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Method for Finding the Density Expansion of Transport Coefficients of Gases
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Ãaieona/ Bureau of Standards, Waslnngion, D. C.
(Received 2 August 1962)

This article presents a new method for finding the density expansion of certain transport coefIicients of
gases. Of these, the self-di6usion coeKcient is the most important example. The method is to calculate the
time-correlation function associated with the transport process. To lowest order in density, the results are
identical with those found by Enskog's 6rst-order perturbation solution of the Boltzmann equation. The
erst density correction requires the solution of a certain three-body problem. This problem is stated precisely,
but is not solved.
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where pi(t) is the momentum of the diffusing molecule
at time 3, m is its mass, and the average is calculated
with an equilibrium distribution of initial phase points.

Other transport coe%cients, for example, the coeffi-
cients of viscosity and thermal conductivity, are not
quite so simple. They involve time correlations of
functions of position as well as momentum. We shall
reserve a discussion of these coefficients for a later
article. The most general transport coefficient con-
sidered in the present article have the form

a=limo(e),
6~0

I. INTRODUCTION

'T is well known, from the work of Green, ' Kubo, '
~ - Mori, ' and others, that transport coefficients can be
expressed as integrals of time-correlation functions.
The simplest example is the self-diffusion coefficient D
of an isotropic Quid

and the apparent divergences characteristic of an
electron gas.

We have discovered a method, somewhat like the
virial expansion in equilibrium statistical mechanics,
for finding higher terms in the density expansion of the
momentum contributions to transport coefficients. The
purpose of the present article is to describe this method
and to give a preliminary argument concerning its
validity.

We show that momentum transport coefficients can
be calculated in the following way:

&ui (( (iii)J (1 i)&(1 i),

where 9 (p) is the equilibrium momentum distribution
at temperature T,

exp( —p'/2nskT)

(2a.rnk T)sis
(1 4)

and E(pr) is the solution of an operator equation in
momentum space, of the form

()= « "9( (o))~( (g)))-,
0

(12)
(1 5)

where J(y) is some function of momentum characteristic
of the particular transport process. Clearly the self-
diffusion coefFicient is a special case of Eq. (1.2).

Mori4 has given a plausible argument that the
calculation of transport coefficients from time-
correlation functions, for gases at very low density,
leads to results identical with those found by the
customary solution of the 8oltzmann equation.
Montroll and Ward' have shown how the time-
correlation formula for electrical conductivity leads to
the standard Boltzmann equation in the weak coupling
limit; and they conjectured at some generalizations.
They were not able to get entirely satisfactory results
because of the extra complications of quantum statistics

' M. S. Green, J. Chem. Phys. 20, 1281 (1952); 22, 398 (1954).' R. Kubo, J. Phys. Soc. Japan 12, 570 (1957).
3 H. Mori, Phys. Rev. 112, 1829 (1958).' H. Mori, Phys. Rev. 111,694 (1958).
" E. W. Montroll sn(] J. C. Ward, Physica 25, 423 (1959).

where p is the density of the gas.
Equation (1.5) is a generalization of the integral

equation arising in Chapman and Knskog's first-order
perturbation solution of the Boltzmann equation. In
particular, to the lowest order in density Eq. (1.5) is
identical with Chapman and Enskog's integral equation.

The operator Bs contains the effects of triple collisions.
The determination of this operator requires the solution
of a certain well-defined three-body problem, described
in Sec. 9.

The specific results of this article that we believe
are new and significant are the following: (1) a general
method for constructing higher order terms in the
density expansion of the operator appearing in Eq.
(1.5); (2) the reduction of the first correction Bs to a
well-defined. three-body problem; and (3) explicit
demonstration that the method is free of divergences
to the second order in density.
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2. HOW TO FIND THE OPERATORS 8

In this section we present, without proof, the pro-
cedure for finding the operators B in Eq. (1.5). The
rest of the article is concerned with a more detailed
analysis of the first two terms, B2 and B&.

