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Quantum Fluctuations and Noise in Parametric Processes. II
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Bell TeLephone Laboratories, 3/INrruy Hill, New Jersey

(Received 14 June 1962)

In this paper we consider further the quantum-statistical properties of radiation in nondegenerate para-
metric-type ampli6ers. In particular we 6nd moment-generating functions and probability distribution
functions for the field variables at the output of an amplifier for various input conditions. Vile find that a
classical description of the input 6elds and of the amplification process is completely valid provided we take
correctly into account the response of the amplifier to the input zero-point noise 6elds. This result is valid for
inputs of arbitrarily small power.

I. INTRODUCTION
' 'N a previous paper (I)' the effects of quantum flue-
' - tuations on the sensitivity of parametric amplifiers
were studied. The equations of motion for the Heisen-
berg operators representing the electromagnetic field
were found, and from their solution, information about.
the quantum Quctuations in the amplifier output was
obtained under various input conditions. It was shown
that the parametric amplifier constitutes an ideal
amplifier, in the sense that measurement of the ampli-
tude and phase of its output gives as good a measure of
the amplitude and phase of its input as is allowed by the
uncertainty principle.

In order to understand more completely the nature
of the inherent quantum noise in such amplifiers, it
seemed important to find the complete probability
distributions for the fields at the output. In spite of the
considerable literature on quantum noise in linear
amplifiers, ' the probability distributions for the fields
have, to the authors knowledge, never been found. As it
turns out, our work allows a valuable comparison to be
made between the quantum and the classical theories.

II. THE MODEL

In this analysis we use the same model for the para-
metric amplifier as was used in I, i.e., we consider radia-
tion in a lossless cavity resonant at a signal frequency
coi and an idler frequency ~2. The dielectric constant is
modulated by a pump field at frequency oi=o~i+cvs
which causes the signal and idler modes to be coupled.
The Hamiltonian for the system' is taken as

H &lal (t)al(t)+Itto2a2t(t)a2(t)
—hir[ait(t) ast(t) e—'&"'+"'+ai(t) a2(t) e't"'+&&] (1)

photon creation and annihilation operators, respec-
tively, for the co; mode (i= 1,2). Throughout this paper
we use Heisenberg's form of the equations of motion;
thus the operators are time dependent. The coupling
constant rc is assumed to be small compared to both ~1
and co2. The angular frequency of the pump wave is co

and is equal to oii+to2. The phase of the pump wave is

specified by q.
The operators a;(t) and a, t(t) always satisfy the

commutation relations

[a;(t),a, t(t)]=5;;; [a,(t),a;(t)]
= [a;t(t),a;t(t)]= 0. (2)

The operators representing the electric and magnetic
fields in mode i are given, respectively, by

p'(t) = 'V,/2)"'[a" (t)—a'(t)]
and

q'(t) = (&/2~')"'[a'"(t)+a'(t)].

Note that these are canonically conjugate variables, in

that they satisfy the commutator

[q;(t),p, (t)]=ih.

Also we note that the operator representing the number

of photons in mode i is

a, t (t)a; (t) = (1/2ho) 1)[p,2 (t)+oi;2q, 2 (t)—A~,]. (&)

The solutions to the equations of motion for the
operators pertaining to the signal mode were found in

I; they are

pt(t) =A „*(t)art+A „(t)at+B,*(t)a2 +B„(t)a2)
(6)

qi(t) =As*(t)art+A (t)ai+Bs+(t)ast+B (t)a2,

where co& and cu2 are the frequencies of the signal and
idler modes, respectively, and a;t(t) and a;(t) are the

where

(t)= —2(orA (t) = —2(fuuiX/2)ipse

B (t)= iBo)(t)= [Aevi(E —1)/2]"'e"'""+"
' W. H. Louisell, A. Yariv, and A. E. Siegman, Phys. Rev. 124,

1646 (1961).
'See, e.g., K. Shimoda, H. Takahasi, and C. H. Townes, J.

