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In this paper, we examine new consequences of the idea that particles are extended structures in real
space-time. Starting from. the general quantum equations for stable states established in paper I, we discuss
the general form of solutions satisfying simultaneously the internal state equations and the external wave
equations. One sees in particular that the external part depending on the particle s position x„necessarily
corresponds to state vectors belonging to irreducible anite-dimensional representations of the Lorentz group
g4. Assuming then that the general interaction Hamiltonians are invariant under 24 and our new internal
isobaric spin group G, one justifies the usual semiempirical scheme of strong interactions (invariant under
&03) and introduce weak interactions in isobaric spin space. The theory also implies couplings between
external and internal motions and breaks automatically the symmetries of strong interactions, in a natural
development of Sakurai's ideas.
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S indicated in paper I, the introduction of a unified
space-time model of elementary particles should

yield an interpretation of all their quantum properties.
We shall thus attempt now the study of two problems
left aside in paper I (which mainly concentrated on the
understanding of the nature of the new quantum num-
bers such as isobaric spin, strangeness, and baryon
number), namely, the interaction theory and spin states.
To do this, we shall first resolve a purely mathematical
problem: the construction of irreducible vectors belong-
ing to any given irreducible representation D(1+,f ) of
our new group 503*. This is important in our scheme
for two reasons. First, as seen in paper I, $03* is iso-
morphic to the Lorentz group Z4, so that the construc-
tion of irreducible state vectors in D(l+, f )yields im-—

mediately the form of possible external waves (irre-
ducible under Z4) which can be associated to various
possible types of elementary particles with different
spins and couplings. The second reason is that if we
assume an interaction model which implies the existence
of a highly excited intermediate state invariant under
SO3*, we see that the irreducible vectors of D(l+, f )
yield a possible way of grouping our internal "levels"
in order to build strong invariant interaction Hamil-
tonians. For this reason we call them "interaction
vectors" and will indicate here the corresponding inter-
action theory.

This discussion determines the plan of our paper. In
Sec. I we shall establish the mathematical form of the
irreducible vectors in D(l+, l ) and build the strong and
weak internal interaction theory. In Sec. II, we shall
discuss the correspondence between internal and ex-
ternal states satisfying our general wave equations.

Finally, in Sec. III, we shall take advantage of the
"internal" invariance in order to introduce new "vector
mesons" which break the symmetries in a suitable way
and allow us to go more deeply into the analysis of
strong interaction processes.

SECTION I

According to our program we shall first discuss the
possible interaction terms invariant under 6 which can
be built from suitable combinations of our fundamental
state functions.

The deduction of such terms results simply from our
model. Let us first deal with the "elementary" strong
interactions, or Yukawa processes, represented by three-
pronged graphs of the type shown in Fig. 1, the baryon
states 8 and 8' being structures endowed with internal
quantified motions corresponding to irreducible repre-
sentations D(t+, l ) and D(k+,k ) of S03*.We introduce
the idea suggested to one of us (J. -P. V.) by Professor
Yukawa, that such interactions consist of the "fusion"
of the two quantized structures which overlap in space;
then build a resulting quantized state (also expressed by
an irreducible representation of SOq*) which may in turn
decay into two various other quantized states. If we
then make the fundamental physical assumption that
the interaction process itself is invariant under our

FIG. 1. Diagrams for elementary strong interactions.
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group G, we get a strong selection rule for the resulting
boson, namely: The irreducible representation obtained
must be one of the terms the Clebsch Go-rdan splitting of
the product of the interacting representations. Thus the
Clebsch-Gordan formula yields

for the interactions EÃx,

D(1,—',)D(1, —',) D(1,0) for the interactions ZZir,

D(—',,1)D(1, 2) D(—',,—,') for the interactions XZK,

the sign meaning that we keep among the decom-
position terms the one which lies in our boson table.

