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A general perturbation theory of the statistics of spin interactions is developed in the form of a linked
cluster expansion with particular emphasis on the Ising model ~ The theory applies to the evaluation of the
expectation value of arbitrary spin functions as well as of the free energy. The thermodynamical consistency
of the perturbation expansion is shown to arise from (1) variational principles satisfied by the free energy
after a "renormalization procedure" has been carried out and (2) a generalized "Ward Identity" between
renormalized quantities. These results are used to discuss inconsistencies in recent high-density theories of
ferromagnetism and an improved theory obtained by the summation of all the convolution diagrams (nodal
expansion) is brieQy presented. The applicability of the method to general quantum mechanical many-body
problems, including the theory of the Heisenberg model of ferromagnetism, is shown.

I. INTRODUCTION

ECENTLY, a perturbation approach to the study
of spin interaction has been developed by Brout'

based on a semi-invariant expansion of the partition
function. The graphical representation of this expansion
has been further analyzed by Horwitz and Callen. ' In
a subsequent study of the free energy of a many-fermion
system by arout and the author, ' it appeared that the
semi-invariant expansion of the partition function was
conveniently supplemented by a method relying pri-
marily on the use of quantum mechanical propagators.
This established a link with the more usual many-body
techniques analogous of those used in quantum field
theory.

In this paper we develop a complete perturbation
theory from a propagator-type point of view with the
Ising model Hamiltonian serving as a reference. This is
done for the following purposes:

(a) A greater simplicity and generality is a,chieved as
compared to the original expansion for the Ising model.
Many results of Sec. II, III, and IV are generalization
of those obtained by Horwitz and Callen. '

(b) The thermodynamical consistency of the pertur-
bation expansion can be discussed.

(c) The method can be immediately generalized to
other problems as, for instance, thes tudy of the Heisen
berg quantum mechanical model of ferromagnetism or
the many-body fermion or boson system.

In Sec. II, a linked cluster expansion for any average
of functions of spin operators is established for the
Ising model of arbitrary spin in presence of an external
magnetic field. The result is analogous to the Horwitz-
Callen' rearrangement of Brout's' original theory.

In Sec. III, all the reducible linked graphs are elimi-
nated essentially by a "renormalization procedure"
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similar to that of Horwitz and Callen. ' In particular,
simple expressions for the magnetization and the energy
in terms of renormalized quantities are given.

The free energy is then expressed in terms of the
renormalized quantities in Sec. IV. It is shown, in
general, that the free energy satisfies an in6nity of
variational principles and that these principles insure
that the magnetization can be obtained correctly from
the free energy. This can also be easily satisfied without
summing the complete set of graphs provided this is
done in a consistent way de6ned in the paper.

The thermodynamical requirement that the suscepti-
bility be equal to the fluctuation of the magnetization is
studied in detail in Sec. V. This important consistency
condition is shown to be a consequence of a generalized
"Ward identity"4 between renormalized quantities. The
violation of this theorem in high-density limit theories of
ferromagnetism" is related in Sec. VI, to inconsistencies
of those theories. This is the motivation of presenting
the sum of all the convolution diagrams (nodal expan-
sions) as an improved high-density expansion.

Finally in Sec. VII, the general structure of the
perturbation approach is shown to be valid in quantum
statistics and, in particular, for the Heisenberg model.

II. LINKED CLUSTER EXPANSION FOR
P-SPIN OPERATORS

4Ve are interested in the calculation of the expectation
value (0~) of a p-spin operator 0„. 0„ is a product
of pp, where p; may take the values 1, 1—1/s,
1—2/s, ,

—1 and i= 1, 2, . . . , n; the value s of the
spin is here taken arbitrary instead of the conventional
value —,

' for the Ising model in order to stress the
generality of the expansion. Typical O„are p, and p, ;p,,".
The former gives the magnetization and the latter
enters the calculation for the energy and the suscepti-
bility. The Hamiltonian is

(2 1)

4 J. C. Ward, Phys. Rev. 78, 182 (1950).' R. Brout, Phys. Rev. 11S, 1009 (1960); 122, 469 (1961).
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or
(exp+(R' P,;0;,p;p;) jO„),(0„)=, (24)
(exp'(R Z'1 0'Rplpl) j&o

where we have defined the unperturbed average

tr exp( PH0)0o—
&0.&o= = trppOp.

tr exp( —PH0)
(2.5)

The reason for the above-mentioned choice of Hp is, of
course, that the density matrix pp is factorizable into a
product pp=g; P pp' of density matrices pp' relative
to a single spini.

%e begin the perturbation development from Eq.
(2.4) by expanding both numerator and denominator as
power series in P. Thus

where e;; is the exchange integral taken between two
spins and 3C is an external magnetic ield (measured in
suitable units); then

(Oo) = tr exp( —PH)0„/tr exp( —PH) = trpOR, (2.2)

where p is the density matrix of the canonical ensemble.
%e take now as the unperturbed Hamiltonian Hp the

term —K P; p; in (2.1) where X is to be put eventually
to zero at the end of the calculation if no external field
is present; then from (2.2)

tr exp( —pH0) exp'(R p'1 0'1p'p1)]00
(0„)= (z.3)

tr exp( —pH0) exp f8('0 p;; 0;,p;p, ))

(p)0 ——Ml',

(pp)p= M10M10+MR0,

(ppp)0 Ml Ml Ml +3M1 MR +MR .
(2.10)

%'e have not written the index k since the averages as
well as the semi-invariants are independent of the
pa, rticular spin considered. Equation (2.9) for (2, 10)]
may be inverted in a well known way' to give M„ in
terms of the moment (p"); the first few M„are given,
for example, below:

Ml' ——(p)0,

M"= (p')o- &p)o',

Mo'= &p'&0 —3&p'&0&p&0+2&/ &0'

(2.11)

For spin ~~ these may be expressed in terms of the re-
duced unperturbed magnetization Rp..

