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The static magnetoelastic coupling in ferromagnetic or anti-
ferromagnetic cubic crystals is analyzed in terms of a general
formalism dictated by symmetry considerations. Besides the
coupling of the spins to the external strains, resulting in external
magnetostriction, the spins can also couple to internal strain
modes. Only particular types of ionic displacements can couple
to the spins, and these are classified. The spin operators which
enter the theory are analyzed in terms of Tensor Kubic Operators,
which are operator analogs of the Kubic harmonics, and which
generate the irreducible representations of the cubic group. All
equilibrium ionic displacements are found explicitly, and their
temperature dependence is obtained. These equilibrium strains

then lead to a general expression for the magnetoelastic contribu-
tion to the anisotropy energy and to the specific heat. On the basis
of the usual l(l+1)/2 power law we derive the temperature
dependence of the magnetoelastic coupling coefIicients and of
their contributions to the anisotropy energy and specific heat.
The available experimental data on magnetostriction, magnetiza-
tion, and elastic constants for nickel are specifically analyzed.
In general, magnetically induced strains lower the symmetry
from cubic, depending on the direction of the magnetization and
on the particular strain modes supported by the crystal. %'e
analyze these deviations from cubic symmetry and show which
symmetry groups remain below the magnetic transition.

1. INTRODUCTION
'
gf& virtue of the dependence on distance of the ex-

' ~~ change integral, of the spin-orbit interaction, or of
the dipole-dipole interaction, the spin system in a ferro-
magnetic or antiferromagnetic crystal is coupled to the
ionic displacements, The static portion of this inter-
action results in a shift in the equilibrium ionic posi-
tions (relative to the case with no magnetoelastic
coupling), with resultant, shifts of both the phonon and
magnon spectra. The dynamic portion of the inter-
action produces magnon-phonon scattering.

The simplest aspect of the static interaction, and the
aspect which has been considered previously, is the ex-
ternal magnetostriction, or the change in the macro-
scopic crystal dimensions. In addition there are shifts
in the ionic coordinates within each unit cell, and, in
some circumstances, this "internal" magnetostrictive
coupling may be considerably larger than the external
magnetostriction. Furthermore, the induced ionic dis-
placements modify the symmetry of the crystal and
reflect back to alter the magnetic properties, possibly
changing the nature of the Curie transition (from second
order to first order), and changing the temperature de-
pendence of the anisotropy energy. In most common
materials this alteration is small, but, again, there are
circumstances in which it can be relatively large and
significant. %'e shall, here, develop a general theory of
the magnetoelastic coupling, including all types of
elastic modes (which we classify according to their
group theoretical properties), and considering explicitly
the inhuence of this coupling on the magnetic properties.
In addition, in Sec. 8, we will classify the possible
crystal symmetries which, by virtue of the magneto-

* Supported by the OfKice of Naval Research through The Catho-
lic University of America and the University of Pennsylvania.

elastic coupling, can appear below the Curie tempera-
ture in a crystal which is cubic above the Curie
temperature.

Direct observation of the internal magnetostriction
is, unfortunately, more difhcult than observation of the
external magnetostriction. However, x-ray observations
may detect some shifts, such as that of the oxygen
"u parameter" of ferrospinels, which are elastically
"soft."The longitudinal standing spin waves and canted
spin arrangements of the rare earths, of hausmannite,
and of various other ferrimagnets should also produce
characteristic internal strains or, in certain cases,
superlattice lines which may be observable by x-ray
means. But perhaps the most sensitive way to observe
the magnetostrictive coupling to internal modes is by
resonance. In particular, rotation of the magnetization
alters the ionic positions within the unit cell and
changes the crystalline fields and orbital overlaps. These
alterations should be detectable as shifts in nuclear
resonance frequencies. Another possibility is that the
spin-lattice interaction (and, hence, the ferrimagnetic
resonance linewidth) of the rare-earth ions in doped
garnets may reflect the shift of internal ions with rota-
tion of the magnetization. Furthermore, the destruction
of the tenth-power law for the magnetocrystalline
anisotropy, alteration of the temperature dependence
of the external magnetostriction, a change in the type
of magnetic phase transition from second order to first
order, and an anisotropic contribution to the specific
heat, can all provide observational evidence for internal
magnetostrictive coupling.

The classical static theory of magnetostriction in
cubic crystals was originally given by Becker and
Boring. ' In that theory the magnetization is coupled

' R. Becker and K. Doring, Ferromagnetismus (Verlag Julius
Springer, Berlin, 1939), p. 132, 145.
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to the uniform macroscopic strain by terms in the free

energy, involving various polynomials in the strains
multiplied by polynomials in the direction cosines of the
magnetization. The form of these polynomials is dic-
tated entirely by symmetry considerations, and the
magnitude of these coupling terms is represented by
phenomenological magnetoelastic coupling coefFicients,
of unknown temperature dependence.

We follow a similar, but quantum-mechanical pro-
cedure, coupling the spin and elastic modes in the
Hamiltonian rather than in the free energy with tem-
perature-independent coupling coefIicients. This requires
consideration of the symmetry of spin-operator func-
tions, and the introduction of those combinations of
spherical tensor operators which generate the irreducible
representations of the cubic group. These operators are
the quantum mechanical analogs of the Kubic har-
monics of Von der Lage and Bethe, "- and we shall refer
to them as Tensor Kubic Operators (TKO). The re-
quirement that the Hamiltonian be fully symmetric
under all the operations of the cubic group then dic-
tates the form of the magnetoelastic interaction, as
well as of the elastic energy. We shall 6nd that in cubic
crystals there are only 6ve characteristic types of
magnetoelastic coupling terms, three of which appear
in the external dilatations and shears as well as in the
internal modes. Only certain symmetry classes of modes
can couple to the spins. For each of the five types of
coupling terms, we calculate the equilibrium strains as
a function of temperature and of magnetization direc-
tion, the resultant crystal symmetry, and the contribu-
tion of these terms to the magnetocrystalline anisotropy
energy and to the specific heat.

For the sake of analytic simplicity we restrict our
treatment to those cases in which the magnetoelastic
coupling is the sum of interactions of single spins with
the strain field (excluding, for instance, magnetoelastic
coupling arising from a strain dependence of the ex-
change integral). Particularly in the antiferromagnetic
oxides the dominance of the one-ion source of the
coupling is strongly suggested by the one-ion character
of the magnetocrystalline anisotropy, as suggested in
ferrites and garnets by Yosida and Tachiki, ' and by
Wolf, ' and demonstrated by Folen and Rado' and by
Geschwind. '

We further restrict our treatment to those structures
in which all magnetic ions are crystallographically
equivalent and in which their average spin directions
are all coaxial; again, this applies to most simple ferro-
magnetics and antiferromagnets, although canted and
spiral spin structures are excluded. Generalization to
these more complex structures will be given elsewhere.

2 F. C. Von der I.age and H. A. Bethe, Phys. Rev. ?1, 612
{1947).

'K, Yosida and M. Tachiki, Progr. Theoret. Phys. (Kyoto)
1?, 331 (1957).

4 W. Wolf, Phys. Rev. 108, 1152 (1957).' V. J. Folen and G. T. Rado, J. Appl. Phys. 29, 438 (1958).' S. Geschwind, Phys. Rev. 121, 363 {1961).

Although the internal magnetostriction can destroy
the tenth-power law for the temperature dependence
of the anisotropy in a ferromagnet, introducing both
low-power terms and other terms varying as very high
powers, it should be noted that these terms cannot
account for the puzzling behavior of iron' and nickel'
at very low temperatures. (It should be recognized
though that over most of the range of magnetization,
the classical theory describes the temperature depend-
ence of the anisotropy rather well. ) These metals have
only a single ion per unit cell, and consequently possess
no internal modes of homogeneous ionic displacement.
Furthermore, the coefIjlcients of the magnetoelastic
coupling to the external strain modes are known from
magnetostriction measurements and are too small to
produce the observed deviations of the temperature
dependence of the anisotropy. However, the tempera-
ture dependence of the magnetostriction is fairly well
accounted for by the theory, as we demonstrate in Sec.
7 by examination of the available data.

2. THE GENERAL HAMILTONIAN

The Hamiltonian is

H=H +H,+H,+H„
these terms being the intrinsic magnetic energy, the
elastic energy, the magnetoelastic coupling, and the
intrinsic anisotropy energy, respectively. The inter-
action with an external 6eld, if present, is included in
H; it will be reflected in the analysis by the specifica-
tion of a direction of the average magnetization, (.

