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Orthogonal Orbitals and Generalized Wannier Functions

JACQUES DES CLOIZEAUX

L'nirersity oj Cahfornia, San Diego, la Jolla, California,
{'R.eceived 13 August 1962)

The invariance properties of a one-electron Iramiltonian H= T+V v ith respect to the transformations
of a space group GH are used to show how the eigenfunctions of H can be expanded in terms of equivalent
local orbitals. These orbitals are built from a suitable set of eigenfunctions and are shown to be orthogonal to
each other. They are associated with the points r'll of a lattice which is invariant with respect to GH and
can be obtained from each other by space transformations. Group theory is used to write explicitly the
unitary relations connecting the set of eigenfunctions of H and the corresponding orbitals. In crystals, it is
shown that the eigenfunctions be1onging to an energy band can often be described by means of one set of
orbitals, provided that certain simple conditions are fulfilled. These conditions depend on the properties
of the levels which correspond to the points of maximum symmetry in the reciprocal space. These require-
ments determine also the nature of the lattice g and the chemical bonding in the band.

I. INTRODUCTION

HE aim of this paper is to show how the sym-
metry properties of a one-electron Hamiltonian

H= X+V imply the possibility of expanding its eigen-
functions in terms of local orbitals. The Hamiltonian H
is assumed to be invariant with respect to the trans-
formations of a space group G~~. Equivalent ortho-
normal orbitals are defined as linear combinations of
functions belonging to a suitable set of eigenfunctions
of H. Two orbitals are said to be eqni~atent if they can
be obtained from each other by some space transforma-
tion belonging to 60. Conversely, it is shown that the
eigenfunctions of H can be expanded in terms of the
corresponding orbitals.

This problem is by no means a new one and it is
possible to quote very well-known examples of localized
orbitals such as the atomic orbitals used in the tight
binding approximation (LCAO method) and the
Kannier functions in a crystal. Hall, ' among others,
has studied the case of atomic orbitals but his treat-
ment is incomplete. On the other hand, the properties
of one-dimensional Kannier functions have been
thoroughly investigated by Kohn, ' for a one-dimen-
sional infinite crystal with a center of symmetry. In
particular, Kohn has proved that each band corre-
sponds to a well-defined set of Kannier functions de-
creasing at in6nity as fast as an exponential. Unfor-
tunately, his method cannot be generalized because the
analytic properties of the Bloch functions depend on
the dimensionality of the space. In two and three
dimensions, special cases have been considered by
Blount'; however, a general treatment seems to be
lacking.

Therefore, it. is of interest to examine the question
from a more general point of view. In this paper, we are
mainly concerned with the group theoretical aspects of
this problem, which can be investigated by using only
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elementary methods and a few basic theorems. The
localizability properties of the orbitals are not dis-
cussed because they depend essentially on the phases
of the eigenfunctions from which the orbitals are built.
Of course, it is very important, especially in the case of
crystals, to know how to determine suitable phase
factors for these eigenfunctions; however, to solve this
problem, it is necessary to examine carefully the ana—
1&'tic properties of the eigenfunctions of H and, in
general, the problem is very complex. Therefore, this
question is not studied here; we hope to carry out this
task in another publication.

In Sec. II, we study the case where 6~I is a general
finite group, by applying the general methods of group
theory. Ke show how orbitals can be built from a
suitable set of eigenfunctions of H and conversely how
these eigenfunctions can be expanded in terms of the
orbitals. In Sec. III, we consider the special case of
crystals. In a crystal, the energy levels form bands.
Each band is usually made up of several branches
which are connected; conversely and by definition, if
two branches are connected, they belong to the same
band. Thus, we study the possibility of representing a
band by a set of orbitals which may be called generalized
%annier functions. In particular, it is shown that the
nature of the orbitals which correspond to the bands of
a crystal determines the nature of the chemical bonds in
the crystal.

Ke hope that in spite of the apparent complexity of
the formalism, the reader will appreciate the real sim-
plicity of the theory. For the sake of clarity, all the
spTLibols used in this paper are listed in Appendix I.

II. GENERAL DEFINITION OF LOCALIZED ORBITALS
FOR A FINITE SPACE GROUP Gyp

A. Definition of a General Lattice 2 and of the
Subgrooys 6il Related to the Points M of

A general lattice 4 associated with a hnite space
group Gly is the set of all the distinct points 3f which
can be obtained from a given point Mo in space, bi
transformations belonging to GJI. All the points M of a
lattice are equivalent and can be used to generate the
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whole lattice. If GH is a translation group in a cyclical
space (Glr must be finite), then 2 is a Bravais lattice;
but in general (even if Grr contains a subgroup of trans-
lations) 2 is not a Bravais lattice. For instance, the
corners of a square in ordinary space form a lattice
which is not a Bravais lattice.

The group Grr itself is the space group which leaves
the Hamiltonian II invariant. The orbitals to be de-
duced from eigenfunctions of H are attached to the
points M of a lattice 2; the choice of Mo being arbi-
trary, the lattice Z is chosen at our convenience.

In the following we associate with each point M:
(a) the subgroup Gir of Grr which contains all the trans-
formations leaving M invariant, and (b) an element
5 &f &rp Of GIr WhiCh tranSfOrmS 3f0 intO 3f. Any element
R which transforms Mo into M can be written

where R1rp is an element of G.1rp. Thus, 3, being the
number of points M, we can generate (X—I) cosets of
6 '1$p Therefore, g and g.1rp being, resPectively, the
numbers of elements of Grr and G.1r„wehave

-~ =C; g.11p

The groups G.1r and G.1r, are isomorphic and a corre-
spondence between the elements of G1r, and the ele-
ments of G 1I can be established in the following way:

tion Fr~'. In general, eigenstates corresponding to dif-
ferent values of p are nondegenerate, but all the eigen-
states labeled by the same index p are degenerate. In
the same way, the index q is used to distinguish from
each other the different equivalent representations
I'.ir, contained in [I'Ir']ir, and to label the correspond-
ing eigenstates of H. According to (4), q may take
C(l~m) different values; for instance, q= I, , C(l~m).
The index p, is used to label the basis vectors of a given
representation F,1r„ofdimensionality d,1~, it may be
used also to specify the rows or the columns of a matrix
of F &rp . It takes the values P, =1, , d.1I . The eigen-
function p(l~m, p) corresponding to the state ~l„m,p)
can be defined by the identity

p (l„m,ii) = (r
~

l„—m, ii).