Mgo=Rp,
o

Mop = —2Rp(1 —Rpo).

(2.12)

In general, the evaluation of M„ is greatly simplified
if one uses the following formula

invariants in the well known Ursell-Mayer fashion'

(2 9)

where the sum is of all splits of the n factors into groups
of p; factors; for instance:

00 00

&0„)= p (a;„"0„)o 2 &ff;.1"&o, (2.6)
n o gt ap ~f

with
(2./)

This leaves us with the evaluation of averages of product
of the form

&P;P«P«P« 1
" P.)o= &i '&0&P«P«P«&0(PR)0 "&P.)0,

iNk/lW p, (2.8)

where the equalities result from the factorizability of pp.

Clearly, were it not for the occurrence in the expansions
of the numerator or indices already contained in 0„the
average (Oo)0 would by (2.8), factorize out of the
numerator and the factor multiplying (Oo)0 would
cancel against the denominator leaving (Oo)=(0„)0.
More generally, the possibility of finding factors in the
expansion of the numerator canceling against the de-
nominator is prohibited by the fact that (p«")W(p«)". A
similar situation arises in the theory of quantum me-
chanical propagators and there a cancellation theorem
(the linked cluster expansion) can still be obtained by
the use of Wick's theorem; here we use a more general
procedure analogous to the one used in a previous study
of the free energy of a many-body fermion system. '

We represent (pP) as a sum of products of semi-

Mop ——do lnZo'(x)/dxo, (2.13)

where x=p~ and Zp'(x) is the "unperturbed partltlon
function" (evaluated for H;„,=0) for one spin i, that is,

Zp'(x) = tr exp(p;x) =
sinh fx(2s+1)/2sj

(2.14)
sinh(x/2s)

&
")o=

Zp'(x) dx"
(2.15)

from which (2.13) follows immediately by straight-
forward differentiation, as shown in detail in refer-
ence (3).

Fro. i. Graphical representation of (1/10!)($)"pv„;v;,vIP
Xv; v v v „v, (N ) {M0)6(M,0)2.

'3. Kahn, thesis, Amsterdam 1938 (N. V. Noord-Hollandsche
Uitgevers-maatschappij), Chap. III.

fWe have, of course, lnZp(x) =pl lnZ0'(x) for the total
unperturbed partition function. $ Indeed, from (2.14)
we have

1 d "Zp'(x)
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We now represent each term of the power series ex-

pa, nsion of the numerator of (2.4) in terms of graphs
after expanding the averages in terms of semi-invariant
following (2.8) and (2.9). To each factor viPv;; we as-
sociate a bond i j—and to each semi-invariant M„(i)
we associate a vertex labeled (i) with p lines coming to
it. Such factors in the nth order of the power series
expansion arise from n L

0 (~)

(b}

1
(2) (Pvij)(Pvii) ' ' ' (Pvma)(liipjvlclii ' 'pmlinOv)o~ (2.16)

nt

where some indices may be equal. We have shown in

Fig. 1 a graphical representation of such a term where

0„is taken to be p„p, The total contribution of a given

graph to the numerator can then be obtained by (1)
multiplying all the —,'Pv;; related to the lines by all the
M„" related to the vertices, (2) dividing by n!, (3)
summing over all spin indices without any restriction,
and (4) multiplying the graph by the number of terms G
in the expansion that give rise to the same graph. In
Appendix A, we show that this number is 6=2"nt/'g
when g is the number of symmetry operations trans-
forming the graph into itself (the order of the symmetry
group of the graph).

We define now a linked graph as a graph that does
not contain any disconnected part; for instance the
graph of Fig. 1 is unlinked and the graph of Fig. 2(a) is
linked (a graph is linked even if it is connected only
through the spins contained in O„as in Fig. 2(b). From
the above-mentioned rules it is clear that the 1/n!
coming from the expansion of exp+ P;,, —,'v, ,p,p,j
cancels with the n.' arising from the 6 factor of the
graph. So an unlinked graph is equal to the product of
all the parts unlinked to the first (the one containing

0„) and the first one. But the contribution in an un-

linked graph of all the parts unlinked to the first is
exactly the contribution of the denominator. Thus only
the linked graphs that contain O„contributes to (0„).

We now summarize the linked cluster theorem which
we write in the symbolic form

FIG. 3. Contributions to Qp,;) (a) p'Z~ 0(v-fvf v v ~0;)
X(M2)6 1 g=ij; (b) pq Zl, (v lh)'M1'M/M30v Lg=2j; (c) !8'g

(v;))'(v; )'(v;„)'(M2 )'M3 Ms', Lg=16j.

being the number of lines arriving at the vertex. (Each
fixed point is to be counted as a line. )

(d) To each graph attribute a factor 1/g.
(e) Sum without restriction over all spin indices

(except, of course, over the p fixed ones).

These results are analogous to the graphical expansion
of the free energy obtained by Horwitz and Callen' by a
rearrangement of Brout's' initial expansions.