The magnetoelastic energy, which must transform
according to the fully symmetric irreducible representa-
tion I', is to be formed from the direct product of the
spin and elastic basis functions. As the direct product
of two representations contains F only if the repre-
sentations are equivalent, we can immediately limit the
representations which are permissible.

Consider first the e6ect of time reversal, which is an
element of the cubic group (although not of the full
Shubnikov group of the magnetic crystal). Under time
reversal, all strain components are invariant, whereas
spin components are reversed. Hence, real TKO's in-
volving odd powers of the spin operators transform
under irreducible representations which are antisym-
metric in the time reversal, and such TKO's cannot
couple with the elastic components. We therefore re-
strict ourselves to real TKO's of even degree.

Conversely, we limit the permissible strain modes by
considering the operation of spatial inversion. Every
spin component, and, hence, every TKO, is invariant
under this operation. Consequently the spins can couple

'C. D. Graham, Jr., Fifth Conference on Magnetism and
Magnetic Materials, November 16-19, 1959, Detroit, Michigan
$J. Appl. Phys. (to be published) j. At low temperatures EI, for
iron, seems to vary as less than the 6fth power of the magnetization.' E. %. Pugh and B. E. Argyle, IBM Research Note NC-32
(unpublished). These authors report that the 6rst anisotropy
constant varies as rapidly as the 100th power of the magnetization.
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TABLE I. The classical Kubic harmonics which are even under inversion. All functions normalized to unity. Functions in square
brackets indicate functions with normalization factors omitted. Factors of p are omitted throughout. From Von der Lage and Bethe
{reference 2).

rt.
r7

Ea,o(() —(4 )-1/z

E. (O =(4.) '"{:5(BX7}'"/4&{~+y'+~—,p'}
E~ z(() =(4x) / { BX7X11(2 X13) //8j{xzy zz+(1/22){E jp —(1/105)pz}

EZ''z(() = (4r) / L(2XBXSX7X11X13) 'z/8){x (yz z )+y (zz x )+z (x y )}
7,2(() {47{) I/2{5)l/2{&2 $ {Q+y2)}

Ez» z(0) = (4x)-'"E(BXS)'"/2j{+—y'}
E/» '(() = (4x) '/ L7(BXS)'/z/2j{z' —$(x'+y') —{6/7){E/» 'Q')
Ez"(0) = (4 ) '"9X7(5)"z/43x' —y' —(6/7)LEz»'lp'}

Ep z((}= (4x) ' zL11{2X7X 13)'z/4j{z —I}(xz+yz) —(15/11}{E/»'4]pz —(5/7) L%»'zjp4}

Ez"(0) = (4x) Uz[11{2XBX7X 13)'/z/83{x' —yz —(15/11){Ez»zjpz —(5/7) LEz»'3P'}

E ~ z(() = (4x) '"(3XS)'"xy
E*"(&)=(4~) '"EBX7(5)'/z/23xy{z' —(1/7)p'}
E c z{() = {4z) //zt BX11(2XBXSX7X13)~/z/161xy{z —(6/11)zzpz+ (1/33)p4}

E ' z'(() = (4z) //z{ (2XBX/X 11X13)//z/2 jxy{x4+y4 —(5/8) (xz+yz)z}

E z'4(0) = (4 ) '"LB(SX7)'"/2jxy{x'—y'}
E z' z(g) = (4x) '/zLBX11(7X13) / /4jxy{x —yz}{"z—(1/11)pz)

only to strain modes which are symmetric under spatial
inversion.

The irreducible representations of the cubic group
are ten in number, of which only five are even under
inversion. Following Von der Lage and Bethe, these
6ve representations are denoted by I' (the fully sym-
metric representation); I'//. (one-dimensional); I'» (two-
dimensional); I', and I'z (both three-dimensional). The
Kubic harmonics, which are classical basis functions
for these representations, are given in Table I, which is
taken from Von der Lage and Bethe with a modification
in normalization; we prefer to normalize all functions
to unity.

We now consider each of the separate terms in the
Hamiltonian.

First, we construct the elastic Hamiltonian. The
complete specification of the ionic con6guration of the
crystal is given by the standard strain components &, .
e», ~„, e „,e„„e„,plus a number of additional co-
ordinates specifying the displacements of the ions
relative to the center of the unit cell. Linear combina-
tions of these coordinates form bases for the irreducible
representations. Thus, the six external strain corn-
ponents are replaced by the following six quantities:

belonging to F,. (2c)

Pit will be noted that the symbol z represents both the
strains, and one of the irreducible representations. Both
uses are conventional, and the ambiguity is resolved
by the context. $ Similarly, the internal coordinates are

e, +&»+e„, belonging to F;
5"'Ez**—k(z-+zzz) j, k(13)'/'l. z*.—zzz1

belonging to I'„; (2b)

and
z~"—=5'"Lz*.—z (z**+zzz) j,

zz ' = z (15) t.zxx zzz j.
(3b)

Finally, triplets of coordinates belong to I', are de-
noted by z,' ' (z=1,2,3) and those belonging to I'z are
denoted by z,"' (z= 1,2,3). Only in the former case is
the value j=0 present, with

zz ~ '=—zz„zz"—=z. , and zz"—=z,„. (3d)