Phys. Soc. Japan 12, 686 (1957).
'A valid objection has been raised to the "derivation" of the

Hamiltonian in I where it was implied that Eq. (15) which
gives the interaction Hamiltonian, was exact. In fact, its validity
depends on the assumption that the coupling It: is suKciently small
that the fractional growth of the wave per cycle is small compared
to unity.

here E=cosh'~t is the power gain of mode 1 of the

amplifier, and where the operators on the right sides of

(6) are the operators at t= 0, i.e., we have written ai(0)
as a1, etc., for convenience. At t=0 the Heisenberg

operators are identical with the corresponding Schrod-

inger operators, so the u; may be considered alterna-

tively as the Schrodinger operators for the fields.
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III. THE CHARACTERISTIC FUNCTION

Ke are interested in the statistical characterist. ics
of the fields at the amplifier output, and we have at
hand the solutions to the Heisenberg equations of
motion. %e will deal only with the output of mode 1;of
course, a corresponding analysis holds for mode 2.

Consider, then, the properties of the quantum char-
acteristic functions4

C„(],t) =T—r aec{pe' »r"&)=
&tP

I

e'&»&'&1/),

C, (),t) —=Trace{pe"'«'i'&) =
&p I"""'

I
tp&

where p is the normalized density matrix (a constant in
the Heisenberg picture) which represents the state of
the fields, and 1$& the corresponding state vector (we
use Dirac's notation throughout). C~ and C, are thus
the expectation or average values of the operators
expl i)pi(t)] and expl iraqi(t)], respectively. ( is an
arbitrary real constant.

It may be easily seen that C~ and C, are generating
functions for the moments of the distributions of pi(t)
and qi(t), respectively. The rth moment of pi(t) or qi(t)
is obtained from the characteristic functions by differ-
eIl tla tlon i.e.

(p "(~)&=L~"C.(~)l~(ik)"]~=o,
(~)

Here we have used the common simplified notation

& ) for the expectation value of the enclosed operator.
Further insight into the value of the quantum

characteristic functions is obtained if we take the
indicated traces in a representation in which the perti-
nent field operator is instantaneously diagonal. For
example, let us expand C~ in a representation in which

pi(t) is diagonal. The representative kets of the expan-
sion are labeled

I
pi'(t) ), and we recall that

f(p (t)) I
pi'(&) )= l p '(&) )f(p '(t)),

i.e., that the operation of any function f of pi(t) on the
ket

I
pi'(t) ) yields the value of the function at the point

pi'(t). The expansion of the C„(p,t) is then

c.(E,&)
= &pi'(&)

I

p~""'"
l p '(&))dp '(~)

&p '(~)
I p I p '(~) &~"""'"~p'(~) (1o)

Now we note that

&pi'(~)
I p I

p-'(~) &dpi'(&)

is just the probability that a measurement of pi at time

Quantum characteristic functions have been applied in the
past to situations involving thermal equilibrium. See, for example,
M. Born and K. Sarginson, Proc. Roy. Soc. (London) A179, 69
{1941/42); A. Messiah, Queetum Mechanics (North-Holland
Publishing Company, Amsterdam, 1961), Vol. 1, p. 448.

t will yield a value between pi'(t) and p, '(/)+dpi'(t).
Thus

&p '(&)
I pl p '(t))

is the probability distribution function of pi at time t,
a.nd the characteristic function C„(g,t) is therefore the
Fourier transform of this probability distribution func-
tion. The probability distribution function is obtained
from the characteristic function by the inverse trans-
formation,

1
&p '(~)

I pl p '(~)&=— C.(k,~)~ *'""'"~& (11)
2~

Note that the density matrix p may be written in terms
of the state vector IP) by the identity

p= lk)&41,

from which we note that the probability distribution
function may take the alternate form

&p'(~) I pl p '(~) &=1&p '(~) 14)I' (»)
From the above discussion we see that from the

quantum characteristic function we can obtain the
probability distribution functions for the field variables
and also we can obtain all of their moments. Let us now

go on to evaluate these functions for the problem at
hand.