An element E. of Grr transforms this eigenfunction in
the following war:

R p(l„m„p)= (»
~

R
~
l,m, ii) = Q (r i

l'r ™„p')
)/p/~~I gr pl

X(l' m', ii~ R~ l„m,ii) (6).
This expression can now be simplified by introducing
the elements (m'„p'

~

'R
~
m, p) of the unitar~. matrix 'R

which represents the operator R in Frr'

Rq (l„m,p) P=v (l„m',p')(m', IJ, '~ 'R
~
m, p). (7)

'le g Jl

Therefore, to any irreducible representation F.1r,
"' of

the elements R.M„corresponds an identical representa-
tion F~r of the elements R1r. The irreducible rePre-
sentations of Grr and G.1r, are connected by a relation
which is very useful for our purpose. Any irreducible
representation Frr' of Grr subduces' a usually reducible
representation [I'il']ii of G,&r. In the following, it is
assumed that all the represents. tions [I'ii']ir, are, in

fact, completely reduced with respect to the irreducible
representations F,1I,'" of

G harp
..

PI'ir'] ir, =Q C(l
~

m)I'.ir,"'

All these representations are also assumed to be unitary.

B. Labeling and Transformation Properties
of the Eigenstates of H

The invariance properties of H are now used to
classify the eigenstates of H. It is possible to find a
complete set of orthonormal eigenstates forming bases
for the irreducible representations Frr' of GH and for
the irreducible representations F 1r,

'" of G1r, contained
in the reduced representation [I'sz'].ir, Such an eigen-
state is denoted by the symbol

~
l~m, p). The index p is

used to distinguish from each other the eigenstates
which form independent bases of the same representa-

"A dehnition of subduced and induced representations is given
i» the following book: J. S. I.omont, A pp/icaIion of FinQe Grolps
(Academic Press Inc. , New York, 1959), pp. 89 and 224.

C. Construction of the Set h(Z, m) and
De6nition of the Orbitals

Now we would like to investigate the possibility of
expressing a chosen set of eigenfunctions p(l~m, p) as
linear combinations of 1ocali'zed orbitals associated
with the sites M of some lattice Z. However, this
problem is dificult to solve directly. Therefore, we use
a slightly diferent approach.

The nature of the orbitals is determined arbitrarily:
(a) by choosing a priori a point Mo which defines a
lattice 2 of points M, and (b) by assuming that the
orbitals M(m, p) which are associated with a site M
form a basis for an irreducible representation F~™of
G.1r isomorphic to a given representation F,»p of Gpfp.
Thus, in the following, the index nz remains fixed, while
the index p, takes all possible di6erent values. Now
these orbitals have to be built by forming linear com-
binations of eigenfunctions &p(l„m,y) which belong to a
suitable set b(Z, m). This set, as is proved later, can
be defined as follows.

A lattice 2 and a representation F~rp'" being given,
a set $(2,m) contains, by definition, sll the eigenfunc-
tions &p(l~e, i) belonging to any representation I'o' and
labeled by an index p which, for each value of L, may
take C(i~m) different values. These requirements may
seem a little strange but they stem from the Frobenius
theorem (see Appendix I). In fact, the set of all the
orbitals M(m, p) form the basis of a representation of
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the whole group Gir (induced representation) which is
usually reducible. This means that it is, in general,
possible to build several linear combinations of orbitals
y(l„m,ii) belonging to the same representation I'H' of
GII. Now the Frobenius theorem states that the number
of these functions is really equal to the coe@cient
C(llm) of Eq. (4) and this fact explains the definition
of a set 8(z,m). The C(llm) different values of p
which correspond to the eigenfunctions of h(Z, m) are
chosen somewhat arbitrarily but in the following it is
assumed, for reasons of convenience, that p may take
one of the values p= 1, , C(l l m). Therefore, d' being
the dimensionality of I'jJ', the number, V of functions
contained in h(Z, m) is

X„=P,C(rim)d~.

The orbitals associated with Mo are defined in the
following way:

This formula is easily verified by replacing, in the second
member of (13), M(m, ii) by its expansion (11) and by
taking into account the relation (12) and the following
closure relation which is proved in Appendix II.

2 &&'«v'I'S~r~;lm'u&&mal'5 '.i'~ol~")

E. Orthogonality of the Orbitals M(m, ti)

The orthogonality of the orbitals which belong to the
same site M is obvious because they form a basis for an
irreducible unitary representation I'&& . To prove the
orthogonality of orbitals belonging to diferent sites,
we need another closure relation which can be found
in the following way. If, in formula (11) which defines
M(m, u), we replace &p(l„n~v) by its expansion (13),
we obtain

c(llm)
M (0m, )u=,V„'t'P— P (d')'"v(f, m„u)

l p=l

These functions are orthonormal and form a basis
for FM0

Now the orbitals M(m, u) associated with a general
site M of Z, can be defined as the transforms of the
oi'bitals Mg(m, u) by 5 ' ilz

M (m, u) =Sir,iioMn (m, u)
C(l l re�)

=X„—"'P Q S,ir.ir, v (l„mvu). (10)
l p I

M (m, u) =.V„—' P d' M'(m, u')
l pnqvM' p'

X&mvu, 'l'Sir. ,r,-'lnqv)&nqv['Slur,
l m,u). (15)

The orbitals M (m, ii) are linearly independent bees.use
an equal number Ã of orthogonal functions p(l„n,v)

of 8(Z,m) can be built from them, according to (13).
Therefore, (14) must be satisfied identically and we get
the following relation

P d'&mvu'l'Sir ir„-'lnq )&vm, vl'SM ilrmvu)
l pnqv

Since 4Mp and C,& are isomorphic and connected by
(3), the orbitals M(m, u) corresponding to a site M,
form a basis for I'ir". Using (7), we can now write
explicitly

M(m, u) =.V„'~' P (d')"'q (Ivanov)
l pnqu

X(e,v
l
'S.irir, l mvu). (11)

D. Expression Giving the Eigenfunctions y(lvn, v)
in Terms of the Orbitals M(m, ti)

,V which is the number of eigenfunctions contained
in 8(Z,m), is also the total number of orbitals M(m, u),
as can be shown easily by applying a classical theorem'
of group theory and by taking into account Eq. (2)

X =pi C(elm)d'= (g(g~, )der" cVdir . (12)——

This equality suggests that by inversion of (10) the
eigenfunctions y(Ivy, v) might be expressed as a linear
combination of orbitals. In fact, we have

v (l,vn„v)= V,„"'(d')"'Q. M(m, u)

X&mvul'Su. v 'l + v) (13)
'%'. Burnside, T/seory of Groups of Finite Order (Dover Publi-

cations, New York, 1955), Sec. 246, p. 330.