The elastic energy, in the harmonic approximation,
arises from the direct product of 6rst-order strain
representations. For the two-dimensional representa-
tions the fully symmetric quantity extracted from the
direct product of the pair e~»'e2»&, and the pair
~~~, &2~ is snnply e&»~&& +&2»&&2& . Similarly for
the three-dimensional representations, the fully sym-
metric combination is g;z 'z " (and similarly for
I'z.). Therefore, the most general fully symmetric

to be replaced by linear combinations of the proper
symmetry.

Let the strain coordinates which belong to I' be
denoted by e &, with the value j=0 reserved for the
volume dilatation

z ' = (zxz+&//z+zzz)

Similarly strain coordinates belonging to I p are de-
noted by et' &, with j numbering the various coordinates
of this type. There is no coordinate of this type with
j=0 (i.e., no external strain).

Pairs of strain coordinates which generate the two-
dimensional representation I'~ are denoted by e&» and
e2»&, these components transforming like the Kubic
harmonics Ez»'(g), and Ez» z(g), respectively. The
external strains are again characterized by j=0;
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harmonic strain energy is

H =-' P Q c. , rQ», r r'»,"
2', k i

or, if we assume the strain components to be chosen so
as to diagonalize this quadratic form, the expression for
the elastic energy becomes

Ke recall that j and k number the various modes of a
given type of representation; p, takes the five values
cr, p', y, », 8', and i takes only the single value unity
for rr =rr ', and t1' takes the values 1 and 2 for rr=y, and
takes 1, 2, 3 for rr= » and 8'. The quantities c;,r,

" (or
c;r ) are elastic constants.

For j=o the elastic constants cp& are related to the
conventional elastic constants c~~, c~~, and c44 as follows:

CO 3(Cll+2C12)r

c»~= (2/15) (crr cr2)

Cp = C44.

(6a)

(6b)

(6c)

It will be noted that we have appended only a single
subscript to the cp", implying that the external strain
modes»;"' are normal modes Lcompare Eqs. (4) and

(5)]. In this matter we have two possibilities. If the
e,I'p are interpreted as the external strains as com-
monly measured (by a strain gauge for instance), they
contain internal contributions which automatically
admix so as to form a normal mode. The associated
elastic constants are then the empirical elastic con-
stants, as defined by Eq. (6). Direct empirical evidence
for this admixture of internal displacements to the
external strains has been given by Kalsh' and by
Kaminow and Jones, r» who studied paramagnetic and
ferrimagnetic resonance as a function of pressure. An
alternative approach would be to define the external
strain components, in accordance with elementary
elasticity theory, as the coefIicient of a homogeneous
distortion; that is, all interatomic distances are pro-
portionally increased, and the resulting strain is a linear
combination of the true normal modes.

The magnetoelastic energy is obviously given in a
completely analogous fashion. Thus,

g Q B. rr P» r,iX.~,r.
2rl

The quantity X,& ' is a TKO belonging to the irreducible
representation F„.If F„ is three dimensional, i= 1, 2, 3
and similarly for other dimensionalities. Again, / num-
bers the different possible TKO)s which belong to the
given representation. The constants 8;,lI' are phe-
nomenological magnetoelastic coupling coefficients.

As we have mentioned before, the TKQ's are linear
combinations of spherical tensor operators. As we shall

9 W. M. Walsh) Jr, Phys. Rev. 114, 14"l3, 1485 (1959)."I.P. Kaminovr and R. V. Jones, Phys. Rev. 123, 1122 (1961).

see in the following section, TKO)s of F cannot be
formed from spherical tensors of degree 2, but can be
formed from spherical tensors of degree 4 and 6.
Similarly, there are TKO's of Fp of degree 6; of F~ of
degree 2, 4, 6; of F~. of degree 4 and 6; and of F, of
degree 2, 4 and tzo different forms each of degree 6.
Ke adopt the degree of the TKO as the labeling index I.
Thus, l takes the following values:

4 6 ~ ~ ~

l=6 )

)=2, 4, 6,

4 6 o ~ ~

) )

1=2, 4, 6, 6',

The last term in the Hamiltonian represents the in-
trinsic magnetic anisotropy of the unstrained crystal.
It may be pseudodipolar or pseudoquadrupolar, or it
may be a single-ion anisotropy arising from spin-orbit
coupling and crystalline field splitting. In the latter
case the anisotropy term in the Hamiltonian would
have the particular form

H.=Q rXrrr'

where 2'l is the "intrinsic anisotropy coeITicient. " For
definiteness, we shall assume this form of the anisotropy,
although this is in no way necessary. In fact, the
Hamiltonian should contain additional terms involving
the amplitudes of the phonons, or of the ionic oscilla-
tions relative to the average positions as described by
the e's. These include terms coupling spins to phonons,
giving rise to dynamic aspects, or phonon-magnon
scattering. The terms quadratic in the phonon ampli-
tudes give a temperature-dependent elastic energy; if
the phonon spectrum is dependent on the ~ s, this
effectively introduces a temperature dependence in the
elastic constants. However, this temperature depend-
ence is known to be small empirically.

Recapitulating, the total Hamiltonian is

H=H-+-'Z E c "Z(» " ')'

—Z E Br r" Z»'"'X "'+Q rrrX " (10)

3. THE FORMAL SOLUTION

Expanding to first order in the magneto elastic
coupling coeKcients, the free energy is

F=F-+l Z 2 c "2(»'" ')'

—g p B;,pp»;r '(X,r')+Q rrr(x ') (11)
2'. l l

where ( ) denotes a dynamical average with respect to
the unperturbed density matrix.
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Minimizing the free energy with respect to the strains, efhcients k&, , &,
&' in Sec. 4. Then

one finds
BF/8 E;«' i =0

e "'= (1/&: ") Qi 8 i"(X " i)

(12) 1
II=II +2 2 2—2 By, &i«Bi.&««Z k«, &,

' It'a l

~ C;" ~1.4

In Sec. 5 we shall show" that the statistical average
of a TKO is proportional to a Kubic harmonic. That is

—Q Q —Q 8, «B. i «P It .«, &«X.«, «

+P «&X~' (19)

(X"')= ('JJ«r&')Ic" '(&) (14)

where '1J«rio is the spherical tensor operator which
transforms identically to the I egendre polynomial I'Io,
with the magnetization direction (or the common axis
of the sublattice magnetization) as the polar axis, as
indicated by the subscript f in the average; ('JJ&&r&') is
a function of the temperature only. E;I"' is the Kubic
harmonic [a function of the angles &l and P of the
(sublattice) magnetization axis relative to axes 6xed
in the crystal] which transforms under the cubic group
in the same way as the TKO. For compactness let

This is the self-consistent Hamiltonian for the spin
operators. The free energy can be found either from it,
or from Eq. (11). Substituting the strains into Eq.
(11) we find

1I'=I'„,' P P ———P8;,„«8;,.;Q k„,,«&E"
P j C~& l1L2

+P &«EC«' (20)

If we define the effective magnetocrystalline anisotropy
coeKcient kp" by

Then
»,&«('9«ti')=-B, i"(T) F= P +Q K ef&Ea

l
(21a)

(16)
u&'«=a& ,' g P———Pk«, &,«'Bi, &,«Br, &,

« (21b).
j C~& l1, l2

This is the formal solution for the strain components as
a function of temperature and (sublattice) magnetiza-
tion direction. In a later section we shall discuss this
solution in greater detail, elaborating on the tempera-
ture dependence and considering some of the strains
explicitly. For now, we obtain the general form of the
effective spin Hamiltonian and of the free energy and
specific heat, which result from substituting this solu-
tion for the strains into the Hamiltonian and the free
energy.

First we find the self-consistent spin Hamiltonian.
Substituting the strain, Eq. (16), into the general
Ha. miltonian, Eq. (10), we obtain

1
II=II +-'PP —P 8 «8 'PE"E"'

1—P P —P 8 «8 ' P E''X"'
Let

+Q «&X '. (1&)

Q K «&iI;« "=& ki, &,
«'E' '

l

Ke will give explicit expressions for the expansion (o-

"See J. H. Van Vleck, Colloque International de Magnetisme