One may notice that the above expansion is given
in terms of the M„' which are given functions of the
external field K )for spin -', for instance, M'v'= M„'(Eo)
and Rv ——tanht!K). The linked cluster expansion is thus
in a certain sense analogous to an expansion in a grand
ensemble where 3C plays the role of a chemical potential
and where the magnetization (ii) is not held fixed during
the perturbation.

III. RENORMALIZATION —ENERGY AND
MAGNETIZATION

We shall call a graph reducible at a vertex i if it can
be split into difI'erent pieces by cutting the graph at i
by a line that does not cut any bond. The parts left
after the graph has been completely reduced will be
called the irreducible parts of the graphs (Fig. 4) and a

by giving a set of rules exemplified at Fig. 3.

(2.17)
(b)

(a) Draw all the possible /inked graphs ending at p
fixed points (the p spins contained in 0„).

(b) To each line v jattrib—ute a factor Pv;;.
(c) To each vertex attribute a semi-invariant 3f„v, yg

FIG. 2. Linked
graphs contributing
to (y~p, ).

(a} (b)
FIG. 4. Reducible and irreducible graphs. (a) Reducible

graph; (b) irreducible graph; (c) irreducible parts.



570 F. ENGLERT

G,
(a)

l'iG. 5. Self-energy
diagrams.

Fr@. 6. Contribution to M2. A self-energy part 630 attached to a
vertex M2' gives a M~ contribution to M2.

graph that cannot be reduced will be called irreducible.
The vertex i will be called a point of reducibility.

It. is clear that we could obtain an expa, nsion involving
only irreducible graphs if we were able to sum all the
irreducible parts articulated to a given vertex. We shall
show that such a procedure amounts to a simple re-
definition M„of the semi-invariants M„attached to
an n-order vertex and we shall call M„ the renormalized
semi-invariant of order n. '

We define the nth order self'-energy G„as the sum of
all linked diagrams fixed at an nth order vertex, which
is not a point of reductibility, evaluated following the
previous rules, except for the fixed vertex which receives
a factor of 1 (Fig. 5). The contribution to M„of the
parts terminating with k lines is by (2.13)

G„OM„+g' [G'(B~/B——x~)]B"/Bx" inZO'(x).

For instance, the contribution of G3' to M2 is given by
(Fig. 6)

Ms'Gg' ——[G3'(8'/Bx') ]8'/Bx' inZj(x)

In general, the total contribution of mA. irreducible
parts of the GA, type will be

[Gp"(8'/Bx')]8 "/Bx" lnZO'(x),

together with the graph giving the irreducible G~ in
terms of the M„define the renormalized semi-invariant.
9'e have thus obtained an irreducible cluster expansion
for all the (0„)if we replace everywhere in our previous
rule N„by M„and draw only the graphs irreducibly
linked to the fixed p vertices. We write this symbolica, lly
as

(o.)= Z((p». )";0.). ..
n,=0

(3 4)

Many results can be expressed simply in terms of the
GI, and MI„ for instance, the magnetization is directly
given by M& as obtained from (3.3).

We now express the energy in terms of the G„. The
energy is given by the 2-spin operator average (p;p, )
multiplied by ~v;, and summed over i and j. Equiva-
lently, we may also consider only all closed topologically
different diagrams and sum all the different graphs
obtained by fixing in these diagrams each line succes-
sively in both directions and by multiplying the result
by ~~. Instead of fixing a line we may calculate the total
contribution of the closed topologically difI'erent dia-
grams by fixing a vertex, thus expressing the result in
terms of the G . As there are n lines arriving to a nth
order vertex, the following formula for the energy
appears plausible

or

gL —m~

X G~"—
Bx—

where mI, I arises from the symmetry factor of the graph.
It is understood that 8/Bx operates only on lnZO'(x).
Summing all the reducible parts attached to an nth
order vertex we have-

nM„G„. (3 5)

Actually (3.5) is correct even when the symmetry of
the graphs are taken into account. This is shown in
Appendix 8 together with other topological properties
of the graphs that will be used later.

We illustrate formulas (3.3) and (3.5) by a simple
example. I.et us neglect all the G, but Gi, the justifica-
tion of such an approximation will be discussed in
Sec. VI. We thus have

M.„=exp Pa Ga' M.'(x).
I9x

(3.2) Gg ——(1/ V) Q;, Pv,,Mg ——Pv(0)M),

G„=O, n&1
(3 6)

We may now reduce all the self-energy parts and express
(3.2) in terms of the renormalized self-energy parts G&

so obtained; thus the equations

M„=exp[Pq Gk(8~/Bx")]M„"(x), (3.3)
7 3f is analogous to a renormalized propagator in field theory

because our graphs are essentially analogous to the dual of the
graphs used in field theory. That is our interaction lines corre-
sponds to points where propagators touch; these propagators are
drawn as lines because of the necessity of keeping track of time
ordering in quantum field theory. In our classical theory, however,
these lines collapse into a point which is our M or N„.

with a(0)= (1/iV) P;, v;, . We then obtain the mag-
netization curve

Ml exp[G)(8/Bx)]M/(x),
~V&= M P(x+Pv(0)M, ),

(3.&)

which is the well-known result of the molecular field
theory with the Curie temperature given by Curie-

C. Kittel, Introduction to Solid-State Physics (John Wiley R
Sons, Inc. , New York, 1956), 2nd ed. , Chap. 15.
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Weiss value Pi)(0) =1. Similarly, the same approxima-
tion in (3.5) gives the molecular field energy

(—6'/Ã) = gi)(0)Mio. (3 g)

with

so

Z(&) = tr exp( —)3(Ho+»„,(&))],

+in&(k) = %ice&= 2 Ze)' 8'eineii)'i

(4.1)