On the other hand, an explicit expression for the scalar
product of two orbitals can be derived directly from
(11), because our representations are unitary.

(M'(m ii')
l
M (mu)) =X„—' Q d'(m„u'l 'Sirdar, 'l n,v), —

pMnqe

X &n&v l Sharira l mvu). (17)

By using the closure relation (16), we get the orthogo-
nality condition

(M'(m, ii')
l M(m, u)) hirer &„=

F. Reality of the Orbitals

The Hamil tonian H is assumed to be spin independent
and real. Therefore, it is often possible to build orbitals
which are real. In fact, as we shall see, if the corre-
sponding representations I'M are real, or at least
equivalent to their complex conjugate, and if we choose
a proper set h(Z, m), then from this set we can get real
orbitals.

If a space-group representation I' is not real, the
functions y, forming a basis for this representation
cannot be real because a space symmetry always trans-
forms a real function into another real one. %hen I' is
not real, the functions p,* form a basis for the complex



OR't'HOGOXAL ORB I 1'ALS AND KVAX N I RR I t: XC't tONS

conjugate representation F*. %e now prove that if F
and F* are equivalent, they are also equivalent to a
real representation. In fact, if F and F* are equivalent,
the matrices E. and E* corresponding to any element of
the space group in the two representations, are related
by a unitary transformation

V V
/4
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FIG. 1. Linear crysta1.
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and we have also
(19)

p*(ivn, v) = y(1'vn, v). (22)

Now the reality of all the orbitals M(m, p) results from
the definition (9) of Mp(m, p) and from the definition
(10) of the other orbitals.

G. Localizability of the Orbitals.
Choice of a Set b(Z, m)

The orbitals which can be built from a given set
b(Z, m) are not exactly well defined because the func-
tions rp(lvn, v) can always be transformed by a set of
unitary matrices U~„ into equivalent functions P (lvn, v)

tl(lvn, v)=Q, p(lvn;v)(q'I Ui, Iq) (23).
This ambiguity in the definition of the functions
ip(lvn, v) can be removed by requiring that the orbitals

Therefore, the functions q, and q, ~ span the same space.
In this space, we can now choose an orthonormal basis
which is real, each basic vector being a real linear com-
bination of the following vectors (which are not all
independent):

P, = (p~+(p, *, x,= i(p;—p,*). (21)

The representation F' corresponding to this net
basis is equivalent to F and F* and is also real. Con-
versely, if F and F* are not equivalent, the functions

p, are independent of the functions p, and it is im-

possible to find for F any real basis because a repre-
sentation of a space group of real transformations is
real if its basis is real.

Now we can assume, without loss of generality, that
any representation F~I which is equivalent to its
complex conjugate is also real. The same property may
be assumed to hold also for any representation FII' and
is compa. tible with the complete reducibility of O'H )3i,
On the other hand, if I'.~r" is real, a set b(Z, m) contain-
ing a basis for a representation FH contains also a basis
for the complex conjugate representation F~~.

Therefore, when F~ is real, it is possible to build
sets b(Z, m) satisfying the following conditions: (a) If
a function of b(g, m) is real, it belongs to a real repre-
sentation. (b) If a function y of b(Z, ni) is not real, it
belongs to a complex representation F' and the function
&p* is contained in h(Z, m) and belongs to a complex
conjugate representation F'.

In the second case, by labeling our states in a proper
way, we can write explicitly

Mp(m, p) be as well localized as possible around 3fp.
However, the concept of localizability is not well

defined; therefore, the result depends on our precise
requirements.

The choice of a set b(g, ni) remains also really arbi-
trary, but we want to get orbitals as well localized as
possible. A set b(Z, m) is suitable for this purpose, if
the energies corresponding to the diferent eigenfunc-
tions which are contained in this set are close to each
other. Therefore, to achieve this result it may be
reasonable and useful to use the following process to
build a series of independent sets b(Zp, mp) b(Z, m )

, containing all the eigenfunctions of H. I.et bp(E)
be the set of all the eigenfunctions of II corresponding
to eigenvalues smaller or equal to E. Let Eo be the
upper bound of the values of E such that bp(E) does
not contain any set b(Z,m) as a subset. Thus, bp(Ep)
contains at least one subset b(2,m) and usually only
one: This subset is the set b(Zp, mp). Now by excluding
from bp(E) all the eigenfunctions belonging to b(Zp, nip)
we obtain a new set bi(E). By using the same method
as above, we can define a set bi(Ei) which contains at
least one subset b(Li, mi) and so on. In this way, we
can build a complete series of sets 8(L,m) correspond-
ing, in general, to diA'erent lattices.

H. Example 1

Now, we apply the general formalism to the simple
case of a, cyclical linear crystal (Born-von Karman con-
dition) with a center of symmetry. This crystal is
assumed to contain 2n cells of length unity (n is an
integer). When the number of cells is odd, the problem
is simpler and can be treated exactly in the same way.

The elements of the group GJI can be classified as
follows:

(a) The identity E forms a class by itself.
(b) The group GH contains (2n —1) translations. The

symbol. T„represents a translation through r lattice
spacings. For each v=1 (n 1) the —translations T,
and T

„
together form a class. The element T„forms a

class by itself.
(c) The group Gir contains also two classes of re-

flections with respect to two sets of points M' and M"
which form two independent lattices 2' and 2" (see
Fig. 1).A reflection with respect to a point of one sub-
lattice is the product of a reflection with respect to a
point of the other sublattice and of a translation through
an odd number of lattice spacings. The elements be-
longing to these classes are denoted by the symbols
S~~ and S~".



The total number of classes of Gn is (n+3) and this
is also the number of the irreducible representations of
(~~~. The Bloch waves yk of wave number k belonging to
a band form bases for these representations. Ke note
that a translation 1eaves k invariant but that a reflec-

TABLE I. Representation of the group of the linear crystal.

/~Os

P On

PH )rs

I 0~a

p~l &I

—1

—1

0

1
—1

—1

1

0 2 coskr

tion transforms k into —k. Therefore, the value of lk j

can be used to classify the representations of G~y, which
are listed with their characters in Table I. The values
of lkl corresponding to the representations r'"' are
given by the equality l

k
l

=nn'/n with . n'= 1 (n —I).
For a given band S, yo belongs either to F~" or

V~0' and p, belongs either to I'~ ' or F~ ' depending
on the symmetry properties of q 0 and p . On the other
hand, if k/0, + the functions p& and y I„.form always
a basis for I'~~~~.