de Grenoble, j.9)8 (unpgb)jsbed).

KVhereas &«satisfies the famous f(l+1)/2 power law for
the magnetocrystalline anisotropy" we see that the
magnetoelastic coupling contributes additional terms
of diferent temperature dependence, as we shall ex-
amine subsequently.

The physical source of this alteration in the tem-
perature dependence of the anisotropy is as follows. For
a given direction of the magnetization the crystal dis-
torts under the influence of the magnetostrictive cou-
pling, so that the symmetry is lower than cubic. This
lower symmetry determines the temperature depend-
ence of the anisotropy. It should be noted, however,
that the magnetostrictive distortion is cubically modu-
lated as the magnetization vector is rotated. Conse-
quently, although the magnitude and temperature
dependence of the anisotropy are influenced by the
distortion, the observed anisotropy retains its over-all
cubic symmetry.

The pair of Eqs. (16) and (21) constitute a complete
formal solution of the problem. Equation (16) defines
the strain induced by the magnetoelastic coupling and
characterizes the change in crystal symmetry below
the Curie temperature. Equations (21) for the free
energy completely determine the thermodynamics of
the system; thus «&'«(T) is the effective anisotropy
constant, with an altered temperature dependence, and
the specific heat, which depends on the direction of the

"N. Akulov, Z. Physik 100, 197 (1936).
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TABLE II. Table of spherical tensor operators, normalized to unity, from /=0 through t=6. The symbol P{ ) means the sum of

all permutations of the operators in the bracket, taken in first order. Thus P(S+S,') —S+S,'+S,S+S,+S,2S+.

l=2

~op= nppi

g 1 —n1$+

yIo=n11$,

&g 2 —n 2(5+)2

n2
'Jj 1=—P{S+S}

v2

n22

P2o =—LP{$+5-}+2$,2j
Q6

i' 33—n33 {5+)3

g 2=—P((S+)'S,}
V3

n33

II 31 — PP{(5+)2$-}+2P{5+5 2})
(15}1/2

n33

fP{S+5,$-}+25,3j
(10)1/2

Q4'= n4'(S+) 4

n4
p43= —P{(S+)'5,)

2

n4

LP{ (5+)'5-)+2P{(s')'5 ')3
2X7'/

n4
g4' —— LP{(5+)'5,5 }+2P{$+S,'}j

2X71/2

n44

I P{(5+)'(5 )'}+2P{S+5,'5 }+45,'j
(70)1»

g e —n e($+)e

ne'
ge4= —P{{5+)4S,)

51/2

nee

P{(S+)'S )+2P((S+)'S '}
3 ($)1/2

Lp((S+)'5.5 }+2P{(5+)'S.')j
2(1S)1/2

p 1— Lp{(s+) (s-) }
(2X3x~x7) /2

+2P{(5+)'S,'S }+4P{s+5,4}]

eo $P{(S+)25 (5 )2)+2P{S+S3S )+4S ej
3(14)»2

cg 6 n 6(5+)6

ng
,e=—p((S+)eS,)

61/2

& 4= PP{(s+)'5 }+2P{(S+)452)g
(6X11)"

ng
3 LP{(5+}'S,S }+2P{(5+)'5,'}]

{2X5X11)1/2

CJJ
2 $P({S+)4(S }'}+2P{{5+)35,25 }

3 (g X11)1/2

+4P{(5+)2$ 4}j
n6

LP{(5+)'5,(5 )'}+2P((s+)25' 5 )
6{11)'"

+4p{5+5 6) j
ng

g 0— P'((5+)'(5 )'}
2 (3X7X 11)1»

+2P((S+)2S, (5 )')+4P(S+5,'S }+85,'j

magnetization, is of magnitude

82~ eff(2 )
cv= ever —T 2 It~".

BT2
(22)

In order to analyze the formal solution in detail we
now proceed to study the TKO's explicitly, to obtain
definite expressions for the expansion coefFicients k~, , ~,&',
and to study the temperature dependence of the 8,, &/'.

4. TENSOR KUBIC OPERATORS

The spherical harmonics 'JJp(8, @) of given l form a
set of basis functions for the (2l+1) dimensional irre-
ducible representation of the full (spherical) rotation

group. Similarly, the spherical tensor operators 'JJ~"' of

given / form an equivalent basis, standing in one-to-

one correspondence with the spherical harmonics. The
spherical tensor operator 'JJ~" is a polynomial in the spin
operators" S„S„,S, (or S+, S„S ).Although the rota-
tion properties of the 'g~ are identical to the 'jj~, and

although it is only these rotation properties which enter
into the analysis, the specific forms of the tI& are
sometimes useful in explicit calculations. We give the
'g~" through l=6 in Table II.

The most convenient phase and normalization of the

"In the application made here, the spin operators are those of
a single representative ion in the crystal.
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TAaLE DI. Tensor Kubic Operators expanded in spherical tensors. tion of the formula

XI+ 4 (7/f 2)»40+ (5/24)1&2{JJ44+ JJ4~)

X1a,e (1/8)» JJeo (7/16)»2(JJe4+'JJe~)

gIP', e (ff/32)1»{ge2+Pe~) —(5/32)' 2{gee+&e-e)

X y, 2 4JJO

X"'= (f/~}(@2'+e2 )
x "= (f6%(JJ '+'JJ )

(5/1 2)'"5 '—(7/24)»2bJ '+ J
X,, e (7/8)11 JJeo+x, (me4+Se~)

X2 ' = {5/3&)»'(Ve'+we )+(1f/32)'"(ee'+me-')
X1"=+(i/~) (e2'+e2-')
X2~2 =—{1/K){'JJ2'—'JJ2 '}
x"=-(i/W(~" —~ )
X' =+{'/4)(~ +~-)-'{7/«) (~ +~-}
X2 e'4 ( 1/4) (cJJ41 cJJ4-1) (7/16)1/2 (cJJ48 'JJ4-8)

X8'4 = (—i/V2)(g42 —g4 ')
3',1' e =+j(5/256)»2{'JJe +'JJe 1)—i(~/32) {'JJe +'JJe 8)

+iI {&X3X5Xif)'"/32j{5e'+'JJe ')
Xs"4 = (—5»s/16)(its' —gs ') —{9'/32) {stss—sJs 4)

—P{2X&X&X11)»s/321(ass—Vs-')

3'.8"0 = (—i/K) {Pe2—ye~)
3.'I "0'—-+if(9X11)'"/«j{V '+V -')

+'~(2X5X if)»2/323(~e8+~e-8)
+it (2X3)'"/3&j(e'+we ')

X2~,e' — L(9Xf f)1,2/f6j(cJJel cJJe-1)

+!(2XSX~~)»'/32j(tts' —'tts ')
—!.(2X3)'"/32$('JJss —'tts ')

Xe"'—-—(i/N) (gee —We ')
3.'1& 4 =+@{/»/4) (/41+/4-1)+ (i/4) (/48+/4-8)

3'2"= (—7'"/4) bJ4' —&4 ')+1(&48—4 ')
3',8"= (—i/N) (y44 —g4~)
3',1' '=+i(3/32)»2(ge'+pe ') —&(f51»/8) {ye8+'JJe ')

-'(» &*/8}{~"+~—}

+ (111I2/8) (4JJee cJJe-6)
Xe"= —(i/V2) (ge4 —pe~)

spherical tensors seems to be achieved by letting

5+= —(S.+iS„)/v2,

5 = (S. iS„)/vT. —

With this convention,

(S,S+)=5„
(S+,S,) = —5+,

(S,S,) =5 .

(23a)

(23b)

(24a)

(24b)

(24c)

Then" the highest order spherical tensor of a given
degree is

Jl'= nl'(5+) '. (25)

The lower order tensors are found by successive applica-

"A. Meckler, Suppl. Nuovo Cimento 12, 1 (1959).

l (l+1)—m(sn —1) —'t'
ts—l — (5—g m) (26)

2

Meckler'4 gives the normalization of the highest order
tensor as

2'(2l+ 1) l (2S—l) !
(n l)2

(l!)'(25+i+1)!

With this normalization,

(27)

The symbol t signifies the adjoint. It will be seen from
the normalization formula that the operators 'JJl are
only supported by a spin of sufficient order that

2S~& l, (29)

and the same statement, of course, applies to the
TKO's. In Table II we list the spherical tensor operators
from t!l' down to 'JJls. Operators of negative order are
found by the formula

'JJl "= (—1)"(JJl")' (30)

'g~™is found from 'JJl by simply interchanging 5+ and
S in all formulas. It will be seen from the table that,
if 5, is replaced by x, S„by y, and 5, by z, the 'tll"
reduce to the classical Fp, apart from normalization,
through 'ass. 'g4' differs, and thereafter there are fre-
quent departures. All '4!l' reduce to Fl', however.

The Kubic harmonics E,&'(e,&)=—I{,&'(() are linear
combinations of the Fl (8,&) which form basis functions
for the F„irreducible representation of the cubic group:

sl(() g. , a. sly m, (31)

The expansion coeKcients have been calculated by
Bethe" and by Kbina and Tsuya. "Our phase conven-
tion is, however, slightly difterent from Ebina and
Tsuya. We prefer to give the Yp the same phase as the
'JJl . Thus, our Fl difFer from those of Ebina and
Tsuya, and of Bethe, by the factor (—1)". Further-
more, in the three-dimensional representations our sub-
scripts i= 1, 2, 3 stand for x, y, z while in Kbina and
Tsuya i =1, 2, 3 represent z, x, y, respectively.

The tensor Kubic operators X;»' are linear combina-
tions of the spherical tensor operators 'JJl" coith the
same expansion coetlicients:

(32)

The X;"' then stand in one-to-one correspondence with
the E,»', and form an equivalent basis for I'„. The
explicit expansions of Eq. (32) are given in Table III.

In taking the direct product of the Kubic harmonics
of F„with themselves, and extracting the fully sym-

'8 H. A. Bethe, Ann. Physik 3, 133 (1929}."Y.Ebina and N. Tsuya, Repts. Research Inst. Elec. Commun,
Tohoku Univ. 12, 1 (1960}.
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metric combination, we are led to the quantity (see
Eq. 18)

(33)

be found in the tables by Shimpuku" and by Rotenberg,
Bevins, Metropolis, and Kooten. '0 Some of the terms