Our method is based. on explicit use of the I.iouville
operator L, Koopman's time displacement operator
exp(itL), and the resolvent operator (c—iL) '. Koop-
man's operator has the following property: If n(R, p) is
some dynamical quantity, its value at time t is given as
a function of initial values of R and. p by the operator
equation

n(t) =n(R(t), p(t)) =exp(itL) n(R, y). (2.1)

By using this operator we may write Eq. (1.2) as

0'(c) = dt exp( —ct)(J(pi) exp(itL) J(p,)). . (2.2)

On performing the time integration, one obtains the
resolvent operator G(c), defined by

G(c)= Ct exp( —ct) exp(itL) = (c—iL) '. (2.3)

where T is the number of molecules in the system, and
V is the volume. This serves to eliminate the mathe-
matically annoying but physically meaningless compli-
cations of recurrences at long times.

The operators F (c) all diverge as c ~ 0. In particu-
lar, the first one in the series is simply

0

I",(c) =1/e. (2 9)

The divergence is not unexpected. If the limits
existed, then o- would be expressed as a power series in
density, containing only the zeroth and positive
integral powers. But this is contrary to experience. We
know, for example, that the self-diffusion coefficient is
proportional to 1/p at low density, and therefore
cannot be expanded in such a power series.

We consider now the operator B(c), defined as the
reciprocal of (G(e) ),

LB(c)j '=(G(c)). (2.10)

The formal density expansion (2.7) can be inverted
(for nonzero c) to yield a series expansion of B(c),

B(c)=B,(c)+PB2 (c)+p'Bg(c)+ . (2.11)

The coefficients can be found by elementary algebra, .
They are

Thus, 0 (c) is
(2 4)

The equilibrium average ( ), is performed in two
stages. The first, denoted here by ( ) without the
subscript av, is the equilibrium average over all
coordinates, and over all momenta except p~. The
second stage is the average over p~ using the distri-
bution &p(p) defined in Eq. (1.4). We write this as

Bi(c)=IXi(c)3 '=c,
B2(c)= —c'r2(c),

B3(c)= —c'I'8(c)+ "I:I'2(c)l'

and so forth.
We are going to demonstrate that the limits

lim B.(c)=B„
e-+P

(2.12)

(2.13)

(2 5)

Because the partial a,verage ( ) does not touch the
function J(p,), 0.(e) is conveniently expressed as

exist when v=2 and m=3. Ke conjecture that they
exist for all e, but this has not yet been proved. The
operators B„are just the ones appearing in Eq. (1.5).

Thus, the limit of (G(e)) is

lim (G(c))= LPB,+p'Bs+

( )=
cfog (li )~(u )(G( ))~(1i ) (2 6)

Note that the operator (G(c)) is an intensive
quantity: Although it is defined in a many-body system,
it operates only in the space of functions of momentum
of one molecule. YVe may therefore expect that it has a
well-defined density expansion (of an unknown radius
of convergence),

(G(c))=+i(c)+p+~(c)+p I 3(c)+' ' ' (2 t)

We suppose that the limit of an infinite system is
taken at this stage of the calculation. That is, we let

This result, in combination with Eq. (2.6), leads to the
prescription for calcula, ting 0- that was stated in Eqs.
(1.3) and (1.5).

The rest of the article is concerned with a detailed
proof of the existence of the limits B2 and. B3.

3. FOURIER REPRESENTATION

Investigation of the dependence of the averaged
resolvent operator (G(c)) on p and c will be considerably
simplified by use of a Fourier expansion in space.

We use a box of volume U, and periodic boundary
conditions. Then the well-known set of orthonormal
functions

)g —& oo, U —+ oo,

P=E/V=const,

U
—"t' exp (ikR) (3.1)

(2.8) is suitable for Fourier expansions. Here R denotes the
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set (Ri,R2, R~) of all E positions, and k is the set
(ki,k2, .ky) of all N wave vectors. When R and k
appear without subscripts, they are understood to
refer to these complete sets of variables. When they
appear with subscripts, they refer to individual
mole cules.