Before the coupling is turned on (i.e., at the amplifier
input), the two modes of the amplifier are independent.
The state vector lf) and the density matrix p which
are time independent and determined from the initial
conditions, are therefore, in general, separable into
products of two terms, each relatin~ to one mode alone.
Thus

I+)= 14 )I+~&,

p= 14&&41={

I4'i&Ail�

&{IA&&AI) = pip~,

where operators relating to mode 1 at t =0 operate only
on lgi) and commute with p2, etc. , and pg commutes
with p~. Using the solutioos to the equations of motion
(6) the characteristic functions may be expressed as

c(k.. ~)=( p{ 51 ~*(~) '+~(t) +&*(~) '+&(~) ]}&
= g il exp{i&I ~*(t)ait+& (&)ai]) lui&

x (0,
I
exp{i(L&'(~)a, t+&(~)a,])10,)

=Tl acel pl exp{i)LA (/)alt+2 (f)al])]
XTraceLp~ exp{i/LB*(t)a~t+8(/)a2]&], (13)

where A and 8 are given by (7) for the electric and
magnetic fields as the case may be. To obtain the last
two expressions in (13) we have used the fact that ai
and u&~ commute with a2 and a&t. By making use of the
solutions to the equations of motion, we have thus been
able to separate the characteristic function into a
product of two terms, each pertaining to only one of the
modes.

Further computations are considerably simplified
if we write the opera, tars of (13) in normal product form,
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wherein all of the creation operators occur to the left of
their corresponding annihilation operators. This may be
done using the following identity, ' which results from
the commutation relations (2):

where

(Ai )'= (i '(I))—&q (I) &'= (&( )(E——.'),
(19)

(Ap )'= (p '(t))—
&p (I))'=& (E—l)

~i)(n*ait+aai& ~
—-',-$2 Ia I~~i/n+aif~i$nai

)

where n is any complex number. Utilizing (14), the
characteristic function may be expressed a,s

C(P f) =exp( —'P[IA I'+ I~I'j}(Prie'f"*"re'I""IIIr&
X(isle't *~ »e't~" lgs& (15)

Equation (15) is our basic result, and it is as far as we
can go without specifying the input conditions. How-
ever, since all of the operators in (15) are those for t =0,
and A and 8 are known functions of time, it is clear that
if we are given the input conditions we can immediately
evaluate the characteristic functions for the output
fields. I.et us now proceed to examine various cases.

IV. NO INPUT

For the case of no input, the wave function for each
mode is simply the vacuum state, i.e.,

I4r&= l0r& IA&= I0s&

Now any power of an annihilation operator operating on
the vacuum state gives zero, whence

Note that (qr(t) &= &Pr(f) &=0. It is of interest to com-
pute the expected number of photons in the output.
This is, from (5), and (19),

&a&I(f)ar(f) )= (1(2A~r) &pa'(&)+~r'qr'(I) )
——', =E—1. (20)

Thus with no input to the amplifier there is an output of
E—1 photons on the average, and the output fields
always have Gaussian probability distributions. Note
that if the gain is unity, there are no photons out and
yet there are still statistical field fluctuations, which
may of course be identified with the zero-point fields.

If the gain is large the output noise corresponds to an
effective input noise of one photon and may be con-
sidered as the response of the amplifier to the zero-point
input fields; as we shall see it is appropriate to con-
sider that an effective —', photon enters each mode.

V. NOISE INPUTS TO BOTH CHANNELS

For the case of noise inputs it is convenient to use the
formalism of the density matrix. The density matrix
for mode i for a noise input is

e'r '*I0;)=(1+i(na,+ ) IO, ) p =[1 r 'jr —"—'— (21)

The conjugate equation is

Since (O, IO, )=1, we have immediately from (15) the
result for this case:

C(Z, I)=exp( —lV[IAI'+I~I'j} (16)

Putting in the values of A and 8 for C„and C„re-
spectively, we have

C„(g,t) = exp( ,'Pfnu (E ,') }—,-—-
Cq(g, t) = exp( ——',P(A/a)r) (E——,') }.