can be seen to vanish, and others can be simplified. In
particular, the isotropic terms, which will add to the
specific heat, are much reduced by the use of the sym-
metry relations and special values of the Clebsch-
Gordan coefficients. ' Thus, by means of the sym-
metry relation

(lil2mim2, l, l2lm)
= (21+1/212+1)'"(—1)" ""'

X(lilm, —mI lill2 m2), (39)
g. Pyilg. Pet2+ mls' ~2i,m1

' i,m2
1%j, ,mg

=g k i &' Q a 'I'i". (34)
and the special value

The equation above constitutes a statement that the
summation on the left is fully symmetric, and that it,
therefore, is a sum of Kubic harmonics belonging to I' .
Vfe proceed to calculate the expansion coefFicients by
inserting Eq. (31) into Eq. (33):

However, the addition theorem for the spherical har-
monics is

(2li+1)(2l2+1) '"
Vr ~'Yr "'=Q (lil200I li410)

4rr (2l+1)

X(lrl2mrm2I lil210) Vr", (35)

(li0mi0
I
liOlm) = r'rr, , r6, ,„,

the isotropic coefficients become

(40)

k« ~ ' —— P(—1)"P a; „~ rra; ~ re„,„. (41)
(4s.)1/2 m

1=(&"'I&"')=2 ' ""' "(lr"Ifr")

(
(21i+1)(212+1) '"

«r1200I ril, ro)
4rr (21+1) (42)

Now the normalization of the Kubic harmonics re-
where (. . .

I

. . ) indicates a Clebsch-Gordan coefficient. quires that
Hence,

XQ Q Q a;," "a;, ,r "(lrl2mrm2Ilr12lm)rjr"

a,
leg

m (36)

Because of the orthogonality of the Yg we can equate
coefficients of Fi to obtain

(21i+1)(212+1)) rr'

I (1,1,00I1,l,lO)
4~(21+1) i

@z,m,
' @s,—m

'p, ll . p, l2

XQ Q (lrlmm —mI lilll0). (37)
m ~1 0

An alternate expression, sometimes more convenient,
is obtained by equating coefficients of Vr' in Eq. (36):

(rr+r)(2r +1))'& (r I 00~ !r ro)

4n (2l+1) +i, 4
'

XZ(lrl2m(4 m) I lil2l4) 2 a.
,

"'"a.
, 4—."-.

The Clebsch-Gordan coefficients which occur in Kqs.
(37) and (38) can be evaluated by use of the usual
expressions, as given by Edmonds" or Rose" or can

'7 M. E. Rose, Elementary Theory of Angular Momentum (John
Wiley 8t Sons, Inc. , New York, 1957), p. 61.

"A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, New Jersey, 1957), p. 45.

1—P( 1)ma, s, ra

Hence, if we let d„be the dimensionality of the p.th
irreducible representation,

kr, , r," Pd„/(4~——)'"]lrr, , r,

In addition, by means of the symmetry relations be-
tween the Clebsch-Gordan coefFicients, it can be shown
that

kr, r, ' kr, ,r, '=——kr,r", li, , 4, 140. (44)

In general, the expansion coefficients ki, , i,& ' must be
calculated by means of Eqs. (37) or (38), and are given
in Table IV Lactually, (4 r)"r'k , , r'r]. These expressions
for the coefficients ki, , i, ' can then be used to evaluate
the free energy LEq. (21a)], the effective anisotropy
constants

I Eq. (21b)] and the speci6c hea, t LEq. (22)].

5. TEMPERATURE DEPENDENCE

In the equations for the strains, the free energy, and
the specific heat there occur the quantities B;,rr (T),
the temperature-dependent magnetoelastic coupling

'i' T. Shimpuku, Suppl. Progr. Theoret. Phys. (Kyoto) 13, 1
(1960).

~ M. Rotenberg, R. Bevins, N. Metropolis, and J. K. Wooten,
The 3j and 6j Symbols (Massachusetts Institute of Technology
Press, Cambridge, Massachusetts, 1959)."G. Racah, Phys. Rev. 62, 438 (1942).

L. Eisenbud, Ph.n. thesis, Princeton University, 1948
(unpublished).
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l=4

1=6

(4x) ~/~k lj,I2

lt =4, l2=4

18(21)I/2

11 X13
20(2) '/'

11(13)'/~

(47r) I/2k lt, fpP, I

lt =6, lg =6

{21)I/2

17
—5 X8(2 X13}«'-'

17 X19

{4 ) t/skt I 'V, 4

lt =6, l2=6
—21(21)»2

11 X17
—40(2 X13)I/~

11 X17 X19

TAmE IV. Table of {4n-}"kl, , ~,/' the expansion coefBcients for
sums {over the dimensions of the pth irreducible representation}
of products of TKQ's expanded in fully cubic TKO's. )See Eq.
{18}g.

coefhcients. The temperature dependence arises in

taking the average value of a TKO in the unperturbed
density matrix. The important feature of the unper-
turbed density matrix is that it describes a system with

the average value of the (sublattice) magnetization
along some axis (, and that it has azimuthal symmetry
around this axis.

Expressing the TKO in spherical tensor operators,

(X p, t) P a y, )((y m) (45)

The spherical tensor operator 'JJ, can now be expressed
in a new coordinate system with polar axis along (.I.et
Tl{~)™be the spherical tensor operators in this new
coordinate system. Then

'JJ)'"= 2('JJ) &
r)"

I
'JJ)")'JJ)

&
r)"

{4)r)I, 'k Il. l2 /'6

10 2X3X5

11 13

2 X19
(3 XZ)'/'

11 X17

= Z(I'«r)"'
I
I')")'JJ)&r)"' (46)

where the expansion coefficient. ('JJ) &r&"'
I

'JJ)'") is identical
to the corresponding expansion coefhcient for the
spherical harmonics, and can, therefore, be written
as the scalar product of two spherical harmonics
(Y)&r&"'I V)"). Taking the average value of 'JJ) with
respect to the unperturbed density matrix

('JJ) )=Z(I')&r)"'I I')")('JJ)&r) ').

{4~)'/-'k I

5 X48
{2X13)'/~

11 X17 X19

6'

However, 'JJ«r)"" transforms as e' '& under a rotation
of &t around the ( axis, whence ('g)&r)"')=0 unless
m'=0. Furthermore, "

2 -2

6'

—30

11(7)«-'

5 3X13

2X11 2

-"(-')"
—59

(3 XZ)»-
2 X11 X17

2 2 X11 X13

11 X13
3X5XZ

2 X17 11
9

(21)»'
2 X17

(X*"') = ('JJ)&n') 2 o',-"'I')™((), (49)

or

(I'« 'I I'"')= I'"(()
where Y) (() is the spherical harmonic of the angles
&&, p of the (sublattice) magnetization axis relative to
the axes 6xed in the cubic crystal. Hence,

+lg
lt+ 2 4

lt =4 ls =4

3 X9l=4 {3XZ)'/'
11 X13

l=6
2 X11(13)'/2

(4n-)'»kit, lge 6

6

—15(7)'/2

2 X11
3(21)'/~

4 X11 X]7
3 X5 X31

(2 X13)'/2
11 X17 X19

{4~)'/zk It, I2

lt =4 ls =6

2X3 3X5X

'";.(-:)"'

2 5X11
—27 3X5X7

4 X17 11
3 X5 X7 2 X5 X13

17 X19 11
—3X5

(2 X13)'/2
17 X19

lt =6 l2 =6
—3 X16

{3X7)'/~
11 X17

—3 X4X5
(2 X13)«~

11 X17 X19

(X "')=It "'(()('JJ«n"). (50)

This expression is the direct analog of a similar classical
relation derived by Van Uleck, " and, as he has shown,
it is the basis of the tenth-power law for the lowest
order anisotropy coefhcient. In fact, the temperature
dependence of (')J)&r&o) is the same as that of M'&)+'&"

at very low temperatures, where M is the (sublattice)
magnetization. Thus, we find from Table II that
'JJ~&r&0 35r2 —5(5+1). In terms of the spin deviation
operator 0, 5~=5—0-, and only the two states 0.=0, 1

are important at very low temperatures. Hence 5~'
=5'(f.—o)+ (S—1.)'(r and

At suKciently low temperatures, the temperature
dependences of all the magnetoelastic coupling co-
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eKcients, which are related to ('ti«r&P) by Eq. (15), are
determined by this power law. In summary, if the first
excited state in the space of two neighboring spins
maintains the two spins parallel, then

I I I I I I I I

B, ;(T) M(T)q'&'+'&"

B,,;(0) M(0) I
(51)

where IE is the hyperbolic Bessel function, and mo is
the reduced magnetization:

mp =—M (T)/M (0). {53)

This approximation, which should be rather good just
below the Curie temperature, reduces to Eq. (51) at
low temperatures. For the ferromagnet this equation
can be applied directly, but for the antiferromagnet
the argument of I~&&+i)/2 must be replaced by the
molecular field as given by the Neel theory.

In order to compare theory with experiment, we
examine the dependence of magnetostriction on mag-
netization rather than on temperature. The theoretical
curve relates magnetostriction to temperature; it must
be augmented with the corresponding theoretical de-
pendence of magnetization on temperature (a Langevin
function) so that the temperature can be eliminated
parametrically. The resulting plot of I&p&+»~p as a
function of the magnetization is given in Fig. 1, and the
comparison with the data on nickel will be made in
Sec. 7.

2' C. Kittel and J.H. Van Vleck, Phys. Rev. 118, 1231 (1960}.
'4 ln the antiferromagnet the ground state is not one of anti-

parallel arrangement of spins, but contains zero-point Quctua-