The matrix representation in k space of an operator
Q in position space is

Q(k~k) —V N—dR e atR-Qeit'a (3.2)

4. FOURIER EXPANSION OF (G(&))

After one more bit of notation, we are able to write
out the Fourier expansion of (G(e)).

Because the partial average ( ) requires integration
over momenta as well as positions, these have to be
accounted for separately. We divide the canonical
ensemble distribution function into momentum and
position dependent factors,

independent of position, so that we can set k'=0 in the
definition (3.2) of the matrix.

To simplify an already cumbersome notation we shall
often leave out the e; resolvent operators, binary
collision operators, etc. , all depend on e unless the
contrary is stated explicitly.

$. BINARY COLLISION EXPANSION

Another mathematical device which makes the
following discussion considerably simpler is use of the
binary collision expansion of the resolvent operator.
Siegert and Teramoto' have given an elementary
derivation of the binary collision expansion of the
quantum mechanical resolvent operator. Extension of
their derivation to classical mechanics is trivial. We
therefore just write down the necessary formulas
without further justification.

We restrict our discussion to a model gas described
by the Hamiltonian

II y(p;) xp(R), (4 1)

a= P pP/2m+-' , P P y(R;—R;), (5.1)

expL —U(R)/kT]
p(R) =

dR expL —U(R)/kT]

(4.2)

where q (p) is the one particle momentum distribution
defined in Eq. (1.4), and p(R) is the configurational
distribution function. The latter is related to the total
potential energy U(R) of the configuration R by

where the potential of interaction @depends only on the
positions of the indicated mole cules. The potential
is assumed to be short ranged. We exclude Coulomb
or dipolar forces. To avoid essentially irrelevant
complications we assume also that the potential is
spherically symmetric.

For the Hamiltonian (5.1) the Liouville operator
splits into two parts,

L=LO+Li,

The averaged resolvent operator is

(G(e))= dR p(R) II v(p~)dp G(e) (43)
j=2

p~
Lo—— i g ———

7i=i' BR;

N /8 8
L= ', i++——F;;

~

kgpg Bp&''

(5.2)

8
~ ~ ~

BR(P(k)= dRe'~p(R). (4 4)

The Fourier comPonents of the configurational ~h~r~ the f~r- F.. ;s
distribution are

(5.3)

Note that
P(0) =1

because of the normalization of p(R).
The Fourier expansion of (G(e)) is therefore

Throughout this article a greek subscript will denote
(45) a specific pair of molecules, and a sum over a greek

subscript will denote a sum over all distinct pairs. Thus,

L,=P.L..

where

G(k~0)=V" dRe '~G(e). (4.7)

&G(.))=EP(k) II &(p;)Zp, G(klo), (4.6)
When n denotes the pair (ij), then I. is

t'8 8
L.= iF;; ~—

(Bp; Bp.

The free-particle resolvent operator is Go,

(5.5)

Only the special matrix element G(k~0) appear. This
is because G(c) operates only on functions that are

Go ——(e—iLp)
—'. (5.6)

A. J.F. Siegert and E.Terarnoto, Phys. Rev. 110, 1232 (1958).
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Vnless otherwise indicated, Lp and Go include all S
molecules.

The binary collision operator T, plays a central role.
This is defined as the solution of the equation

T = —iL +iL GpT . (5.7)

The operator T describes the interaction of the specified
pair of molecules, all others moving independently
as free particles. The following section contains a
summary of some useful properties of T .