(4.2)

IV. FREE ENERGY AND VARIATIONAL PRINCIPLES

The free energy F=E—TS may be obtained from the

energy by integrating over P. It is, however, more in-

structive to deduce an explicit cluster expansion for the
free energy because this will show the origin, in terms
of graphs, of the variational principles that the free

energy satisfies.
We define

graphs. Thus, the result (4.6) applied to irreducible

graphs with renormalized vertices would amount to an
overcounting. Instead of "counting" the overcounting
we shall prove that the following expansion is correct:

(1/sV) InZ=Mp —Q M G
n~l

where Mp is obtained from (3.2) where Moo(x) is defined

as lnZo(x). Thus the overcounting introduces two
effects: (a) a renormalization of Mpo(x); (b) a counter

term —P M„G„which may be interpreted as the sum
n=1

of all the graphs with one point fixed. In terms of the
G„(4.7) may be written explicitly by using (3.5)

Pl:~F—($)/~a= ~ »Z(f)/~&= P((1/—k)».i(&))p (4 3)

where the average is taken at the value," of the coupling ~=Mo ~ M"G"+~ o nM~G~(t)e ( g)
X n=l n=l

constant. Then
o

sinh[j93C(2s+ 1)/2s]
lnZ=X ln

sinh(/BC/2s)
1

-H .i(k) dk (4 4)
p

Applying (2.17) to (4.4) with

Oo=». .(f) = —
o E*) (&' u'i &

one finds

sinh[P3C(2s+ 1)/2s]
lnZ=)V ln

sinh(PX/2s)

where the G ($) are functions of the coupling constant

f only through the explicit dependence of G„on the
v;j-bonds.

We first prove that the right-hand side of (4.g), where
the G are considered as functions of independent
variables n„, is stationary with respect to variations of
the n„ fora =M where M„ is given by (3.3). Thus, we
consider the function

@(cx„)= Mp/G&(oo. )]—P n„G„(no)
n 1

'd$
+ Q — nn„G„(—$,roo) (4.g).

ee=i 2

However, 1/2(n+1) is precisely the ratio of the sum of
symmetry factors of all the graphs obtained by 6xing,
in a closed graph, a line in all possible ways, to the
symmetry factor of a free graph (see Appendix 8). We
may then consider 1/2(n+1) as a symmetry factor for
a free graph. The evaluation of F(1)—F(0) is then
identical to the evaluation of any O„except that the In particular,
graphs are closed and considered as free. %e thus write
symbolically

gk — gj
bo'. =e*e Q G. Q eo;)iv '( )— „

j=l ggj

8M = Q M +,"pG, .
j=l

(4.10)

8Mp= Q M;bG, .
j=l

(4.11)

+Q P ((—P&i o)"; P;& &'&siesi&)o, r. (45) In general, we have from (3.3) for any variation that
2(n+1) does not affect x,

lnZ=lnZo()8~)+ E ((—PEI .o)")o,r. .
n=l

(4.6) Thus,

The expansion (4.6) is given in terms of M, tha, t is,
in terms of the unrenormalized semi-invariants. In
order to have an expansion in terms of the M„we must
reduce the graphs. This operation is here, however, not
straightforward because the free energy graphs are free
and the reduction procedure was carried out for 6xed

~@(~.) = Z LM-(«) ~.]&G-(~i) —ZG. (~i)~~—.
n=l

+h Q — —noo„G„(o,a„). (4.12)
n=l 2

To evaluate the variation of the last term we notice
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that this term is the sum of all irreducible closed graphs
evaluated using the symmetry factor of the free graph.
The variation is equivalent to fixing all the vertices
successively and replacing the o,„relative to it by a
5~„. We still evaluate the graph with the symmetry
factor of the free graph. This is, however, equivalent to
counting only the topologically diBerent graphs with
one fixed vertex together with the correct symmetry
factor of such a graph. Thus we see that the variation

of the last term is simply g G (u&)bu . We have thus
n~1

obtained

(4.13)

and if all the a~=MI„ then

~4(u-) l .-~.=0 (4.14)

So P(u ) is stationary with respect to any variation of
the o.„around the value M„.

Next we evaluate ~)M ($)]/d$, where u is replaced
by the correct M for a given coupling constant $. In
calculating the derivative we only have to consider the
explicit dependence of G ($) in the last integral because
of (4.14); thus,

dy(M„(])] 1
=—Q NM (&)G„(g)

2P ~-&

With the help of (4.19) we obtain by differentiation
of (4.7)

d 111Z
=My — Q G, (dM, /dx)

Xdx
d 'd$

n—MG(g) .
i-& dx p

The same reasoning that led to the variational principles
now leads to the vanishing of the quantity between the
brackets so that (4.1) is proved.

We now state the theorem: In any order of perturba-
tion theory (of the evaluation of the G„), the free energy
obtained by (4.7) satisfies the variational principles and
thus the relation (4.17) if one uses a "complete set" of
self-energies 6„; that is all the G„deduced from any
member of the set by fixing any vertex in a defining
graph.