tions. P. Pincus I Phys. Rev. 113, 769 (1959)j has shown that this
replaces the denominators in Eq. (51) by the values in the fully
antiparallel arrangement. But as this equation is then true at any
temperature, Pincus shows that it can be evaluated at O'K, and
the properties of the antiferromagnetic ground state eliminated,
thus removing the apparent complication of the antiferromagnetic
ground state and restoring Eq. (51).

2~ E. R. Callen, J. Appl. Phys. 33, 832 (1962)."E.R. Callen and H. B. Callen, J. Phys. Chem. Solids 16,
310 (1960).

This relation constitutes the proof, as shown by Kittel
and Uan Uleck, 23 that the magnetostriction coefIicient,
like the anisotropy coe%cient K&, should follow the
l(l+1)/2 power law. Pe

Though the proof of Eq. (51) is rigorously valid
only for small perturbations, and at low temperatures,
an exact calculation" for the case of a spin one Hamil-
tonian shows that, for the model employed, the
l{l+1)/2 power law is fairly accurate even for rela-

tively large perturbation, and is roughly followed al-

most up to the Curie temperature.
In a previous paper" we have also calculated. the

equivalent classical average, (V«r&'), in the internal
field approximation, and shown that

I&+;[3(T,/T) mp]
(V&&r& )= =—I&»+»&p[3(T,/T)mp], (52)

I,&,[3(T,/T) mp]

The effective anisotropy coeff&cients Eq. (21) and
the specific heat Eq. (22) involve sums over li and lp

consistent with a given l; consequently, although the
individual B;&," fol,low the l(l+1)/2 power law, the
effective anisotropy coefficient and specific heat need
not behave so simply. In fact, inserting the low-tem-
perature approximation (Eq. 51) for the temperature
dependence of the B;,&" into &«'" (from Eq. 21), and
using the fact that in this temperature range mo" is
approximately equal to 1—nemo, we find

l (l+1)
~ eff g e&f(0)

2 &«"«(0)

I &i +1& i &i +1&)—pZZE +
I ~le~2 2 2

' ~g, 21 ~j, 22

X {Imp . (54)
r& "'(0)c,"

The quantity in the square bracket is the effective
power of the (sublattice) magnetization.

The temperature dependence of the magnetoelastic
contributions to the specific heat can also be found in
the low-temperature region with the same generality.
g"e have that

g2- ff
K~

Cv =Cv,li —T 2
8T2

(55)

There are magnetoelastic contributions both to the
isotropic and cubic specific heat, though K~ contributes
only to the anisotropic terms. If we let

then

Cv ——Cv~+P Cv'It"',
l=o

C v' = T(&&'/&&T')r&;"—

(5&i)

(57)

I I

I .9 .8 .7 .6 .5 .4,5,2,I 0~ ITlo

FIG. 1. The reduced hyperbolic Bessel functions I(2l+1)/2 jI1/2 as a
function of the reduced magnetization mo. 1=2, 4, 6.
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where R~" is again given by (21b) or at low tem-

peratures, by (54).
In the low-temperature region in which this power

law is appropriate the magnetization of a ferromagnet
varies with the temperature, according to spin-wave

theory, as
@so(T)=1—rT'".

Hence, when spin-wave theory applies,

1 1
fyy — Q BQ, ] Ey

3 cg

1 —Q 8,,
' E'—+X "'), (62b)

(15)"'co» ~3

11 2 1
e..=-—g B0( E~ '+ —g Bo, '&Ep'. (62c)

3 co ~ 3(5)'"co& ~

The external shears, which are proper basis functions
for the e representation, are found directly by Eqs.
(60) and (61c).

Letting $, be the direction cosines of the measure-
lg(fan+1) l2(f2+1)

i/2 9 ment direction with respect to the cubic-crystal axes,
~ 0 ~

the fractional change in Length of the crystal at satura-
tion is given by

The coeScient r has been evaluated for the cubic
lattices. "

For an antiferromagnet spin-wave theory replaces Eq.
(58) by an exponential temperature dependence, whence
Cy' also depends exponentially on the temperature.

5. EXTERNAL STRAINS AND MAGNETOSTMCTION

1 1
aE al,

3c a

(63)

e;" 0= P Bo,~"E;"', p=n, y, «.
coP

(60)

To convert to the conventional strains we recall that

The external strains support only the representations
0;, y, and e, and are indicated by the modes numbered
zero. In this case Eq. (16) becomes

1 1 1—Q B—E ,,
''+E ')3,'

(15)'"co& ~ v3'

2 1
+ —Q Bo i"Ei' '$s'

3(5)'"co& &

that

'——traceE= b V/'V= c„+c,„+~,„ (61a)

(61b)
co'

and that
=

Oyer) E3 ' = 6~@. (61c)

1 1
e,g=- —Q Bo )~E,~'

3c a

By these relations the external strains can all be found
in terms of the elastic coefFicients and the magneto-
elastic coupling coefFicients. They depend upon the
temperature through Eq. (15) and upon the magnetiza-
tion direction through the factors E;"'(g). By means
of Eqs. (61), one derives readily that

The elastic constants co~ are related to the conventional
elastic constants as in Eq. (6). These results are similar
to those of Becker and Boring' Kittel' I.ee," and
Birss."

The Kubic harmonics are convenient for theoretical
analysis because they are orthonormal, relate the
magnetostriction coefFicients simply to the magneto-
elastic coupling coefFicients, and separate the various
temperature dependences. However, they are not the
polynomials in terms of which magnetostriction is
usually expressed. For convenience, we now recall the
conventional definitions and we give the explicit rela-
tionships between the two sets of polynomials. To avoid
reference to a fiducial state of random alignment, we
choose magnetostriction coefFicients with no corrections

~ C. Kittel, Rev. Mod. Phys. 21, 541 {1949).~ E. W. Lee, in Reports on Progress in Physics (The Physical
Society, London, 1955), Vol. 18, p. 184.

R. R. Itirss, in Advances in Physics, edited by ¹ F. Mott
(Taylor and Francis Ltd. , London, 1959), Vol. 8, p. 252.

'~ J. Van Kranendonk and J. H. Van Vleck, Rev. Mod. Phys.
30, 1 (1958).

1 1 1—E 8 p X"' E;. '), (628)—— '

(15)'"co& ~

'
v3'
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+—
3(5)'/'

1 2
+27',2 bg+ +17.2(22

(15)'/' 3(5)'/2

+A2LE2 "$1/2+ c.p.1+~2AgE1 '
1 1

+4 — 4,'+ 4,")4,
3(5)1/2 (15)1/2

for "average values. "Let

M 1 1
2,"+ 4,' )4,3(5)'" (15)"'

Then,
A1= (1/cp7)B9, 27,

Ag ——(1/cp') Bp, g',

Ag ——(1/cp )Bp,4,
A4= (1/cp7)Bp, 47,

Ap ——(1/cp')Bp, 4',

A, = (1/cp )Bp,p,
A7 = (1/cp7)Bp, p7,

Ag= (1/cp') Bp, g',

Ag ——(1/cp') Bp g. '.

(66a-i)

1+(- E1& 4—
3 (5)1/2

1 2+ 7,4 ( 2+ Itg, 4(22
(15)1/2 3 (5)1/2

On the other hand, the magnetostriction is usually de-
veloped in homogeneous polynomials in the direction
cosines of the (sublattice) magnetization, f,, as

+Ap/Eg "hing+ c.p.]+2A4&1 '
1

y4, — E"+ 'E")4
''

3 (5)1/2 (15)1/2

1+(-
3(5)1/2

1 2
IC 7 ' $22+ %'7'$22

(15)"' 3(5)'/2

+ASLIB ' $182+c p j+A9L+3 $182+c p ] (65)

bl/l=C1+, f $ +Cg(11$2$1$2+c p ).
+Cg(f1't 2'+c p )+.C.4 Q, f,'$,'
+Cp($1/2/3 $1)2+C.p.)+Cpf1 f2 f 3

+C7 p; /;P$P+ Cg 0 1f gf 2'"c7$2+ c p )
+Cg(f 1'h'bh+c p ) (67)

This js the form given by Birss~ and by Vautier. "
The matrices which transform the C; into A; are, from

and F,

0 2X3/7

2 X31/2

0
5X71/2

—2&3'/2

5X11(7)"'

5/7

2X5X3'/'

C3

0

0 0

7X3'/'

4X21/2

C4 A4,
7X11 & (42)'/2

4X21/2

and from I'„
0 0

7X11(13)'/2 7X11(13)"'

2(2XS)
C7

11(7X13)'/2

(68)

(3X5)1/2 7 (3X5)1/2 3X7(3XS)'/' 7(3X5)'"
C2

3X7X5'/2 7X].].X51/2 7X11X5'/2

Cs
3X11(2X3XSX7X13)'/' 11(2X3X5X7X13)'/'

(47r)1/2
(69)

3' R. Vautier, thesis, University of Paris, i954 {unpublished).

Cg
(2X3X7X11X13)'"-. (Ag



The matrices which eGect the inverse transformations are, from I' and F~.

&0

2 X31/2

3X31/2

7X31/2

—7(13)'i'

4X21/2

7 X11(13)"'

(SX7X»)"'
AI

2X2/2

(7 X13)'"

2(2XS)'i'-

3(5X7X13)«s ' A4 = (4~)'" Cg,
2 X21/2

11(7X13)"-

(70)

and from I',

0 0

0 0

2(2XS)"'

11(7X13)'"

2(2XS) i
C7

'(3XS)'" —(3/2)5"'

0 (3X'IXS'i')/2

(2X3XSX7X13)'"/16 (3,,''16)(2X3X7X11X13)'" As Cs

—(9/8)(2X3XSX7X13)'" —(3/8)(2X3X7X11X13)'" As Cs= (4pr)'" . (71)
(3X11/16)(2X3XSX7X13)"'-(3/16) (2X3X7X11X13)'" As Cp

0 —(2X3X7X11X13)'" .C9.

CI= —~~.8X10 ', C2= —73X10—',
C3= —7 8X10 ', C4= —7.5X10 ',

Ca=15 4X10 6

(72)

"- R. M. So@orth and R. W. Hamming, Phys. Rev. 89, 865
{1953}.

7. NICKEL