These characteristic functions are typical of Gaussian
noise. ' Taking the Fourier transforms to get the
distribution functions, we have

(v '(f)
I p I & '(f) &

= — exp
(2~)'"(A gg) 2 (Aq, )'I

(pi')'
(pr'(I)

I p I
pr'(I) &= - exp

(2 )'"(Ap ) 2(~p )'

n, p Qn, P(n, )=. (——r,—1)—". (22)

Let us now evaluate the characteristic function. From
(15), written in terms of the density matrices, we have

C(g, f&=exp( ——;
I
gl'(IA I'+ I2~I'&}

XTrace(pre't'*'»e'r" '}XTrace(pse'r~"»e't "}
Consider the term referring to mode 1; making use of
(21), it is

Qr=—(1—rr ') Trace(rr '»~' exp(i/A*art)

Xexp(i]Aa, )}
This expression is shown in the appendix to evaluate to

Qg
——exp[—PIA I'n, j. s

where r,= exp(ku&, /kT, ), T, being the blackbody
temperature corresponding to the noise. Note that the
probability of ending m, photons at the input to mode

~ ~

z is

E(n,)= &n, lp, ln„&=[1—r,—'gr, —"',

where IN, ) is the eigenket of the number operator a,ta;
having the eigenvalue 1z;. This is the exponential photon
distribution which we know is characteristic of Gaussian
noise. The average number of input photons in mode i is

395 {1.95&).
' See, for example, Eq. (39) of R. J. Glauber, Phys. Rev. 84, A similar expression is obtained for the term pertaining
'%'. R. Bennett, Proc. I. R. K. 44, 609 {1956). to mode 2, and so we have for the characteristic func-
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tion:

C(g, t) = exp( —PL ~A
~

'(ni&&+z)+
~

8 ~'(n sp+ s)g}. (23)

As in the case of no input, this characteristic function
represents a Gaussian noise output, and in this form we
see clearly evidenced the fact that the quantum or
spontaneous emission noise appears as though an addi-
tional 2 photon entered each mode. Putting in the
values for A and 8, we have the following results:

(q (t))=(p (t))=o

(ql (t) )=—L&(n10+s)+ (&—1) (n&&+ s)j

(pi (t))= AC01LE(n10+ z)+ (+ 1)( 20+2)j

With these equations and their conjugates, and re-
membering that (pi~))t i)= (ps~)ps)=1, we find that

C(f,t) = exp( —-'Pt
(
A ('+

~

8('j}e"«""*&+"*&*)

)(to&$(&*~a+»2*)

Before discussing this characteristic function let us find
the first few moments and the probability distribution
functions. From (9), and putting in the appropriate
values for A and 8 from (6), we have
(qi(t) )=A,*xi+A,xi*+&;x2++q*2

= (2h(o)t) ( (nipE) cos(o)it+ q&i)

+fnsp(E —1)$'t' sin(o)it+ p—ps) }; (27)
likewise

(pi(t) )= (2Ito) &)'t'( —(niobe)'t' sin(o)it+ q, )
+PYss(E—1)$'t' cos(o)it+y —ps)}.

( "+')+( "+' " For the variances we 6nd that
If the gain E is large compared to unity, we have

(ni(t) )=E(n&s+n&0+1).

From this and from the Gaussian distribution of the
output noise, it is clear that the amplification of the
Gaussian noise input may be considered to have pro-
ceeded in a perfectly classical manner provided that
we include the extra effective input photon to account
for the response of the amplifier to the input zero-point
fields. This result is valid for urbitrurily smaO input
noise.

VI. MINIMUM UNCERTAINTY SIGNALS
ENTER EACH MODE7

The wavefunction which represents a minimum un-
certainty wave packet entering each mode was found in
I. We have again

where
~)p;)=exp( —ztn, s) exp($;*a, t) ~0;). (25)

In this expression n, o is the average number of photons
at the input of mode i, ~0;) is the vacuum state for
mode i and

x = (n;s)'t'e'~'

where y; defines the phase of the input to mode i.
Consider now the characteristic function of the out-

put, Eq. (15). To evaluate it, we make use of the
following identity:

y(~~) e-*-"
I
0,)=f( ')e-*.*'IO;), (26)

where f may be any function of the operator a;, and u*
may be any complex constant. From (26) and (25) it
follows that

eifAer
~y ) e~(Acr

~p )
e~fBes~p )—e~fB*a*~)p )

' I. R. Senitzky, Phys. Rev. 9S, 904 (19&4).
E. permi, QNantlns Mechanics (University of Chicago Press,

Chicago, Illinois, 1961),p. 31.