Now, we try to describe the eigenfunctions of one or
several bands by means of orbitals, but first we have to
choose a lattice 2 and find the nature of the orbitals.

AssumPtion 1

Ke assume that Mo coincides with Mo',. thus 2 and
4' are identical and it is convenient to define the
elements S.~~.Mo as the translations which transform Mo
into M.

The group G~o contains only two elements E and
S~o. The irreducible representations of this group are
I'ir, ' (unit representation) and re, . The orbital associ-
ated with Mo can be either symmetric or antisymmetric
with respect to Mo. The sets 8(2,m) corresponding to
these two possibilities are denoted by the symbols
8(2',s) and 8(Z', a). For these sets E =2n which is
the number of eigenfunctions which are contained in
a band.

From Table I, we deduce immediately the following
equations which give the values of the coefficients
C(llm) [see Eq. (4)]:

constitute a set b(2', s) or a set b(Z', a), respectively.
If yo and y have not the same symmetry character,
the band cannot be described by orbitals referred to the
lattice 2'; but the inspection of Table I shows that it
can then be described by orbitals referred to the lattice
2".%e return to this question in Sec. III.

As an illustration of our method, let us treat com-
pletely the case of a band S which can be described by
means of symmetric orbitals M(s). We can now intro-
duce functions p(l„m,ti) which in our case can be
denoted more simply by the symbol ~p(l, m). It is
always possible to assume that

&.TfO+A P—l )

and therefore we may put

(25)

io(Os, s) = qn,

&p(mrs, s) = ~p„

v (l k l,s) = (~ + v - ) i~2,

q (lkl, o)= i(vi q—~)(&&—.

The orbital Mo(s) is given by the general formula (9)
which in this case can be written

Mo(s)= (2n) ' '[&p(Os, s)+vi()rs, s)+v2 P ip(lkl, s)]

—= (2n) "'
k—~+I

(26)

The orbitals M(s) are obtained from Mo(s) by the
translation SMir, . Note that the coefficient v2 in (26)
comes from the dimensionality of the representation
FHl~l. In this case, our orbitals are Wannier functions,
and our definition coincides with the usual one.

TABLE II. Nature of the sets E(Z', s), E(Z', u) and E(Zp).

AssumPtion 2

Ke may assume as well that we choose an arbitra, ry
point Po of the crystal as the origin Mo. The group GH
generates from Po a lattice Zp which is not a Bravais
lattice and contains 4n points (twice as many as the
lattice 2'). In this case, Gsr, has only one element F.
and one representation r&z, ' (unity). There is only one

(24)
E(2',s)
t;(2', a)
r., {z,y)

On p Oa

According to the general definition of a set 8(g,m),
we list for each representation of GH the number of
corresponding bases which are contained in a set $(Z', s)
or a set $(Z', a). (See Table II.) Therefore, if po and

a,re both either symmetric or antisymmetric with
respect to Mo', the eigenfunctions belonging to [rH'].v, =d'r. ir, '. (27)

kind of orbital 8(gi). For such a set, iY =4n which is
the number of eigenfunctions contained in two bands.
For any representation FH' of G&, we have
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This equation indicates for each representation I'H' the
number of bases which are contained in a set h(Zi)
(see Table II).

Now it is clear that two bands Ii and 12 of Bloch
waves yi' and yi) constitute together a set 8(2p) if
the following conditions are fulfilled: (a) i)o' and yo'
must not have the same symmetry character; (b) p '
and p ' must not have the same symmetry character
either.

Thus, we see that the connection between bands and
orbitals is usually not a very simple one; this question
is investigated with more details in Sec. III.

I. Example 2

The lattice 2 is a regular tetrahedron and Gy~ is the
full group of this tetrahedron (Td) The p.oint A is the
origin. G~ is isomorphic to the group of an equilateral
triangle (C&,). The characters of the representations of

GH and G~ are listed' in Tables III and IV. Three
types of orbitals are possible and Table V indicates the
representations of the corresponding eigenfunctions
of H.

The elements of GA are the identity F., two rotations
C3.~+ and Ca~ and three reflections o-~~, o.~L, 0~~ with
respect to planes passing through A and orthogonal,
respectively, to CD, BD, and BC. In our case, the ele-
ments S,~~I, consist of E and of three reflections
o A~, O.~t.-, 0-~D with respect to planes passing through
the center of the tetrahedron and orthogonal, respec-
tively, to AB, AC, and AD. A representation of GH is
completely determined by specifying only the matrices
representing the elements of G~ and the transformations
(Tgi) (TgQ (TQD [see Eq. (I)j. Real irreducible repre-
sentations of GII characterized by the reducibility of
the matrices belonging to G~ will now be given (see
Sec. II Il)

PI(~=+1) I-'=C3A+=C3A =1,

P2(& 1) OAB 0AC &AD

&CD=rJ'Bl&=&BC=~, AI(~=+1}
Ag(&= —1)

1 0 —1/2 —%/2 v3/2-
C3A

0 1
C3B =

—1/2 —V3/2 —1/2
A3

1 0

0 —1

—1/2 —V3/2
&BD= 0BC=

—x3/2 1/2

—1/2

v3/2

4'3 /2

1/2 J

&AB =&CD) &A C =&BD) O'AD=&BC)

I'= 0 C3A+= 0 —1/2 —~3/2 , C3A = 0

&3/2 —1/2

—1/2 v3/2

—~'3/2 —1/2

0 ) O'BD= —1/2 —V3/2, o Bc —1/2

0 —1 —v3/2 1/2 v3 /2 1/2 (28)

—1/3 2&2/3 0 —1/3

crAB= 2V2/3 1/3 0, OAc= V'2/3 5/6 V3/6, &AD = -V2/3 5/6 -&3/6

/3 (2/3 —1/3 —V2/3 —(2/3) '"

0 0 (2/3)» —(2/3) '" —VS/6 1/2

E=, 0 0, C3A+= 0 —1/2 —v3/2

~3/2 —1/2

C3A = —1/2 H/2

-1/2

P6 &CD = 0 aBD= 0 —1/2 —v3 /2 —1/2 &/2

1/3 0 2m/3 1/2

—v3/2 1/2

—VZ/3 —(2/3}»2 1/2

v3/2 1/2

V2/3 —(2/3)»2

&AB= 0 —1 ~AC= —~/3 —1/2 v3/6 &AD = v2/3 —1/2

2'/3 0 —1/3 —(2/3)»2 VS/6 —5/6 —(2/3)'" —v3/6 —5/6

6 G. F. Koster, in Solid State Physics, edited by F. Seitz and D. Yurnbull (Academic Press Inc. , New York, 1956), Vol.
5, p. 174.
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ALE III. Representations of the group of the tetrahedron.