Although the theory has been developed explicitly
for an ionic model, one might hope that the general
features would remain true for the case of a metal,
and that the temperature dependence of the magneto-
elastic contribution to the anisotropy would explain
the extraordinarily rapid variation of the observed
anisotropy of nickel. This is not the case. Becker and
Doring have estimated the contribution to the ani-
sotropy from the external strains and found it to be an
unimportant part of the total anisotropy of this
material. Furthermore, because of their structure,
neither nickel nor iron is capable of supporting internal
strains which are even under inversion.

Although the magnetoelastic coupling seems in-
capable of accounting for the temperature dependence
of the anisotropy of nickel, there is approximate agree-
ment between the theoretical and the observed tem-
perature dependence of the magnetostriction, as we
now show.

The magnetostriction of a single crystal of nickel at
room temperature was reported by Bozorth and
Hamming32 who fitted it to a five-constant series
difFering slightly from Eq. (67). Converting to the
latter series, the results of Bozorth and Hamming are

Ai=(kr)'"Ci,

(3X5) '~'A —(4pr)'"C, .
(73)

Furt. hermore, from Eqs. (66a) and (66b),

Ai ——(1/c p&) Bp, s&,

As= (1/cp')Bp, s'.

3' R. R. Birss and E. K. Lee, Proc. Phys. Soc. (London} 76, 502
(1960}.

~ E. W. Lee and R. R. Birss, Proc, Phys. Soc. (London} 78,
391 (1961}.

On the basis of this result, Birss and Lee" measured the
magnetostriction of nickel as a function of temperature
and fitted their data, to the series of Eq. (67), ter-
minated at C2 ~ Their room temperature values are
C1= —77.2X10 ' and C2 ———70,0X10 ', in approxi-
rnate agreement with Bozorth and Hamming. Lee and
Birss'4 applied the analysis of Kittel and Van Vleck23

to their measurements, and showed that the magneto-
striction coefficients could be fitted by a polynomial in
the magnetization with powers 3, 10 and 21, corre-
sponding to 1=2, 4, and 6 terms. While Lee and Birss
plot their data as a function of temperature, we prefer
to use the magnetization as the independent variable,
and to employ the modified Bessel functions, "which
are more appropriate at higher temperatures, while
behaving properly at low temperatures.

Ignoring higher terms, we have from Eqs. (70) and
(71) that
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Then, from Eqs. (15) and (52),

(75a) .o

Thus

+c
A, =—o, ,,'(,(, 3—,).

c44 T

(cii—cio) (T) Ci(T) Tc
=Is(2 3—mo,

(cii—cio)(0) Ci(0) T

c44(T) Co(T) Tc
E(, 3——mo,

c44(0) Co(0) T

(75b)

(76a)

(76b)
7

l .9 .8 .7 .6 .5 A .5,2 .L 0~ iho

as, at T=O'K,
I(oi+i)(o(~) = 1.

The elastic constants of nickel have been measured
by Alers, Neighbors, and Sato."To express Eqs. (76a)
and (76b) in terms of the magnetization we employ the
magnetothermal measurements of Pugh and Argyle, '6

Foner and Thompson, 3~ and P. Weiss, " in comple-
mentary temperature ranges.

In Fig. 2 we plot

FIG. 2. (a) Experimental magnetostriction times elastic con-
stant (F„) vs experimental magnetization. See Eq. (76a) of text.
(b) experimental magnetostriction times elastic constant (F,) vs
experimental magnetization. See Eq. (76b) of text. (c) theoretical
I5/2 vs m0. Elastic Constants: Alers, Neighbours, and Sato,
reference 35; Magnetostriction: Birss and Lee, reference 33;
Magnetization: Pugh and Argyle, reference 36; Foner and Thomp-
son, reference 37; P. %eiss, reference 38.

with the corresponding magnetoelastic coupling co-
efFicients

L( — ) (T)/( — ) (o)jLC (T)/C (o)3

as a function of the experimental magnetization in
curve (a) and

Pc44(T)/c44(0)][Co(T)/Co(0) ]

Bo,.&——(4ir)'"38X 10' ergs/cm',

Bo,o'= —(4(r)'(o28X 10' ergs/cm',

Bo,4"= (4r)'"1.0X 10'—ergs/cm',

I3 '=(4ir)'('1. 6X10' ergs/cm'.

(79)

in curve (b), combining the measurements of the elastic
constants, magnetostriction and magnetization, and
eliminating the temperature explicitly. On the same
figure, as curve (c), we also show the modified Bessel
function Io(o/Ii(o as a function of the Langevin mag-
netization. Birss and Lee found a broad maximum in
~Ci~ versus T which is only partially reduced by
the temperature dependence of the elastic constant
(c»—cio). The 1', magnetostriction coeflicient also
shows evidence of the mixing in of a higher degree
term at low temperatures. While the theoretical curve
has an initial slope of 3, curve (b) initially drops
approximately in accordance with the tenth-power law.
At room temperature nickel has a reduced magnetiza-
tion of about 0.935, and from Fig. 1, at this magnetiza-
tion Io(o—0 8and Io(o—0.5. T. hus, from the data of
Bozorth and Hamming and on the basis of the pre-
ceding analysis one might expect that at O'K,

Ci(0)=—73X10 ', Co(0)=—87X10 ',
(78)

C4(0)=—14X10 ', Co(0)=29X10 '

"G.A. Alers, J. R. Neighbors, and H. Sato, J. Phys. Chem.
Solids 13, 40 (1960).

'~ E. W. Pugh and B. E. Argyle, Suppl. J. Appl. Phys. 32, 334
{1961)."S.Foner and E. D. Thomson, Suppl. J. Appl. Phys. 30, 229
(1959).

38 P. gneiss, Actes Congr. Intern. Froid 1, 508 (1937).

Magnetostriction measurements in progress at the
Naval Ordnance Laboratory will determine if the in-
clusion of the higher degree terms does indeed resolve
the deviations from the theory, particularly in the case
of the F, terms.

Employing these coefficients in Eq. (21b), one finds
the magnetoelastic contribution to be a negligible frac-
tion of the fourth degree anisotropy of nickel at O'K,
and to be of the correct sign but still too small to
account for the change in sign of ~4 of nickel at high
temperatures.

8. THE SYMMETRY OF THE DISTORTED CRYSTAL

Of the 48 symmetry operators of the cubic group
many are d'estroyed by the external or internal dis-
tortions produced by the magnetoelastic coupling.
These distortions generally constitute small perturba-
tions on an essentially cubic structure. The symmetry
of these distortions, in principle detectable by x rays,
provides information on the magnetoelastic coupling
in the crystal.

The inversion operation is an element of the original
cubic group, and it remains an element of the dis-
torted crystal. We, therefore, need only consider the 24
proper rotations of the cubic group. These 24 symmetry
elements are listed in Table V. We also list the ten
typesofstraincomponents; ~ '6~ 6y~ ~2~ 6y '62 '63',
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TxsLE V. Symmetry elements of the cubic group. A plus sign
indicates that the basis function goes into plus itself under the
particular operation.

r. r&. r„r, rg

(1) (2) x y z x y s

C, : ~ t rough (~) +
C, :y () ++++ + +
C2. s (~) + + + + + +
C4. x
C4. x
C4. y
C4.. y
C4. s
C4. z

C2. LOiij
C, : Loiil
C, : P101j
C2. $101j
C2. $1101
C2. L110$

C3 piiij
C3: Liiij
C, : Liiij
C3: f iiig
Cg: I iiij
C3: t iiij
C3: L111j
Cg: $112j

J inversion

(~/2)
(--/2)

(m/2)

(—~/2)
(~/2)

(—/2)

(m) +
(x) +
(x) +
(~) +
(x) +
(x) +

(2~13) + +
(—2~/3) + +
(2/3) + +
(-2-/3) + +
(2/3) + +
(—2x/3) + +
(2/3) + +
(-2-/3) + +

&j'; &2'; ~3'. For each such strain we indicate by a +
those symmetry operations which leave it invariant.

If the crystal supports an internal strain of type ~t'

then the distorted crystal will be invariant only under
those operations which leave ~&' invariant; in this case
E, 3C2, SCS, J, 3JC2, SJC3. Thus, the crystal will have
the point group Tq (or (2/rN)3] —provided, of course,
that no other distortions are present.

If several types of distortion are simultaneously
present the only symmetry elements which survive are
those to which every distortion is symmetric; that is,
only those operations in Table V which have a + under
every nonzero distortion. Thus, if both Fp and F~ dis-
tortions are induced the surviving symmetry operations
are E, BC2, J, 3JC2. The crystal then has the point