This theorem is an immediate consequence of the
proof of the variational principle given above. It pro-
vides a criterion of consistency for the use of the set of
graphs to be included in a given approximation to the
free energy, namely, one must use only a "complete set"
of G„. We shall see, however, in the next section that
such a criterion is not sufhcient to define a completely
thermodynamically consistent approximation to the
free energy.

so

= (1/&) ((—P/5)& ~(k)) p (4.15)

X+$3E„($)]/d$=d 1nZ($)/dP. (4.16)

V. SUSCEPTIBILITY AND THE GENERALIZED
"VfARD IDENTITY"

Differentiating (4.17) with respect to x we obtain the
well-known thermodynamical relation

Moreover for )=0, Eg is equal to lnZp so we have
proved that Sp=lnZ and the validity of the relation
(4.7) for the free energy is established. The free energy is
then stationary with respect to any variation of the
renormalized semi-invariant around their correct value;
these variational principles are equivalent to the equa-
tions (3.3) defining these M„.

The importance of these variational principles is that
they insure automatically the thermodynamical relation

(1/X) 8 lnZ/Bx= Mg. (4.17)

In order to establish this we first calculate the derivative
of M with respct to x; this diGers from the result ob-
tained in (4.10) because we now have to vary x in (3.3).
This simply adds a derivative of M (x) with respect
to x to the previous result and thus,

(1/$)d' lnZ/dx'= dM)/dx= x (5 1)

where p is the isothermal susceptibility. On the other
hand we obtain by differentiating (4.1) twice with
respect to x:

&x=((Z'~')'& —(Z'~*&' (5 2)

This is the usual type of relation relating response func-
tions to fluctuations; its physical significance is very
important because (5.2) guarantees that the suscepti-
bility is always positive and that infinities in the sus-
ceptibility and in the distribution function occur simul-
taneously. We shall investigate the translation of (5.2)
into perturbation theory.

We write (4.18) in the following form:

dM ~ dG;
+M~i,

dh i l dX

and, in particular,

d3fo ~ dG;= Q M,— +My.
P l dX

(4.18)

(4.19)
(~G~/~Ma) p.= (~G;/&up)-, ~, (5.4)

d~n ~ ~ 8G; dMI,= Z Z M.+; — +M.+„(5.3)
gr

where (8G;/BMp)„means the derivative of G; considered
as a function of the independent variables MI, through
the graphical definition of G;. That is, more precisely,
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(M).=M.,

(M+)„=M~,.
(5 8)

Equation (5.3) can then be solved as a matrix equation

dM/dx= [1—RSj 'M+ (5.9)

The 6rst component of (5.9) is the susceptibility; it is

easily seen that dM&/dx becomes infinite if

We may also write

M~;——(BM /BG, )f„,= (BM,/BG ) „,, (5.5)

where here the M„are considered as a function of the

G; through the functional dependence (3.3). We now

define the matrices R and S such that

(R). =(R)„„=M„+=(BM /BG„)(„..~, (5.6)

(S)-=(BG-/BM-) g. (5 7)

and the vectors M and M+ defined by

where we have introduced the I'ourier transform of 6;;:

G(q)= —g G, s c'( —i)
E '~

(5.17)

G';= C;,+Pa C,aRCa;+

In terms of the Fourier transform C(q) of Cg,

(5.18)

We now express 6;; in terms of renormalised bond
matrix C;, such that (C;,) „=C;; " represents the sum
of all the graphs connecting i and j, respectively, with
m lines arriving at i and n lines arriving at j and con-
taining no articulation point. An articulation point is a
point where the graph can be cut into two pieces, one
linked to i, the other to j, by a single line not cutting
any line of the diagram (Fig. 8). We readily express
6;,. in terms of C;, :

G;,""=C;,""+P,P, .C;,"~M, .C„,-~+ . ,

det[l —RS]=0.

Thus (5.10) may be considered as an equation deaning
the possible phase transitions of the system. We finally
note that from (5.3)

we have

or

C(q) =(I/&)Zo Cvs""' "
G(q) =C(q)+C(q)RC(q)+" .

(5.19)

G(q) =C(q)[1—RC(q)] '. (5.20)

DI1 ~ BG dMI,
M +y +M2

dX a j k-1 Q~Is g~

dM
=M+K

dx

or, with the help of (5.9),

x= dM i/dx= M+S[1—RSj 'M++M~

(5.11)

This equation appears as a matrix generalization of a
similar relation obtained by Meeron in the study of the
nodal expansion of a gas. ' We shall come back to the
nodal expansion later.

Using (5.20), we may write (5.16) as

1—[((z' ~')') —(z' ~*)'j

= M+C(0) [1—RC(0)]-'M++ M2. (5.21)

leads to

and

(6;,) „=G;,""

(p;p, )=M+G;;M++(Mg)'+BoM2

(5.14)

(5.15)

(1/&)[((Z' ')') —(2* ')'j=M'G(o)M'+M

We now evaluate the right-hand side of (5.2) directly
from the propagator formalism. This involves the
calculation of Os ——(p;p, ). We have (Fig. 7)

(p;p;)=Q Q M +kg""M ~g+MP+BgM2, (5.13)

where G;," is the contribution to (p;p, ) from graphs
linked to i with n lines and to j with m lines, the semi-
invariant relative to the extremities i and j being
replaced by 1. Introduction of the matrix 6;; such that

Comparing (5.12) and (5.21), we see that (5.2) will be
verified if

or, equivalently,
S=C(0), (5.22)

rticulat ion pointy.

(
BG BG„)

I
=[C(0)j-=(I/&)ZC;;"".(5.23)

BM g, BM„/g, 1j

The identity (5.23) follows from the de6nition of G„:
Taking the derivative with respect to M„ is equivalent
to taking the sum of all graphs connecting two points,
one with n lines arriving at it, the other with m lines,

FrG. 7. Contributions to Qp;) for i&j.