(t1q&)s:—(qP(t) )—(q& (t) )'= E I
A. I'+

I
a

= (@/~i) (&—z) (28)
likewise

(t1p )'=—(p '(t))—(p (t))'=~ (&—l).
In terms of these first two moments, we see that we

can express the characteristic functions as

(f t) = e it (6qi) i$(e(&s)r)

C„(P t) = e
—lV(~@i)'e~tln&(&))

(29)

VII. SUMMARY AND DISCUSSION

Starting from the Heisenberg equations of motion for
the field operators in a linear parametric amplifier, we
have investigated the statistical characteristics of the
output fields for a variety of input conditions. In all
cases the amplification proceeds in a perfectly classical
manner if we (1) consider that a minimum-uncertainty
wave packet corresponds to an ideally monochromatic
sinusoid with an exactly defined phase and (2) add to
whatever real input noise energy (i.e., noise energy
measurable by a power-sensitive device such as a photo-
cell) enters each mode an effective —,'photon to take into

These characteristic functions represent fields which
have Gaussian distributions about their mean values,
and it is noteworthy tha, t the variances (and, thus, the
noise) have the same values they had when the input
was zero. This result is, in fact, not unreasonable, since
the statistical field fluctuations inherent in a minimum-
uncertainty wave packet may be attributed completely
to the zero-point field. Note from (27) that the expecta-
tion values of the field operators behave just as do the
corresponding classical fields. Thus, again we may con-
sider the amplification to have proceeded classically if
we consider that the minimum-uncertainty wave
packet corresponds to a pure sinusoid of exactly defined
amplitude and phase accompanied by the effective half
photon of zero-point noise.
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account the response of the amplifier to the zero-point
noise 6eld. Also, the fields corresponding to real input
noise may be assumed to maintain their c4ssicul' sta-
tistical properties no matter how small the real input
noise energy becomes. To say the same thing in another
way, a classical description of the input 6eMs and of the
amplification process is completely correct if we always
take care to add zero-point fields corresponding to an
energy of -', photon to each input of the ampli6er. The
zero-point 6elds have the statistical properties of addi-
tive Gaussian noise.

Our results apply strictly only to the amplification
of a single mode of the radiation fieM for each frequency,
since our model involves a cavity resonator with one
mode at each frequency. However, it is quite desirable
to extend the theory to the more usual case of continu-
ous amplification of varying signals received from a
transmission line of some sort. ' To do this we note that
in a transmission line, in a bandwidth 8, the radiation
field received by the amplifier in each second may be
resolved into just 8 orthogonal modes, and our results
should apply for each such mode. Thus the zero-point
energy of ~ photon per mode translates into a zero-point
noise power of ~hvB in the transmission line. Again, a
classical description of the input fields and of the
arnplification process is valid if we take care to include
this zero-point noise power.

Qi= (1—ri ') P sr »(Nil exp(s&A*ait) lmi)
AgsSlg

X(milexp(isa) IN, ).

Utilizing the well-known property that

and remembering that (ei I m i+ & )=6„,, ,+~, we find

(spje)»—~~p ri t~»s
(Bi I

exp(sgA*a]t)
I mi) =

(I,—m,)! km, !i
similarly

(spj)»—
Nup ri t~ i/s

(mr I
exp (stAai) I ~sr) =

(rii —mi)! hami! i
and so

( GAIA ls)»—mr+ ~

Q =(1— ') Z
(Bi m\) ~ mi ~

The sums may be performed easily if we change vari-
ables. Let q~=e~ —m~, doing this we have

(m, +qi)!

qi!mg!

The suin over mi yields (1—ri ') «'+') and so

APPENDIX

Let us expand Qi in the representation in which the
number operator aiba~ is diagonal. This gives

1 PIA
Qi= Q ——

Ql gi. 7y 1
= exp

PIAI'

' J. P. Gordon, in Advances in QmuntNm Electronics, edited by
J. R. Singer (Columbia University Press, New York, 1961),
p. 509. where we have made use ot (22).

= exp' —Pl A I'&ioj