group D2i )or (2/ns) (2/ns) (2/ns)].

In the above discussion, it is presumed that the
several e's in a multidimensional representation are
unequal. However, if, for example, el'= e2'= e3'WO
additional symmetries may appear, which cannot be
analyzed simply on the basis of Table V. In this case
the procedure for finding the surviving symmetries
would be to write the full 3X3 matrix for each sym-
metry operation in the F, representation, and to find

which of these have the vector (1,1,1) as an eigenvector

with an eigenvalue of +1.Doing this explicitly we find

that the surviving operations are the twofold rotations
around the L011], L101], and L110] axes, the threefold

rotations around t 111], the identity, and the product
of all of these operations with the inversion. The cor-

responding point group is Day for 3 (2/m)].
Of particular interest are those specific directions of

the (sublattice) magnetization for which certain dis-

tortions vanish. The crystal is then more symmetric
than it is for arbitrary directions of the (sublattice)
magnetization.

Consider the one-dimensional representation Ftt . The
distortion ej' is proportional to a sum of Kubic har-
monics E&', for various l. But E&' has six nodal planes;
all those planes containing a face diagonal of the cube
and the axis perpendicular to that face diagonal.
Hence, the distortion e~' vanishes if the (sublattice)
magnetization lies in any of these planes.

Similarly ei& vanishes if the (sublattice) magnetiza-
tion lies in either of the two planes containing the z

axis and one of the face-diagonals perpendicular to it.
The strain ei' vanishes if the (sublattice) magnetiza-

tion lies in either the x-z plane or the y-z plane.
And finally ei' vanishes if the (sublattice) mag-

netization lies in any of the four planes containing the
z axis and either a face-diagonal or a cube axis per-
pendicular to the z axis.

The locus of the directions of (sublattice) magnetiza-
tion for which other strain components (such as ei')
vanish can be obtained from the above by a simple
permutation of the coordinates.

%e now examine the particular crystal symmetry
which results if the (sublattice) ma, gnetization lies
along one of the principal symmetry directions of the
cubic system; that is, along L111],L001], or L110].

~e first consider the (sublattice) magnetization to
lie along the cube diagonal L111].This direction lies
in the nodal planes for et', e~&, e2&, ~~ ', e2', and e3'.
Furthermore, examination of the Kubic harmonics of
F, shows that ~~'=&2' ——e3'. This is a symmetry which
we have discussed previously, the resulting point group
being Day Lor 3(2/m)].

If the (sublattice) magnetization lies in the $001]
direction it lies in the nodal planes of e&', ~2'r, e~', e2', e3',
~&', ~2', and ~&'. That is, only e&'y can be nonzero. The
surviving symmetry elements are, from Table V, the
identity, the three twofold rotations around the cube
axes, the fourfold rotation around the z axis, the twofold
rotations around L110] and L110], and the product of
each of these with the inversion. The point group is
D,, Lor (4/15) (2/m) (2/m)].

Finally, consider the (sublattice) magnetization to
be in the L110] direction. This direction lies in the
nodal planes of e& f2~ 6y c2', cy', and &2'. Thus, only
e~&, e3', and ~3' can be nonzero. From Table V we see
that these three strain components are simultaneously
symmetric only to E and to the twofold rotation around
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the s axis (and the product of these with the inversion).
Hence, the point group has only the very low sym-

metry of C2~ (or 2/m). If the particular crystal did not
support an internal strain belonging to Fq, however,
the additional symmetry elements of twofold rotation
around L110] and $110] would survive, and the point
group would be Dqq Lor (2/m)(2/m)(2/m)]. Thus,
examination of the crystal symmetry, by I-ray dif-

fraction, as a function of the direction of (sublattice)
magnetization can give interesting information as to
the magnetoelastic coupling.
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Infrared Light Stimulation and Quenching in ZnS Phosphors*
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The effects of infrared on the luminescence of three ZnS phosphors (activated with Cu, Ag, and Cu-Pb)
at liquid nitrogen temperatures has been investigated. The transient stimulation and permanent quenching
(or enhancement) was determined at various wavelengths in the emission spectrum of the ultraviolet-
excited phosphors. Two infrared bands were used, one at about 0.75, the other at about 1.3. The effect of
the infrared varies with the emission wavelength but not sufficiently to explain discrepancies with the usually
accepted phosphor model. A modification of this model consisting of a coupled trapped electron-ionized
activator complex is proposed, and the consequences are discussed.

I. INTRODUCTION

N a previous paper (hereafter called I), Kallmann and
. . Luchner' have reported on measurements concern-
ing the mechanism of ir (infrared) light stimulation in
ZnS-type phosphors. The main result was that such
stimulation cannot be brought about by an independent
direct release of trapped electrons as was often assumed.
It was shown that many effects concerning stimulation
could be understood with the assumption that the ir
somehow produces a faster recombination between con-
duction electrons and ionized activators, which leads
to a transient increase in luminescent intensity. In order
to provide a model for stimulation and quenching, it is
necessary to 6nd out more about the mechanism by
which the ir produces faster recombinations and quench-
ing at the same time, as indicated by many experiments.
The present paper deals with this question and proposes
a model for trapping of electrons and this release by ir
which is somewhat diA'erent than envisaged up to
now.

Before the experiments and their interpretation are
given, we will summarize numerous discrepancies be-

*Work supported by the U. S. Army Signal Corps, under
contract No. DA 36-039 SC-85126.

)On leave from Laboratorium fur technische Physik, Tech-
nische Hochschule, Miinchen, Germany.

f Also at Department of Physics, Hunter College, New York,
New York.' H. Kallmann and K. Luchner, Phys. Rev. 123, 2013 (1961).

tween the "old" model which has been rather success-
fully used up to now, ' and results already obtained.

(1) Both stimulation and quenching of luminescence
and photoconductivity by infrared evidence the same
infrared wavelength dependence~6 showing that they
are produced by the same elementary process. This can-
not be understood by using the assumption that stimu-
lation is due to the independent release of electrons from
traps and that quenching is due to the independent re-
lease of holes from ionized activators.

(2) The equilibrium quenching of luminescence (due
to infrared) is less than that of the photoconductivity';
if the light emission is proportional to the product of ~
and I'~ (see paragraph 4 below), light quenching should
be greater.

(3) Infrared stimulation of luminescence after excita-
tion is not instantaneous but has a 6nite rise'; this

' M. Schon, Z. Physik 119, 463 (1942); H. A. Klasens, Nature
158, 306 (1946).' I. Broser and R. Broser Warminsky, Z. Elektrochem. 61, 209
(1957).

4 F. G. Ullmann and J. J. Dropkin, J. Electrochem. Soc. 108,
156 (1961).

'H. Kallmann, B. Kramer, and A. Perlmutter, Phys. Rev.
99, 391 {1955).' P. Wachter (to be published).' B. Kramer and H. Kallmann, International Conference on the
Luminescence of Organic and Inorganic' j/Iater&s, edited by H. P.
Kallmann and G. M. Spruch {John Wiley R Sons, Inc. , New York,
1962).' M. Sidran, Ph.D. thesis, New York University, 1955 (unpub-
lished), and H. K.allmann and E.Sucov, Phys. Rev. 109,1473 (1958).