Now the binary collision expansion can be written
out in detail,

6=Go P GoT Go++ Q GoT GoTpGo

—P P P GoT.GoTpGoT, Go+. . (5.g)

Note that any exclusion from a sum, for example
P&o., is to be interpreted strictly: Only the pair n,
and no other, is to be excluded. This means that a
general term in the expansion may contain many more
factors T than molecules, e.g. ,

GoTip GoTip Go Tip GoTip Gp T23Gp. (5 9)

Go(ki k') =g(k)b(k —k');

g(k) = (o—ip k/m)-'. (5.10)

Here p denotes the set (pi, po, p~) of all E momenta.
The symbol 6(k—k') is the Kronecker delta. Thus,
(5.8) is replaced by

Terms of the form of (5.9) actually correspond to the
expansion of a triple collision in terms of binary
collision operators. Later in the article we take ad-
vantage of this correspondence.

We use the Fourier representation of the binary
collision expansion. The free-particle resolvent operator
is a diagonal matrix in this representation,

pair (12).Then

T„(k~k') ~ 8(k,+k,—k, ' —k,') g 8(k„—k„'). (6.1)
n=3

That is, T is diagonal in all wave vectors not directly
involved in the pair n, and it is proportional to a
Kronecker delta expressing wave vector conservation
for the interacting pair.

Property (3). This relates the operator T to the
Boltzmann collision operator. Let 1(pi) be some
arbitrary function of p&., then

»m lim UT12(0~0).&(pl)
g~o P-woo

(pi —yo/
P(p.')-~(p.)3, (62)

where (b,P) are the standard impact variables of a
binary collision, and p&' is the momentum of molecule 1
after the collision, expressed as a function of the impact
variables (b,P) and the momenta pi and yo before the
collision.

V. DEPENDENCE ON y AND e

So far we have found a general expression (4.6) for the
partially averaged resolvent operator in the Fourier
representation; and we have presented in (5.11) the
binary collision expansion in the same representation.
Now we combine these equations.

For convenience we write

(G(.))= to+ti+to+ (7 1)

where t is the sum of all terms from the binary collision
expansion containing exactly e binary collision
operators. It has been noted already that this does not
correspond directly to a density expansion. In this
section we work out the p and e dependence of the first
few terms in the t expansion (7.1).

The first term to is easy.'

G(k~ o)=.-is(k) —;iP g(1 )T.(1
~

o) tp
——1/o. (7.2)

+e—'Q Q P g(k)T. (k~k')

Xg(k')Te(k'i 0) (5.11)
tp ——F,(o) = 1/o, (7.3)

Note that it is independent of density. We shall see that
the rest of the expansion (7.1) is at least of the first
order in density. Thus,

Note the appearance of 1/o in each term. These factors
come from the Go at the right of each term in Fq. (5.g)

as was asserted in Kq. (2.9).
The second term t1 is

6. BINARY COLLISION OPERATOR

Here we summarize some properties of the operator
T that are useful in the following discussion. A more
detailed treatment is given in the Appendix.

Property (1). T is proportional to 1/U in the limit
v~ oo.

Property (Z). Let o. be, for example, the specific

ti= o ' Q P(k) g q (p, )&y; 2 g(k)T-(kI 0) (7 4)

This is to operate on functions of p& only. Then the pair
n must include molecule 1. (The reason is that T
contains derivatives with respect to the momenta of
the pair n, and if this pair does not include molecule 1,



ROBER'I ZIVANZIG

the result of operating on a, function of pi vanishes. )
Since there are X—1 equivalent pairs containing
molecule 1, we can replace T„by T», and replace the
sum over 0. by the factor iV—1.