Ke can express this invariance principle in a more
precise mathematical form, namely: The strong irIter-
action Hamiltonians must be ini)ari ant under the group G.
We are thus faced here with a mathematical problem
very similar to the abstract procedure applied in the
usual isobaric spin space theory.

Now in recent years, great progress has been made in
interaction theory. On the basis of semi-empirical con-
siderations, one has been led to construct interaction
Hamiltonians which conserve charge and baryon num-
ber (all interactions) and also isobaric spin (strong inter-
actions) by considering particles as components of
spinors (doublets) or vectors (triplets) in an abstract
new "interaction space"; isobaric spin conservation
being associated with invariance under 503 in that
space. With the help of these considerations very im-

portant results have been obtained: selecting possible
from forbidden interactions, studying parity conserva-
tion, etc. These results are very suggestive and valuable
but evidently need theoretical justification. In particu-
lar, any complete theory must explain the nature of
interaction space and the reason for the assimilation of
any given particle to certain multiplets in that space.
Until we are able to do that, we will not be in a position
to predict the nature and form of all possible particle
interaction Hamiltonians or, in fact, to say that we
have bulit a satisfactory theory of elementary particles.

The advantage of any given model, such as the one
we have tried to develop here, is that it leads to specific
answers as to the nature of this "interaction space" so
that its consequences can be compared with experiment.
As we shall now see, our rotator model leads to promising
delnitions and answers to the preceding problems if we

accept the proposal made by one of us (J.-P. V.) to
identify the interaction space with the Hilbert space
spanned by the irreducible representations D(l+,1 ) of
503*, the particles of a given level being grouped in
irreducible interaction vectors transforming under the
considered representation.

This is a commonly accepted idea; and we now simply
follow the usual procedure of quantum Geld theory,
applied to our wider group G. We start from the evident
remark that the eigenfunctions Z(l+,l,s'; m+,m, m')
which span the Hilbert space H(l+, l ) corresponding to
G can be split into families which span subspaces which

remain irreducible under the transformations of some
subgroups of our general isobaric group G. This is a
well-known result of group theory and o~e sees im-
mediately that one can form:

(1) subspaces transforming under irreducible repre-
sentations D(l+) of SO))+ by fixing the values of 1+, 1,
m, s' and m' in Z(l+,l,s'; m+m, m');

(2) subspaces transforming under irreducible repre-
sentations D(l ) of SO& by fixing the values of 1+, m+,

1, s' and m' in Z(1+,l,s', m+,m, m');
(3) subspaces transforming under irreducible repre-

sentations D(l+,1 ) of S03*by fixing the values of 1+, 1,
s', and m' in Z (1+,l,m'; m+,m, m');

(4) subspaces transforming under irreducible repre-
sentations D(s') of $0&' by fixing the values of 1+, 1,

+, m and s' in Z(l+,l,s'; m+, m—,m').
(5) moreover, as proposed by one of us (P. H. ), we

can utilize for our group G an idea of Prentki and
d'Espagnat, and group our functions Z into linear
combinations,

W (1+,l,s,s', m, m')

(1+,1 ,s,m
~

m+, m—)Z(l+,1 ,s'; m+, m——,m'),
m+ ) s5

which are common eigenfunctions of the operators

J'+ J'—5" 5' 5' 5
with

S) =J3++Ja, S'=S)S'))

the numbers s and m having the possible values

m= —s, —s+1, ''', s 1, s.

These eigenfunctions provide us with another split-
ting of our functional space into new sub spaces
M(l+,l,s,s', m') which transform according to the irre-
ducible representation D(s) of the (real) rotation
group $03.

Now as one knows, observed strong interactions can
be described with various isobaric schemes, namely:

(m++~-)/K2

go

or the "baryon doublet scheme":
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with
Fo= (Ao —go)/v2, Zo = (Ao+Zo)/V2

The so-called "triplet-singlet scheme" has also been
tried:

(p+g—)/i'
(III) N= ( p—~™—)/iV2, Xo= (ii+P)/i%2, Z, A, ir,

( ri —go)

with

(K++K+)/v2
K = ( K—+ K—+)/iV2, K'= (K' Ko)/iV2—.