(b)

Fxo. 8. Renormalized bonds. (a) Contribution to the re-
normalized bond C;;I; (b) Contribution to G;~31 containing three
articulation points.

0 K. Meeron, Phys. Fluids 1, 189 (1958).



F. EXGI. ERT

and then summing freely on the indices relative to the
two points. This is precisely P,, C;,. We notice that if

by fixing p different M in a graph con.ributing to G„
we obtain the same contribution to LC(0))„, the result
is automatically divided by p because of the symmetry
factor of the graph.

The relation (5.22) which insures the thermo-
dynamical consistency condition (5.2) is very similar to
the "Ward Identity" in Quantum Electrodynamics. '
tt relates the renormalization of the semi-invariant M
to the bond-renormalization: These renormalizations
must be carried out simultaneously in order to satisfy
the theorem. The fact that this is realized if one sums
the whole perturbatioii series but generally it is not
satisfied for a partial summation of graphs is related to
inconsistencies that have appeared in recent theories of
ferromagnetism. This problem will be examined now.

VI. HIGH DENSITY LIMIT EXPANSIONS AND
THE NODAL EXPANSION

If we define z qualitatively as the number of spins in
the "range" of the exchange potential e;;, one may
argue on physical grounds that if z —+ao the gneiss
molecular field theory of ferromagnetism becomes
valid. ' This then implies that in the neighborhood of the
Curie point we have, for a high-density system of
spin (high Z),

ring attached to any n&z vertices, thus restroring a
contribution of order 1/z. Thus, an accurate evaluation
of the free energy to order 1/z must include vertex re-
normalization not only by means of chains but also by
means of rings. This, however, does not necessarily
include all the graphs of order 1/z for if the ring be-
comes increasingly large, any vertex renormalization or
any renormalization may finally contribute to the order
considered.

As one may expect that in the ordered phase, large
rings may be very important, a correct evaluation of all
the 1/z graphs becomes impossible and the 1/z expan-
sion itself probably loses its meaning. The best one may
hope for is an approximate high density theory if one
sums all the rings and chains, together with the ap-
propriate vertex renormalization by means of rings and
chains. This is the Horwitz-Callen theory and may be
obtained from our general formalism by neglecting all
the G; but Gi and G2 (Fig. 11).

Pro. 10. (a) 1/s
contribution; (b)
1/s' contributions.

where j is a.n average exchange potential. From (6.1)
we see that we may classify, in the region of the Curie
point, unrenormalized graphs by means of powers of
1/z. Each bond carries a factor of 1/z and each sum-
mation but one carries a factor of z. To check the con-
sistency of this method we first have to sum all the
graphs or order 1 and show that we obtain the molecular
field results. The only graphs of order 1 are open chains
(Fig. 9) and, in terms of renormalized graphs, this
means that all G; but Gi are to be put equal to zero. Q e
know from Sec. III that this leads precisely to the %'eiss
theory so that the validity of the 1/z classification is
established.

One may then try to evaluate the first correction to
the Weiss molecular field, that is the 1/z terms. This
has been done by Srout' and by Horwitz and Callen'-
in two different, but nearly equivalent, ways. We shall
discuss here once more the argument.

At first it appears that only the rings (and chains)
contribute a factor 1/z (to the free energy, for instance).
LFig. 10(a)j.However, for large rings (with more than
z vertices) any correction of the type 10(b) which
would be of order 1/z' might appear with the second

Pro. 9. Graphs of
order 1.

We now discuss the consistency of such an approxi-
mation. First, as was already established by these
authors, it is clear that the variational principle is
obeyed as a consequence of the fact any graph obtained
by fixing a vertex in one of the graphs of Fig. 11 is still
a contribution to Gi or G~. Thus, the thermodynamical
relation d inZ/dx= Mi is veriiied. On the other side the
"Ward Identity" is not verified because no bond re-
normalization has been done. Thus we have no
guarantee that the Curie point obtained by the diverg-
ence in long-range order (or in the specific heat)
coincides with the infinity of the susceptibility. In fact,
the inconsistency of the model is even worse because it
had appeared" that the infinity of the susceptibility
occurs for finite magnetic field above the Curie point
obtained by the singularity in the specific heat. This is
not only thermodynamically inconsistent but the second
result violates a general theorem due to Lee and Yang. "

'6 This was first observed by M. Coopersmith. A detailed analy-
sis of the nature of the inconsistency will be given elsewhere by
G. Horwitz to whom we are very much indebted for many con-
tributions to the analysis of this section."T.D. Lee and C. ¹ Yang, Phys. Rev. 87, 410 (1956).
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In order to correct this inconsistency we then have
to renormalize the bonds by means of rings with re-
normalized bonds. This leads to the sum of all the
graphs with no crossing lines; it is the generalization of
the "convolution approximation" or "nodal expansion"
recently studied in the theory of imperfect gases. '

The convolution approximation will obviously satisfy
tlic variational principle because the consistency re-

quirement is verified. The Ward identity will, however,
not be exactly satisfied because the renormalization of a
bond by a graph of the convolution expansion may lead
to a graph not contained in the original approximation.
The convolution approximation is thus not a completely
thermodynamically consistent approximation and this
will also be true for the imperfect gas. However, it will

in fact be impossible to have a consistent bond and
vertex renormalization without summing utl the graphs.
This shows the difIiculty of handling a perturbation
theory in the neighborhood of a phase transition. Indeed,
anywhere else, such discrepancies wouM be small eGects,
for if we stick to our initial 1!!a classification we find
that any nonconvolution correction is at least of order
1/a~. But as this expansion is meaningless for large
rings, this cannot be trusted in a phase transition region
and trouble may occur in the analytic behavior of the

Fxa. 11. Self-
energy graphs in
the y Horwitz-Callen
theory.