A consequence of the second property of T, as
stated in Eq. (6.1), is that many of the k in the set k
must vanish. Throughout the article we use the follow-

ing convention: Whenever components of k are written
down explicitly, all components that are omitted are
understood to vanish. For example,

Thus tg separates into two parts,

&V—11
dp~ p(p~) VT»(0l o)

V e2

Ã —11 1
dp2 v (p2) 2 —~"'(ki)

V k1 V

Pi —P2
X c i k—i UT, 2(ki, —ki

~

0). (7.11)

T„(l
l
0) =T„(ki k~

I
0). (7.5)

ti —— e —'(1V— 1)—P 1'(ki, —ki) dp. p(pg)

In a large system the sum over ki can be approximated
When we take account of wave vector conservation by an integral, according to the well-known formula
also, we get

X$~—i(pi —p, ) k,/m] 'Ti&(k&, —ki~0). (7.6) In this way t& becomes

Further simplifications of tI arise from the singular
behavior in the sum (7.6) of the point ki=0. To see
why this point is unusual, we have to analyze the
quantity P(ki, —ki). This is the Fourier transform of
the pair distribution function of the gas.

We define the pair distribution function by

p
ti ———— dp~ q(P2) VTi, (0~0)

Q2

P
dp2 ~(P2)

(2n-)'
d'ki u&" (ki)

Pi »
'ki VTi2(k, , —k,

~

0). (7.12)

p
~ (Ri,R2)= ~ ~ dR3 dRy p(R). (7.7)

A well-known result of the theory of equilibrium
distribution functions is that, in a large system,

p"'(Ri, R2) = (1/V') (1+~»), (7.8)

where UI2 is a short-ranged "cluster" function of the
separation R». In a large system U» depends o»
density but not on volume. Because of the cluster
property of U», the Fourier integral I' is

1
P(ki) —k,)=5(k,)+— dRi2 &' '"»Ui2. (7.9)

V

To save space we abbreviate

gg&2& (ki) = dRi2 gi»»2p (7.10)

The significant point here is tha. t I (ki, —k,) splits
naturally into two parts having differing asymptotic
behavior as V —+ ~. The part that is independent of
V is important only for the single value ki ——0. (We are
still dealing with a finite, though large, system; this is
why the Kronecker delta appears, and not the Dirac
delta. ) The other part of I' is of order 1/U, and it is
important only for ki of the order of 1/a, where a is
the distance over which the cluster function V~2 does
not vanish.

A fa,ctor U has been kept with Ti2 because, as was
observed earlier, Ti~ is proportional to 1/V in a large
system.

This calculation shows that t~ is proportional to P,
and that it depends on higher powers of p through the
quantity u&" (ki) in the second term.

The rest of the expansion (7.1) turns out to be of
order P' and higher. Therefore the second term in the
density expansion (2.'7) is

r, (e) = lim t,/p.
p-+0

(7.13)

The two parts of t& depend on e in significantly
different ways. The first part contains e explicitly in
the factor 1/e', and implicitly in T». The second part
contains e explicitly in the factor 1/e, and in the
denominator of the free-particle resolvent operator
inside the integral over k space, and also implicitly
ln TI2.

In the limit &~ 0, the e dependence of the free-
particle resolvent operator inside the k-space integral
does not cause any divergence trouble. This e is
"protected" by the integration over k~. The same can
be said of the e dependence of Ti2.

The extra 1/e in the first part of ti actually
originated in a free-particle resolvent operator,
Le —i(pi —p~) ki/m] ', for the special value ki ——0.
Because of the special character of the pair distribution
function, expressed in Eq. (7.9), this single point
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1/». All other appearances of » are protected by
integration.

To sum up, t2 is of order p'. The contribution t2, ~

diverges in the limit » —+0 according to 1/»', and all
other contributions are less strongly divergent.

Next we investigate the higher terms ts, t4, ~ ~ in the
expansion (7.1). In t2 there are three binary collision
operators. One of these must include molecule 1; out
of the X—1 possibilities for the other, we choose mole-
cule 2. The second operator must include either mole-
cule 1 or 2; out of the E—2 possibilities for the other,
we choose molecule 3. The third operator must include
either molecule 1 or 2 or 3, and another that can either
be distinct, so we choose to call it molecule 4, or it can
duplicate a molecule already mentioned. Evidently the
terms involving four distinct molecules are of order p'.