Pro. 2. The points A 8
C D form the lattice 2
which is considered in
example 2.

Pg

Pg
P4
P6

1

1
—1

0
0

1

1

2
—1
—1

1
—1

0
1

—1

1
—1

0
—1

1

These representations are now used to illustrate our
method in the special case where we want to build
orbitals belonging to a representation A3. Then, two
orbitals M(1) and M'(2) can be associated with each
site M of Z. They are built from eigenfunctions be-
longing to representations P3, P4, and P5, namely,
rp(3, p) with p=1, 2, y(4,q) with q=1, 2, 3, and y(5, r)
with r=i, 2, 3.

For instance, the orbitals A (1) and A (2) forming a
basis for A3 can be written explicitly in the following

way [see Eq. (9)]:
g6 g6

A(1)=le(3,1)+- v(4»)+ ~(5»»

g6 g6
A(2) =l~(3,2)+ ~(4,3)+ ~(5,3)

4 4

(29)

The other orbitals are obtained by transforming A(1)
and A (2) by the operations 0'gs, age, and own.

Conversely, by using the representations given above,
the eigenfunctions p(3,p), q&(4,q), and rp(5, r) can be
expanded in terms of the orbitals fFormula (13)):

y(3, 1)= -,'A (1)+-,'B(1)+$C(1)——C (2)—x4D (1)+—D(2)
4 4

v3
~(3,2) = kA (2)—sB(2)—~(1)+K(2)+—D(1)+ID(2)

q (4,1)=—B(1)——C(1)+-,'C(2) ——D(1)—-', D(2)
3 6 6

g6 g6 5+6 V2 5+6 v2
y(4, 2) = A (1)+ B(1)+ (1)+—C(2)+ D(1)——D(2)

4 12 24 8 24 8

Q6 Q6 v2 g6 V2 g6
v (4,3)= B(1)+ B(2)+~(1)+ C(2)—D(1)+ D(2)

4 4 8 8 8 8

V3' VS v3
P(5,1)=—B(2)—kC(1)—~(2)+2D(1)——D(2)

3 6 6

g6 g6 g6 v2 g6 v2
p(5, 2) = A (1)— B(1)— C(1)+—C(2)— D(1)——D(2)

4 4 8 8 8 8

g6 g6 v2 5+6 v2 5+6
~ (5,3)= A(2) — B(2)+~(1)— - (2)——D(1)— D(2)

4 12 8 24 8 24

(30)

III. GENERALIZED W'ANNIER FUNCTIONS
IN CRYSTALS

A. Energy Bands and Representations
of a Crystal Group GII

In the following sections, the general theory is applied
to crystals. To take full advantage of all the sym-

metrics of the problem, we consider only cyclical crys-
tals (Born-von Karman conditions). By definition, a
crystal group is a group containing an invariant sub-
group of translations T. This case is very important in
practice and also very interesting from a mathematical
point of view. In fact, by repeating an initial crystal,
it is possible to build very big or even infinite crystals
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TABLE IV. Representations of the group of the
equilateral triangle.

AI

Ag

Ag

1
1

—1

1
—1

0

4ka fp„ks)~ (31)

Now it happens very often that there exists some
latcice Z such that a complete band forms a set b(Z, m)
and therefore can be described by a set of orbitals
associated with each point of this lattice. In the follow-
ing, it is shown that to determine, in fact, whether a
band forms a set 8(Z,m) or not, it is sufficient to know
the nature of the representations FH*" corresponding
to the points of maximum symmetry in reciprocal
space. The orbitals corresponding to a band will be
called generalized Wannier functions. The nature of

TA&LE V. Correspondence between orbitals and
eigenfunctions of H.

AI

Ag

A3

PI P4
Pg Pg

Pl P4 Pf,

having the same kind of symmetries as the initial one
and it turns out that all the properties of a finite crystal
can be deduced from the properties of the equivalent
infinite crystal. For instance, Bloch waves in a finite
crystal are special Bloch waves of the infinite crystal,
corresponding to proper discrete values of the wave
number k. Therefore, in the following, very large or
infinite crystals are studied first and the results are
extended afterwards to finite crystals.

In an infinite crystal, the energy levels (and the
corresponding Bloch waves) form energy bands S. In
each band the energy E& is a multivalued continuous
function of the real wave vector k. Our definition of a
band is the following: A band consists usually of
several diGerent branches; two connected branches
belong always to the same band; two bands are never
connected. In a given band, the number of levels corre-
sponding to any value k is a constant n. On the other
hand, the elements of G~ which leave invariant the
wave vector k of a Bloch function form a subgroup G1,
having irreducible representation Fi," . These repre-
sentations are used to generate all the irreducible
representations F~*" of GH which are characterized
by a star' of equivalent values of k in the reciprocal
space and by the index a of the generating representa-
tion Fk" . To indicate that the representations FH*~'
are induced according to Frobenius' method, by a
representation F1," of the subgroup G1„wewrite

these orbitals is well defined and therefore determines
mathematically the exact nature of the chemical
bonds in the crystal. Unfortunately, as it is seen later,
a band cannot always be described by only one set of
orbitals. The relations between Bloch waves and
Wannier functions will also be investigated.

[r„+k.],„,=Q„C(*1a
~
m)1„,". (32)

From the definition of a set $(Z,m) (see Sec. I—C),
we deduce the following criterion insuring that the
eigenfunctions belonging to S form a set 8(Z,m)

n(ka~ S)=C(*ka~m) (33)
for any k.

This criterion is now simplified. First, a precise
dejinition of what we call points of maximum symmetry
in reciprocal space must be given. A set of points of
maximum symmetry is a minimal set of points Z such
that any point P in the Brillouin zone can be connected
to at least one point Z by a path having the following
property: If P(k) is any point of wave number k lying
between Z and P in the path and if P(k') is any point
of wave number k' lying between P(k) and P in the
path, then G1, is either identical to G1, or is a subgroup
of Gi, . The points Z are isolated and in the cases of
interest, the definition of the points of maximum sym-
metry is unique. The wave vectors associated with
these points are denoted by k(Z). The center of the
Brillouin zone is a point Z, the other points Z being in
general corners of the polyhedron limiting the Brillouin
zone. Now using this definition of the points Z, we can
reformulate criterion (33) in a simpler way by means of
the following theorem:

Theorem. If the eigenfunctions belonging to a band
form a set $(g,m), the relation

~(ka~S)=C(*ka~m) (34)

is true for any vector wave k. Conversely, if for a given
band for some lattice 2 and some representation FM
this relation is true for any vector k(Z), then it is true
for any vector k and the eigenfunctions belonging to S
form a set 8(Z,m).

lemma. Let FA and FBb be two irreducible repre-
sentations of two subgroups A and B of a group G.

