normally much greater
than the phonon frequencies cu,h. Further, the fre-
quencies co of the applied fields considered in the present
theory are all much less than cv,s fc.f., Kq. (4.11)j; and,
therefore, co))co. Consequently, neither the phonons nor
the external field can induce real transitions into excited
states.

On the other hand, virtual transitions cannot be
ruled out. However, since H&' is essentially a phe-
nomenological interaction, we could easily consider it as
already containing contributions due to virtual transi-
tions into excited states. For we may regard H2' as an
eRective interaction governing all transitions between
localized p states, including those transitions that
proceed via an intermediate excited state.

With regard to virtual transitions due to the applied
field, it may easily be shown that, since co))~, such
processes merely lead to an additional frequency-inde-
pendent contribution to the real part of the dielectric
constant. This would not lead to any significant changes
in our main results.

We therefore, conclude that the omission of excited
states is justifiable for the purposes of the present
theory.
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~ It is possible that, for certain interactions, the motion would
become "overdamped" for T&T., i.e., y&&Q, so that the cosine
term on the right-hand side of (3.8) would be eliminated. How-
ever, it may easily seem that this is of no consequence to our
main conclusions, since the replacement of cosQ$ by unity in (3.8)
would not substantially affect the properties of I'(t) when y&~.

"Of course, the values of y, 0, and r will depend ultimately on
the microscopic properties of the reservoir. This does not aR'ect
the above argument, however, since we are concerned only with
the relationships between the transport coeScients and the
phenomenological constants y, 0, and v.

APPENDIX

We re-express the contents of previous polaron
theories' "(model A) in terms of observables of the
"dressed" particle, i.e., the polaron, rather than the
electron. It may easily be verified that the theory in
this Appendix is exactly equivalent to the previous
theories.

The Hamiltonian is given by

H= H, i+Hps+H;„„ (A1)

the three parts referring to the electron in a static
potential due to the lattice structure, the phonons, and
the electron-phonon interaction. As in the earlier
theories, we consider only states which are based on a
set of mutually orthogonal localized electronic states,
f (x), centered at the site A, where x is the electronic
position vector. Thus, the electronic system may be
described in terms of creation and annihilation operators
c„*,c for those states. The quantized wave operator
representing the destruction of an electron at x is then

W(x)=Z p 4' (x).

In this notation, the Hamiltonian H, l may be written

H.i=Hi +H.i', (A3a)

alld
Hloa= Pa eaca ca~

Hei Qagp +apse cp.

(A3b)

(A3c)

the fd~'s being constant frequencies.
The interaction H; & is assumed to be linear in the

Q's and may be written

where
H;„,=H;„,'+ H, „,",

H i'=g. , i, &.i,c.*c.Q, ,

(A5a)

If
Hint z awp, x lap', c~*cpQi„ (A5c)

where the E's and J-'s are constants. It is easily seen
that H;„&"governs only processes involving the transfer
of the electron from one site to another. On the other
hand, H; &' governs the properties of the electron while
it remains on a site. It is this latter interaction which
leads to the formation of localized polaron states.

Hence, e and J p are constants. Hl thus represents the
part of H, l that is diagonal with respect to the localized
electronic states, and H, l' is the static interaction
governing the transfer of the electron from site to site
by tunnel eRect. In cases where the sites are equivalent

) 7

the e s are all equal. However, there is no need to make
this restriction for the purposes of this Appendix.

The lattice vibrations are described in terms of
normal coordinates and momenta Qq, I'q. Thus

Hps= 2 QxP'i, '+~i, '-Q~'),
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We shall introduce a contact transformation

3C=S*HS, (A6)

where
k p'(P, Q) = k p(P, Q) Q—p. (A15)

where

S=expL —(i/h)g, c 'c M.(P)], (A7a)

M.(P) =Qg(E.),/cog')Pg. (A7b)

It follows from (A1)—(A7) that the transformed Hamil-
tonian may be written

X=Xp+3Cph+3Cy+Xg) (AS)

where 3CO is the Hamiltonian for the "dressed" particle,
i.e., the polaron, whose eigenstates are all localized ones;
3Cpp is the renormalized phonon Hamiltonian; X~ is the
static interaction governing the tunneling motion of the
carrier, and 3C2 is the residual polaron-phonon inter-
action. Before writing down the expressions for these
terms, we point out that we are concerned only with
cases where there is just one carrier. Consequently,
we ignore all contributions to X, due to terms of the
form f(P,Q)c *cp*c,cq, since the last two c's would
yield a zero when operating on any single-carrier state.
Thus, we obtain

where
3CO ~a &a ~a 4a)

e '=e —
2 E~(& x'/~~)

(A9)

is the renormalized energy for the localized polaron
state centered at A, and c *, c are now creation and
annihilation operators for the polaron, not the electron.
The phonon Hamiltonian is unchanged by the trans-
formation so that

Xg,= -', Px(P), '+~), 'Q), '). (A10)

The interactions 3C&, 3C2 may be expressed in terms of
the operators

,'hk p(P, Q)-=exp[iM (P)/h](J p+gg L pgQ), )
XexpL —iMp(P)/hj, (A11)

and their thermal averages with respect to Xph

which removes the interaction H;„&', and thus takes
account of the formation of the localized polaron. The
operator 5 is given by

It is important to note that, as shown in the earlier
theories, the residual interactions X~ and 3C2 are both
very weak in the cases of interest, i.e., where the original
electron-phonon interaction is strong.