But the third binary collision operator does not
have to introduce a new molecule. In fact, we can get
contributions to t3 of order p' from the four combinations

Ti2Ti2Ti2, T2,Ti3Ti2) Ti2T22Ti2, Ti»T22Ti2.

Let us work out the first of these combinations as an
illustration. We call this one t3, ~'.

N

t&, i= —(N' —1) (1V—2)— P 8 (k) Q p(p, )dp,

Xg(k)Ti2(kI k')g(k')T„(k'Ik")

Xg(k")T„(k 'lo) (7 23)

1 1
p2

»' (22r)2
~p242 v (p2) ~(p2)Ti2(0I ki, —ki)

ps —p2
» —i .k, T„(k,, —ki, oIk, ,

—k, , o)
m

pi pzX» 2 ki T12(kl) kl Io). (7.24)
8$

The» dependence is dominated by the factor 1/»'.
The other parts of I' lead to less singular behavior,

being dominated by the factor 1/». The same holds for
all the other combinations of three binary collision
operators: In all cases, the most singular behavior is
dominated by the factor 1/»'.

Higher order terms t4, ts ~ can be investigated
systematically by the same method. The contributions
from sequences of operators involving just three
molecules are always of order p'. The most singular
behavior is always dominated by the factor 1/»2.

Because three molecules are involved, one needs the
Fourier transform of the triplet distribution, Eq. (7.18).
The first (volume independent) term of I' leads to the
following result in the limit of a large system,

B2——lim [—»2p»(»)+»'[1 2(»)$2).
g—20

(8.1)

The operator I'2(») is given by Eqs. (7.12) and (7.13).
It is easy to see that the limit exists,

B2=lim dp2 q (p2)vT»(0I0).
e~o

(8.2)

The structure of B2 can be clarified by recalling property
(3) of the binary collision operator, Eq. (6.2). When
B2 operates on a function J(pi) of the momentum pi,
the result is

Ip pI
B2 ~(p2) = — dp2V (p2) d4

X[J(pi') —~(pi)7 (8 3)

Thus the structure of B2 is directly related to that of
the Boltzmann collision operator. This result is of
course not new; it was obtained by Mori, 4 though by a
less rigorous method. Also, Montroll and Ward' very
nearly obtained it.

We cannot give so thoroughly worked out an ex-
pression for the operator B2. But from the information
at hand it is easy to demonstrate that the limit e —& 0
exists. We do this now.

The calculations of the last section show that 1 2(»)
consists of many terms. First, there is a contribution
from ti, this arises because the quantity u&" (ki), in the
second term of Eq. ('7.12), depends on density. How-
ever, when this term is multiplied by e, it vanishes in
the limit &~0 because its behavior is dominated
by 1/».

Another contribution to I'2(») comes from t2, i, which
is given by Eq. (7.20). We note that this contribution
diverges in the limit, because t2, i is of order 1/»' and is
multiplied by e'. This divergence must be cancelled
exactly if the theory is correct.

The other contributions to F2(») are all dominated.
either by 1/»' or by 1/». Because they are to be multi-
plied by e, they give no trouble in the limit.
Consequently,

1
»'r2(») =- dP ~P2 ~(P2) V (P2)

x[vTi3(oI o)+vT„(0Io)qvT„(oI og

+"other terms, " (8.4)

where the "other terms, " which we do not write down
explicitly, are well behaved in the limit.

We note further that the contribution to the divergent
term of Eq. (8.4) from the combination T22Ti2 vanishes.

8. CANCELLATION OF DIVERGENCES

We are now in a position to verify the existence of
the operators

B2=iim [—»2I'2(»)),
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The reason is that

dps dps p(ps) ~(ps) VT&s(ol 0)~(ps) (8 5)

vanishes for any function J(ps) of ps. This can be
proved by using the Boltzmann property of T»(0~0),
together with microscopic reversibility. Thus we have

"&s(e)=- dps dps ~(») ~(ps) V~»(OIO) VT»(OIO)

+"other terms. " (8.6)

iVow we consider the other part of Bs, coming from
e'pl s(e) O'. Equations (7.12) and (7.13) give I s(e).
Therefore

dp, &(p,)v~„(olo)

This assertion can be verified easily by performing
the binary collision expansion directly on Gs and Gs.
We shall not give the details here.