B. Properties of a Band Forming
a set 8(z,m)

Let us give first the general conditions fulfilled by a
band S, when its eigenfunctions form a set 8(Z,m).
I.et n(k, a~ S) be the number of distinct bases for repre-
sentations F1,", which can be built from Bloch waves

yk belonging to S. According to (31), n(ka~ S) is also
the number of corresponding representations FH*" in
the band S. Each irreducible representation F~*"'
associated to a star of k, subduces a reducible repre-
sentation of GM„the group of the origin 3fo of 2 and
Eq. (4) can be written
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TABLE VI. Nature of the Kannier functions for a linear crystal.

Lg

Lp'
Al

L1

X~

Xl

Xy

Fro. 3. Energy
bands for a dia-
mond-type crystal.
Tight binding.

3Ip'

5
5
A

gp
Np"

5
5
A

Mp'

5
A
A
5

Vp"

5
5
A

Orbitals

S on 2'
S one"
A on 2'
A on/"

L2'

L1
S

The lemma given above can now be used to derive
very analogous relations connecting C(*kal m) and
C(*k'a'l m).

According to (31) and (32) we may write

(100)

From these representations, by using Frobenius'
method, it is possible to induce' representations {I'~ }o
and {&s~}oof the group G. In turn, these representa-
tions subduce representations usually reducible of 8
and A, respectively:

[{r,"}„].„,=[r *'] =g„c(*kalm)r.„,". (4O)

Application of the preceding lemma gives

[{I'.&i,"}ii]i,——Q. C('kalm)r, ". (41)

But Gi, is a subgroup of Gi„therefore, by taking (38)
into account, we can write

[{&v."}ii]i =[[{&v,'"}ii]~]~

where

[{I'g }o]s=—Qi, C(Aa
l
Bb)I's',

[{I' s'}o]g——Q. C(Bb
l
Aa) I'i, ',

(35) =P C(*ka
l
m)C(ka l

k'a, ')ri, "'". (42)
aa'

C(Aal Bb)= C(Bb
I
Aa) (36) We can also write more directly [see Eq. (41)]:

Using this lemma which is proved in Appendix III, it
is now possible to prove our theorem.

Proof of Ihe Theorem As was show. n before, if a band
S forms a set h(Z, m), then for each point Z we must
have

»(k(Z) a
l m) =C(*k(Z)a I in) (37)

[I'k~ ]„=P,C(kal k'a')I'i, "'". (38)

Let us now prove that the converse is also true by
showing that when the conditions (37) hold, the general
condition (33) is valid for any vector k of the reciprocal
space. Ke note that any point in the Srillouin zone can
by attained by starting from some point Z and by
passing through points of decreasing symmetry. There-
fore, to establish the theorem, it is su%cient to prove
that if the relation (33) holds for a vector k, it holds
also for any vector k' in the neighborhood of k, pro-
vided that G~ is a subgroup of Gk. This last result can
be derived as follows.

If G~ is a subgroup of Gk„any irreducible repre-
sentation I"j," of GJ, subduces a representation of t ~.
which is usually reducible with respect to the irre-
ducible representations Fk "' '

[{I'.)r,"}H],.=P. C(*k'a'lm)I'i, "' '. (43)

»(k'a' 'j(8) =C(*k'a'
l
m). (46)

Therefore, if (45) is true for all the points Z, it is true

Lg

Lp'

L1
X)

FIG. 4. Energy
bands for a dia-
mond-type crystal.
Valence binding.

By comparing Eqs. (42) and (43), we obtain the fol-
lowing relations:

C(*k'a'lm) =P, C(ka
l
k'a')C(*kalm). (44)

Now Eqs. (39) and (44) show that the validity of the
condition

n(ka'03) =C(*ka'm),

implies also the equality

Thus, by passing from k to k', we remove usually
some degeneracies, and from (38) we deduce easily by
continuity the relations which connect the coe%cients
»(kal(a) and n(k'a'I61)

Lg'

L2'

L)

Xy

X1

»(k'a'l (9)=P C(ka
l
k'a')n(kal (8). (39) (100)
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everywhere in the Brillouin zone, and as a consequence
the eigenfunctions of S form a set b(g, m).

A&xamp/e. As a very simple application of the theorem
we consider the case of a linear crystal with a center of
symmetry which has been studied in Sec. II—H. For
such a crystal the points Z are the center of the
Brillouin zone (k=0) and the point at the boundary
(k=x). For a given band, the corresponding eigen-
functions are yo and y . From the structure of the
representations of Glr (see Table I), it is easy to see
that po is either completely symmetric or completely
antisymmetric with respect to any point of Z or 2";
on the other hand, if y is symmetric with respect to
the points of 2', it is antisymmetric with respect to the
points of 2" and conversely.

All the possible cases are listed in Table VI. The
type of the lattice 2 and the nature of the orbitals
which are carried by points of this lattice are deduced
from the theorem given above, in full agreement with
the results of Kohn. '

E'zG. 5. Energy
bands for a dia-
mond-type crystal.
Mixed bands.

Lg

Lp'

L3

Ll

Lp'

L1

X4

Xl

X4

Xl

(IOO}

C. Remarks on the Possibility of Representing
a Band by a Set of Orbitals

The theorem derived in Sec. II—C is useful because
it shows that, to know whether the eigenfunctions of a
band S form a set b(Z, m) or not, we have only to
examine a finite number of conditions related to the
points Z. Now, we may ask, what determines exactly
the nature of the orbitals associated with a given band
and whether a band can always be represented by a set
of orbitals.