Equations (AS)—(A15) constitute our formulation of
model A in terms of the observables for the polaron
(rather than electron) and phonons. We shall now
express the electron dipole operator I=—eox in terms
of these operators. First, we note that, by (A2), the
operator m is given in the original untransformed
representation by

m= —eg P*(x)xg(x)d'x

= —eo P. p c *cp P.'(x)xPp(x)d'x.

In the transformed representation this becomes

m= —eo P.p S*c.*cpS lt *(x)xPp(x)d'x. (A16)

As in the previous theories, we restrict ourselves to
cases where the P's are s states. Therefore, f (x) is
unchanged by the transformation (x—a ) —+ —(x—a ),
where a is the position vector of A . Consequently,

P *(x)xPp(x)d'x=a b p.

It follows from this equation, (A7), and (A16) that

0 ~a ~aCa Ca (A17)

Finally, we formulate the model for cases where the
thermal conditions are such that 3C» may be treated
classically. We neglect the modiGcation of the motion
of Xph, due to its weak interaction with the particle. It
follows from (A10) that the time-dependent variables
P(t), Q(t), corresponding to the observables, P, Q is
given by

Qq(t) =Qq cosa&at+ (1/co&,)Pq sin~qt, (A1Sa)
—',hQ p=(-', hk p(P, Q)) h. (A12) Pq(t) =Pq coscoqt —~qQq sincoqt, (A18b)

This quantity corresponds to the term lV that was
calculated in reference 2 and which was shown to repre-
sent the overlap integral governing the transfer of the
polaron from site to site by tunneling. Thus,

Ry =
g h Q~~p at~pc~ Gp (A13)

is the static interaction governing tunneling. One Gnds
from (AS)—(A13) that the remaining part, K2, of the
transformed Hamiltonian, i.e., the part representing
the residual polaron-phonon interaction, is

where Qq, Pq=Qq(0), Pq(0) are c numbers (classical
variables) whose statistical properties are determined
by the distribution function corresponding to the
thermal conditions for Xpp.

It may now be seen that, according to this classical
treatment, the action of the given Geld, generated by
Xpp on the particle will still be given by 3C2, though
with P, Q replaced by the time-dependent quantities
P(t), Q(t). Thus, by (AS) and (A14), the Hamiltonian for
the particle in the field due to the lattice is given by

3C2 ——2h Q~~p k p'(P, Q)c *up, (A14) X —3C0+3C$+X2 (A19)
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K,'=-,'A P F p(i)c "cp,
It is convenient to re-express the formalism for 3C' in

(A20) terms of matrix elements between single-particle states

and
~- (i) =&- '(i'(i),Q(i)) (A21)

It follows from (A18) and (A21) that the statistical
properties of 8 are determined by those of I', Q that
were discussed following Eq. (A18). One important
quantity is (P p(i))~h. This is a constant, with respect
to time, since we are considering only situations where
the thermal conditions are steady. Therefore, by (A18)
and (A21), aIld

(A23b)

(A23c)

where
I ) is the vacuum state, i.e., c

I )=0 for all u. It
follows from (A9), (A13), (A19), and (A20) that

Xi —Xo+X ],+X2 ) (A23a)

(&- (i)). =(&- (o)). =(&- '(i', Q)) h

Consequently, by (A12) and (A15),

(S.p(t))p~=0. (A22)

Also, by (A17), the dipole operator is given by

(A24)
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Density and Energy of Surface States on Cleaved Surfaces of Geriuanium*

D. R. PALMER, S. R. MoRRlsoN, AND C. E. DAUENsAUGH

Honeymel/ Research Center, Hopkins, Minnesota

(Received 29 June 1962)

The channel technique has been successfully applied to measurement of the properties of cleaved germ-
anium surfaces. A clean germanium surface is highly p type with the Fermi level near the valence band at the
surface. This is brought about by acceptor-like surface states close to the edge of the valence band with a
density of at least 1.5)&10»/cm~. The density of these low-lying surface states decreases when the surface
is exposed to oxygen. A comparison is made between results on cleaved surfaces and surfaces cleaned by ion
bombardment.

'N recent years a number of attempts have been made
- - to produce atomically clean surfaces on semicon-
ductors. A clean semiconductor surface should lend it-
self to a much simpler and more fruitful investigation
of basic surface properties.

A number of methods have been used to produce
clean surfaces, namely, ion bombardment and anneal-
ing, ' ' cleavage)' ' vacuum heat treatment)" " and
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