(b)

divergent function. Thus, in short, the convolution ap-
proximation appears, qualitatively, as the simplest
theory of a high-density expansion: it satisfies the
variational principle and contains all the first required
bond renormalized corrections to the Horwitz-Callen
theory. This is why, despite the lack of complete con-
sistency of the convolution approximation, we shall give
here the formal summation of all the convolution graphs.

Finally, we shall close this discussion by mentioning
that Brout's theory of the high density suffers exactly
from the same inconsistencies as the Horwitz-Callen
theory and for the same reasons. In fact, the two theories
are nearly equivalent, the difference being a rather un-
important difference in the vertex renormalization.

We evalua. te the correlation function (p„i!,) for i';
and from this the energy, hence all the thermodynamical
quantities may be determined. From (5.15) we have

(i!;i!;)= M+6;,M++M!'-, i Wj (6..2)

The problem is thus to evaluate the correlation
matrix G;,.

We separate the contributions to G;, into two parts:

(a) The graphs with no articulation points. This is
given by the bond-renormalization matrix C,;.

(b) The graphs with articulation points. These con-

tribute a matrix T;, to G;;. Thus

G;,= C;,+T;,. (6.3)

From (6.3) and (5.20) we obtain the general relation
between C;, and T;, in terms of their Fourier transform

C(q) and T(q):

RT(q) = [RC(q)]'
1—RC(q)

(6.4)

Equation (6.4) is general. We now determine C;, in
terms of T;; in the convolution approximation. If only
graphs without crossing lines are to be counted, then
only the following contribution to C;; arise

(a) any number of v;, bonds between i and j; that is,
all "ladders" of v,, [Fig. 12(a)];
(b) any ladders of graphs with articulation points with
the exception of a single T;, type of grap-h [Fig. 12(b)];
(c) any mixture of (a) and (b) graphs [Fig. 12(c)].
In order to sum these graphs we multiply each line
arriving at i by P and each line arriving at j by P', P
and p' being arbitrary variables. Then we evaluate

P +pc &p'
a=i P=l

(6.5)

The contribution to (6.5) of the graphs with 1! i! T;&

bonds and the graphs with m v;, bonds is then

1 1
[pv p!]m [pa 2', ar!

p ~!!]aa!!,
m. '+aP ~

The sum of all the ladders of v;; and T;, bonds then
contributes

00 00 ] 00

[pv .p']~a Q [pa2', arrp&rr]aa!!
m, =o no.p=o m! ~=1,&=i nap!

=exp[pv;, p'+p. , r! p T,, p' ] 1—
Then

2-v p G'. 'p'=«p[pv* p'+&-, v p 2'*"p']
—l-p. , !!p T,,'vp'a (6.6)

for arbitrary p and p'.
The relation (6.6) may be written in a more concise

form if we introduce an angle representa. tion A(@,@') of

(b)

FIG. 12. Contribution to C;, in the convolution approximation.
(a) ladders of v;; bonds contributing to C;;; (b) ladders of T;; bonds
contributing to C;, ; (c) mixed ladders of v;; bonds and T;; bonds.
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a matrix A by the reciprocal relations

A(y y&) Q Q (Alame —saoe+imo'

(6.7)

justify a more extensive study of the nodal expansion of
the Ising model but this is outside the scope of this paper.

VII. GENERALIZATION OF THE LINKED-CLUSTER
EXPANSION —QUANTUM STATISTICS

2 2+ 23

4"+"" "'-A(e,~'),
'E2or o o

where LA1""=0 for n or m&0. Writing p=e '& and
p'=e+'&', we obtain

G' (@&') =expPv'+T' (4»&')j—1—T'J(4A'), (6 8)

where the matrix v;; has only its 1-1 element nonvanish-
ing and equal to v;, . Equations (6.4) and (6.8) define
a nonlinear convolution integral equation both in con-
6guration and angle space for C;, or T;;. If the R matrix
is calculated by approximating all the semi-invariants
by a single constant, Eqs. (6.4) and (6.8) reduce to
scalar equations for a single nonvanishing component
(po,go) in angle space and are then equivalent formally
to Meeron's equation for imperfect gases. ' These equa-
tions lead then to the remarkable result proved by
Green" that G(q)(po, go) diverges for q

—+0 like 1/g,
thus giving an order correlation varying like 1/r'. This
result is reminiscent of the value 1/r"' obtained by
Bomb and Sykes. " Of course, the averaging of the
semi-invariants is not a priori a valid approximation but
it is interesting to note that due to the nonlinear character
of the relations (6.4) and (6.8) a behavior like a 1/q
divergence (which might be related to a logarithmic
divergence for the specific heat) may arise while this
would never be the case in an approximation of the
perturbation series such as that of Callen and Horwitz
or Brout's spherical model. This, in our opinion, would

r'(p') = exp(p'&o)~' exp( —p'&o) (7.1)

and, in the "Heisenberg representation, "
p, (P') = exp(P'H)y; exp( —P'H), (7.2)

where p' is a real parameter. We have still used p; in-
stead of s;, sp, s,' to simplify the notation and keep
the generality of the reasoning.