Let us assume in the following that GH is Axed and
that the Hamiltonian H depends on a few parameters.
When the values of the parameters change, levels be-
longing to different representations of GI& can easily
cross each other, whereas those belonging to the same
representations cannot. For instance, energy levels cor-
responding to points of high symmetry in the Brillouin
zone and belonging to different representations of G~
may cross each other but general energy surfaces are

FrG. 6. The lattice 2
is made of two Bravais
suhlattices: sublattice
cCp =black circles; sub-
lattice Zl =white circles.

never allowed to cross. Therefore, if for a point Z there
is a crossing of levels belonging to two diferent bands,
there must be a complete rearrangement of both bands.
Under this rearrangement an energy level corresponding
to a given representation can be transferred from one
band to the other. Thus, the structure of the bands
depends very much on the values of the parameters of
JI. A fictitious example will now be given for a diamond-
type crystal. ' In Fig. 3, we plotted 5 and P bands in
the tight binding limit; as the reader may verify, in
this case 2 is the lattice of the carbon atoms and the
Wannier functions associated with each band are
atomic orbitals of 5 and P type, respectively. Now, let
us assume that for some change of the parameters in II,
the levels I"2~' and I"2' at the center of the Brillouin
zone, happen to cross each other; in this case, we may
obtain the band structure indicated in Fig. 4 which
corresponds to covalent binding; the lattice Z which
corresponds to this new band structure consists of the
midpoints of the lines joining nearest neighbor carbon
atoms; the Wannier functions associated with each
band are now bond orbitals which are symmetrical (&r)

or antisymmetrical (n).
On the other hand, when the parameters change in H,

the same kind of process may lead to a complex band
as a result of the overlapping of two simple bands. An
example of such overlapping is given in Fig. 5. It is
obvious that, in general, complex bands cannot be
described by means of a single set of Wannier functions.
However, let us remark that this overlapping of bands
can never occur in one dimension. So, in this case, each
band can always be described by means of Wannier
functions. In summary, we can say that, in simple
cases, the bands of a crystal can be described by means
of a single set of Wannier functions, the nature of which
is determined by the ordering of the energy levels at the
points of highest symmetry Z. On the other hand, if in
a crystal the valence band and the conduction band
can be represented by Wannier functions, these func-
tions define the chemical nature of the crystal.

D. Expansion of the Bloch Waves in Terms of
Orbitals. Definitio of the Quasi-Bloch

Waves y(ir, m, p)

AVhen in a crystal, a band can be represented by a
set of Wannier functions, any Bloch wave belonging to

' J. Callaway, in Solid State Physics, edited by E'. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1958), Vol. 7,
p 99
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the band can be expressed as a linear combination of
these orbitals. Unfortunately, the coeScients of this
expansion are usually rather complicated: In fact, the
general formulas given in Sec. II cannot be applied
directly. Therefore, in this section, we write the ex-
pansion somewhat schematically: In a band, the Bloch
waves of wave vector k forming a basis for an irre-
ducible representation I'k"' of G& can be denoted by
the symbol rp(ka~) T.he index p is used to distinguish
difFerent bases belonging to the same representation.
The index n is used to label the row of difFerent vectors
belonging to a given basis. Thus, we may have n= 1,

~ . , d"' where d" is the dimensionality of the repre-
sentation. On the other hand, in a crystal, each lattice
2 can be split into a certain number of sublattices
which are Bravais lattices and which can be found in
the following way. I.et T be the subgroup of the transla-
tions contained in GH. By applying the transformations
T to the point Mo, we generate a Bravais lattice Zo.
Now if Zo is not identical to 2, it is possible to find in
the vicinity of Mo a point M» of 2 which does not
belong. to Zo. Then by applying the translations T to
the point M», we generate another Bravais lattice 2»,
and so on (see Fig. 6). In this way, we can split the
lattice Z into J different Bravais sublattices

Zz» generated from points Mp, ' ' 'Mg». Each
sublattice, of course, contains the same number of
points .VT= V/J. Now, we can associate with each sub-
lattice 2, , a quasi-Bloch wave q, (k,m, p). Calling t the
displacement corresponding to an operation T of T,
we put

y, (k,m, Ii) = (ST)—'~' P r expI ik(MOM;+t)]
XAriJ. (m, i ). (&I)

It is clear that the Bloch waves p(ka~) of given k
are related to the functions y, (k, tn, p) having the same
wave vector, by a unitary transformation which can
be written in the following way

v (k~~) =2 v, (k~~)(i I I U~-I o~) (4g)

We note that the coeScients of this expansion do not
depend really on the exact value of k but merely on
the nature of the star of k. Therefore, for a crystal of
a given type, in order to write explicitly the expansion
(47) in any case, it is sufticient to calculate only a finite
number of coeKcients. Unfortunately, these coeKcients
cannot be completely determined by group theoretical
arguments: They depend also on the analytic structure
of the band. Anyway, the functions q, (k,ni, p) are very
useful in practical cases and, in fact, can be found
directly without calculating in detail the Bloch waves.

IV. SUMMARY

The results of this study can now be reviewed briefly.
Taking advantage of the invariance properties of a

' This point will be discussed in a subsequent paper.

one-electron Hamiltonian with respect to the elements
of a space group Gyr we have shown in Sec. II that the
eigenfunctions of H can be expanded in terms of equiva-
lent local orbitals. These orbitals are attached to the
points M of a lattice 2, which is generated by applying
the operations of G~ to an arbitrary given point Mo.
To each point M there corresponds a subgroup G.M
consisting of those transformations of GII which leave
M invariant. According to our assumptions (Sec. II A)
the orbitals M(m, p) associated with a point M must
form a basis for a given irreducible representation I'~
of G~. In Sec. II 8, we classify the eigenfunctions of
H according to their symmetry properties and in Sec.
II C the orbitals are obtained by a unitary transforma-
tion from a suitable set h(Z, m) of eigenfunctions of H.
The properties of this set are determined by the initial
choice of the lattice 2 and of the representation I'~, .
Conversely, in Sec. II D, the eigenfunctions belonging
to 8(2,m) have been expanded in terms of the orbitals.
These orbitals are orthonormal (Sec. II E) and can be
deduced from each other by symmetry transformations.
Moreover, we have shown in Sec. II F that if H and
I'M, are real the corresponding orbitals are real pro-
vided that the set b(g, m) is defined in a reasonable
way. Section II G is devoted to a few remarks concern-
ing the localizability properties of the orbitals and the
possibility of choosing suitable sets b(Z, m). As an
illustration of our formalism, the case of a linear chain
is treated in Sec. II H and another example (tetra-
hedron) is given in Sec. II I.

Section II is devoted to a special study of the case
of crystals. We try to investigate whether it is possible
or not to describe a band by means of one set of orbi-
tals. Notations and definitions are introduced in Sec.
II A and in Sec. II 8, we prove that if a finite number
of simple conditions are fulfilled, then the eigenfunc-
tions belonging to a band form a set 8(Z,m). These
conditions are related to the points of maximum sym-
metry in reciprocal space. In Sec. II C, it is shown that
if a band can be described by one set of orbitals only,
the nature of the band determines the nature of the
lattice 2 and of the orbitals; therefore it determines
also the nature of the chemical bonds. The orbitals
which correspond to a band can be called generalized
%annier functions. Unfortunately, a band cannot al-
ways be described by only one set of YVannier functions
because in crystals difFerent bands may overlap. The
application of the formalism to the special case of
crystals is discussed in Sec. III D.