Equation (9.2) shows that the calculation of the
first density correction to the standard kinetic theory
expressions for transport coefficients of the form (1.2)
is equivalent to the solution of a well-defined three-
body problem. The problem is specifically to evaluate
the operator (Gs, 3).

In conclusion, I wish to thank Dr. J. Weinstock for
his assistance in exploring an earlier version of this
theory.

APPENDIX

The Appendix is concerned with a demonstration'
of the three properties of the binary collision operator
that were stated in Sec. 6.

The binary collision operator T was defined by Eq.
(5.7). In Fourier representation this equation is

where "more other terms denotes terms that are well
behaved in the limit. We note that Eq. (8.7) contains
a term diverging as 1/e. Because

The matrix representation of Lrs Dor explicitness we
assume that the pair is (12)$ is as follows:

+"more other terms, " (8.7) T (k~k')= —iL (k~k')

+iPg" 1. (k~k")g(k")T (k"~k'). (A1)

dps ~(ps) V~»(OI o)

dpsdps y(ps)p(ps)VT»(OIO)VT»(OIO), (8.8)

9. THREE-BODY RESOLVENT FORM OF Bg

The operator Bs can be expressed quite simply in
terms of resolvent operators of systems containing
exactly two or three molecules.

Let Ls and Ls be the Liouville operators for systems
of two and three molecules in the volume V. When it is
desirable to specify the pair in L& this is done explicitly;
e.g., when the pair is (13) we write Ls(13). Let the
corresponding resolvent operators be

G,= (e—iL,)-')

G,= (.—iL,)-r.
(9.1)

Also, let (; 2) and (; 3) denote canonical averages, over
all positions and all momenta except pi, calculated with
the Hamiltonians for two and three molecules in the
volume V.

Then Bs is given exactly by

Bs=lim lim V'{-,'e'(Gs —Gs(12) —Gs(13)+Gs, 3)
~-+0 F~oo

esL(Gs Go, 2)gsi (9 2)

this term cancels out exactly the divergent part of
e'Fs(e). This demonstrates that the limit

Bs——lim {"other terms" +"more other terms" } (8.9)
~0

exists.

—iL,s(k
~

k')

8 8= —V dR e'&" ~'aF(Rr —Rs). — . (A2)
Bpj Bp2

The integrations over Rs, R4, . can be performed
immediately, leading to Kronecker deltas. The integral
over Rs can be replaced by an integral over the relative
coordinate Rrs=Ri —Rs. This gives

—iLrs(k
~

k')

t' r) r)
= —V ' dRrse"~' ""'""F(Ri—Rs).

~

(r)pi tips

X g 5(k„—k„')5(k,+k, —k, ' —k, '). (A3)

Note that L» is diagonal in all k„except ki and ks, and
that it contains a Kronecker delta expressing conserva-
tion of wave vectors, kr+ks ——kr'+ks'.

Property (2) of the binary collision operator is that
T is proportional to just the same Kronecker deltas as
L„. The demonstration is elementary: One substitutes
the assumed form of T, and the calculated expression
(A3) for L, into the defining Eq. (A1).

Property (1) of T states that it is proportional to
1/U in all limit of a large system. This is proved as
follows. Because of all the Kronecker deltas in (A3),

' A diferent method of ending the same results has been given
by I.Prigogine and F.Benin, Bull. Classe Sci. Acad. Roy. Belg. 43,
814 (1957).The present derivation, which we believe to be simpler
and more direct, is based on ideas of J. G. Kirkwood, J. Chem.
Phys. 15, 72 (1947).
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