One may then ask to evaluate the quantum mechani-
cal propagator,

&o,(pA" p))=(TP(p) P (p)), (73)
where T is the usual "time-ordering" operator placing
po(Po) on the left or on the right of p&(P&), respectively,
if Po)P& or Po&P&. The analysis may now be carried
through entirely following the pattern of Sec. II, using
time-ordered product of operator. For instance, (2.6)
becomes

Our analysis of perturbation expansions is based on
the "propagator" formalism developed in Sec. II. It is
clear that this analysis is not restricted to the Ising
Model Hamiltonian. First the possible values that can
be taken by LM,; are irrelevant. More important is the
fact that the introduction of quantum mechanics does
not alter fundamentally the formalism. Namely, if the
p; are replaced by noncommuting operators (for in-
stance, the components s;*, sp, s;* of the spin i in the
Heisenberg model of Ferromagnetism) one has to con-
sider the operators in the "interaction representation"

1
&o,(p, p,))= p — dp„T~;.,(p,). H,„,(p„)o,

~ Ogg! 0

P

Z —.. dP.2'H'. ~(.P~) B.o(P ) (7 4)
~-0 Pg!, (, 0

If one then de6nes time-ordered semi-invariant by using
the time-ordered generalization of (2.9), one obtains the
linked-cluster expansion (2.11) in its time-ordered
generalization. General expansions for thermodynamical
quantities follow in a straightforward manner as well as
variational principles'4 and "tA'ard identities".

A detailed example of the quantum mechanical linked
cluster expansion as applied to the Heisenberg model of
ferromagnetism is differed to a separate publication. If
one applies this method to a system of fermions by using
the creation and annihilation of a particle a~, cI,t one

'2 M. Green, J. Chem. Phys. 33, 1403 {1960).
"C.Domb and M. F. Sykes, Proc. Roy. Soc. {London) A235,

24/ {1956).
'4 See for instance J. M. Luttinger and J. C. Ward, Phys. Rev.

118, 1417 {1960).

obtains again the expansion used by Brout and the
author' and its generalization to bosons as well,
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APPENDIX A

G Factor of Graph

Consider a term arising from the eth order term in
the expansion of the numerator of (2.4). We write this
term symbolically in the following way

&a b"; c"d", e f ;g h"; Ov")o. '"
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FlG. 13. Graph correspond-
iIIg to the term represented

y (A~).
5
2

2(n+1)
5

4 2 2(n+1 )

( Px2)

,'p)x2)+x 3) 5
2

1

(c) 9f,.f.E—x Ho. of ends

Here, each semicolon separates two interactions v;;p, ;p;.
The )x; factors are represented by letters a, b, c, d, e, f
and an teth order semi-invariant by a contraction sign
of bars and superscript dots, etc. 0~ is any p-body
operator and in example (A1) has only one spin index
contracted with interaction factors. The graph corre-
sponding to (A1) is the fourth-order graph represented
ln Fig. 13.

All the terms of the expansion are obtained if one
draws all possible sets of contraction signs in any order.
Many of these however give rise to an identical graph
representation.
These are

(1) All the terms differing from a given one by a
permutation of the n interactions. This contributes a
factor nt to G;
(2) All the terms differing by an interchange of the
two contractions ending in the same interaction. For
instance, the two terms

(a'b"; c"d'; e'f"; g'Ix"; 0„")0,
(a'b"; c"d'; e"f'; g'h"; 0„")0,

are represented by the same diagram drawn in Fig. 13.
In general, this contributes a factor 2" to G.
(3) In counting all the diagrams with a factor 2"e!we
have overcounted all the terms which are transformed
into themselves under the operations performed in (1)
and (2). For insts, nce, a permutation of a, b and c, d
or of e, f and g, h in the term (A1) does not lead to a
new term of the expansion. Thus, we must divide the
combinatorial factor 24 4! by 4. In general, we clearly
have to divide the factor 2"n! by the number g of sym-
metry operations that transform the graph into itself. So

1

2

1 1

2 2(n+1 )
(~ x3)

6

Fn. 14. Symmetry factor of graphs.

diagrams and summing all the different graphs (with
their corresponding factors) obtained by fixing in these
diagrams successively each line. The result is to be
multiplied by —,'.

(a) We characterize the sum P 1/g obtained in that
way by the index l.f. (line fixed). If we compare this
factor with the g factor of the same topological graph
considered as free (gi, ), we have

g 1/g&. &.=2()i+1)/gi. , (81)

where (n+1) is the number of lines of the closed graph.
(Fig. 14). Indeed, (3.5) is obvious if all the graphs ob-
tained by the fixing of a line are diITerent, if some graphs
are identical, this is still true because the factor reducing
the left hand side of (3.5) is then accounted for by the
enlarged symmetry factor gi . Relation (81) was used
in Sec. IV in order to study the free energy.

(b) Consider now the sum of 1/g obtained by fixing
a vertex instead of line and multiplying each graph by
the number of lines terminating at the fixed vertex. The
same reasoning that led to (81) leads to

Q(1/gp. f.))(number of ends
= total number of ends)& (1/gi. ) = 2(m+1)/gi, , (82)

where the index p.f. means "point fixed" (Fig. 14). The
last equality in (82) results from the fact that the total
number of each is equal to twice the number of lines.
Comparing (81) to (82), we have

G= 2"n!/g.

APPENDIX 8

(A2)
Q 1/gi. f —Q(1/gp, f,)Xnumber of ends. (83)

From (83) it follows immediately that we may express
the energy in the form

We shall prove (3.5) and some topological properties
of the diagrams.

Ke recall from Sec. III that the energy may be evalu-
ated by considering all closed topologically diBerent which is Eq. (3.5).

eM„G„,