The possibility of building really localized orbitals
depends on the analytic properties of the eigenfunctions
of H; an examination of this question will be carried
out in a later paper.
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APPENDIX L LIST OF SYMBOLS

g
R
I'Il'

'R

Mp
M
S~~,

p(l„m
&m', p

M(m, p

(8
T
XT
Gk

ka

)fc ka

GH general space group leaving the Hamiltonian
H invariant,
number of elements of G~,
element of G~,
irreducible representation of G~,
dimensionality of I'II',
matrix representing R in I'~',
lattice invariant with respect to G~,
origin of 2,
any point of 2,
special element of G~ transforming Mo
into M,
number of points M in g,
subgroup of G~ containing the elements of
G~ which leave Mp invariant,

R~p element of G~p,
I'~, irreducible representation of G~„
Gjf subgroup of G~ containing the elements of

G~, which leave M invariant, isomorphic
to G~„

gnx number of elements of G~ and of G~„
R~ element of G~,
I'~ irreducible representation of G~, corre-

sponding to I'~, ,
dimensionality of I'~,
representation of G~ subduced by an irre-
ducible representation I II' of G~,

{I'~"}Jr representation of G~ induced by an irre-
ducible representation I'~ of G~,

C(IIm) number of representations I'~ contained
in [I'„'j~,

C(Aal Bb) coefficient referring to the irreducible repre-
sentations I'~ and I"p,' of two subgroups A
and 8 of a group G,

I I„m,p) eigenstate of H belonging to a representation
I'~' and a representation I'~,
wave function corresponding to II„m,p),

'I%les,p)matrix element of %,
) orbital centered on M and belonging to a

representation I'~,
energy band of a crystal,
subgroup of translations of GH in a crystal,
number of elements of T,
in a crystal, subgroup of G~ the elements of
which leave invariant the wave vector k of
a Bloch wave,
irreducible representation of Gk,
in a crystal, irreducible representation of G&,
induced by an irreducible representation

ka

e(kal Ph) number of bases of eigenfunctions belonging
to a representation I"~*" and contained in
a band,
point of maximum syDUnetry in reciprocal
space,

y(ka~) Bloch wave belonging to a band and a repre-
sentation I'kk,
one of the Bravais sublattices of a crystal,

y, (km+) quasi Bloch wave

APPENDIX II. A CLOSURE RELATION

The closure relation (13)

2 &I'e '
I
'~M~D I ~'~)&~.~l '~~~0 'I &e~&

= (g/g )(d "/d')h„.h „.h„„h„h„„.(A2.1)

is a consequence of the orthogonality relations' satished
by the matrices 'R forming an irreducible representation
I'6' of the elements R of GI~.

Pg(h'I 'Rl u')(al 'R 'I h)= (g/d')hn 8«hqq (A2..2)

Using our previous notation, we may write as well

Za&~';~'I'Rlm' ~'&&~ ~l'R 'l~.»
= (g/d')hn 8 „hp~ h„„h„„hq,h„„(A2.3).

Now each operator R can be considered as a product
[see Eq. (1)]

(A2.4)

The matrices R~p forming a representation I'~p
obey orthogonality relations analogous to (A2.2):

2 &8'I"'R~ol~'&&~I "R~o 'I 6&

= (gM/d~")h h„„hrt (A2.5).
On the other hand, relation (A2.4) can be used to
transform (A23):

pre. &n';p'I'S.~~, lm', e').
x &5'I"'R~w

I
~'&&I

I
"R~w

'14&&~PI�

'~~~. '~"
&

= (g/d')hn h~~ hyy h„h~~h«h-' (A2 6)

Let us simplify the 6rst member of this equation by
using (A2.5) to eliminate all the terms referring to
R~,. Now putting m=m' and p=p', we obtain (A2.1).

APPENDIX III. ON FROBENIUS' THEOREM
AND A RELATED LEMMA

Frobenius' Theorem

Let I'~' be the irreducible representation of a sub-
group A of a group G and {I'~'}o the corresponding
induced representations of G. These representations

'A. Speiser, Die Theoric der Gruppen I'Dover Publications,
New York, 1945), Satz 146, p. 164.
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are usually reducible with respect to the irreducible
representations FG' of G

f rg'} o =Q, C (Aa ( Gg) I'o'. (A3.1)

Conversely, any irreducible representation FG' sub-
duces a representation [I'o']~ which is usually reducible

[ro']g ——Q, C(Gg
~

Aa)I'~'. (A3.2)

(Let us remark, however, that these coefficients still
depend on G.)

Proof of the Lemma

The induced representations fry'}o and (rs'}o are
usually reducible with respect to the irreducible repre-
sentations FG' of G

According to the Frobenius theorem

C(Aui Gg) =C(Gg
~

Aa). (A3.3)

(r,.},=p, C(Aa~ Gg)r, ,

(r,'},=p, c(ab
~
Gg)r, ,

(A3.6)

By means of this theorem, "' the following lemma,
which is used in Sec. III B, is derivecl.

Lemma

Let F.~ and Fg' be irreducible representations of the
two subgroups A and 8 of a group G. These repre-
sentations induce two representations f r~ }o and
(rs'}o of the full group. These new representations
subduce usually reducible representations of B and A,
respectively, namely, [fry, }o]s and [(rs'}o]~ and
we have

[do']~=&.C(Gg l«)r~,
[ro']s ——Qp C(Gg

~

Bb)rs'.
(A3.7)

By combining these two sets of equalities, we obtain

[fI' } ] =Pc(AuiGg)[I' ]
=P C(Aa

~
Gg)c(Gg

~
Bg)rs',

and we obtain also the following reduction for the
representations [ro']~ and [ro']s subduced by a
representation FG

g

[(r .},],=p, C(Ao~ ab)r, ',

[fra'}o]~——Q, C(BbtAa)r~'.

The lemma states that

(A3.4) [(r.},].=p c(ab
~
Gg) [r, ].

=Q (Cabi Gg)c(Ggi Au)rn'.

(A3.8)

C(A@i Bb) =C(Bb
~

Aa). (A3.5)
he equality (A3.5) is an obvious consequence of the

New York, 1945), Satz 179, p. 200. Frobenius theorem [Eq. (A3.3)].