- ( Ko+K—o)/V2 .
To every scheme there belongs a well-dered isospace

in which strong m and E interactions are described by
scalar interaction Hamiltonians. The leptons have never
been satisfactorily introduced in these schemes.

In these spaces a series of interaction Hamiltonians
can be built which have to be invariant under the
corresponding isobaric spin group. For instance accord-
ing to the scheme I, where E and $ are spinors, or and Z

isovectors, and A an isoscalar, one can write the follow-

ing set of invariant quantities:

a;.,=g.,No,~;1V+g.Pe,~ "+g.,e;;P ",~s

+g.,XZ~;+ gx,N~,KZ;+g&PAK
+gxoH&A+i+gx4ZAK)

and one knows that most recent discussions deal with

the assumption of higher symmetries deriving from the
identihcation of some of the eight constants. Such
symmetries are not implied by the basic isobaric spin
symmetry, namely, the invariance under the isobaric
spin group SOB. Most authors seem to agree with the
two assumptions of "global symmetry" (equality of the
four or coupling constants) and "cosmic symmetry"
(equality of the four Kcoupling const'ants).

Now the most simple way to generalize these con-

ceptions to our new group G is evidently to build up
some irreducible vectors (such as the sets X, $, k, Z, ir,

and h. of the preceding schemes) which are irreducible
under suitable representations of the isobaric spin group
SO3 . To construct such vectors we apply a general
theorem of Wigner' stating that with suitable linear
combinations of the elements Z(t+,t,s', m+,m, m') be-

longing to a given subspace E(t+,t ) it is possible to
build entities which have a definite (spinor or tensor)
variance and are irreducible under the group G (that is,
they remain under these transformations within the
subspace under consideration). In order to remain as
close as possible to usual isobaric spin theory, we shall

thus consider the elements which belong to a given tenet

8(l+,t,s'; m') Lwith given values for t+, l, s', and nz'1

and consider only the irreducible representations of the
subgroup SO3*, which is in turn split into two groups

& F. p. g igaer, Group Theory (Academic Press Inc. , New York,
1959).

S03+and S03—acting, respectively, in the complex space
Es+ spanned by A&~ and in the complex space E3
spanned by A~" .

Ke shall now deal with the construction of such
combinations, which we shall caB "interaction vectors. "
To do that, one can naturally, following. Wigner'.
introduce "spin tensors" built with the help of Pauli
matrices. However, as we have defined in paper I
two kinds of conjugation, namely the charge corIjugotioN
Zc(t+,t,s'; m+,m, m') which transfers us from the level
B(t+,t,s';m') into the level 8(t+, t, s', —m') and the
ordinary compteoo conj ugatiom Ze (l+,t,s'; m+,m, m')
which transfers us into the level 8(t, t+, s', —m'), we
shall use quaternion matrices in order to avoid any
mathematical difhculties.

As one knows, the Pauli matrices provide us in a
two-dimensional complex Euclidean space, with a
quaternion basis, namely Q&= ioj„with the rules:

Each quaternion is thus represented by a complex 2X 2

matrix S. On these matrices one can de6ne two kinds
of conjugations:

the glatereioe coejlgati orl,

S=S '=uo —uoQo,

and the comPteoo conjugation

Se e+ eQ

These two operations are independent, commute, and
play an essential role in what follows. Indeed, we can
now de6ne interaction vectors in the various spaces.

A. Interaction Vectors (Spinors) in the Levels
of the Representations D(-,',0) and D(0,-', )

Let us start with the eigenfunctions of D(rs,0), that
is, Z(q, O,—,'; -'„0,-', ). and Z (-'„0& —,', -'„0, —,').One knows one
can build with them a two-component spinor (lying in
the level m'= —',), namely,

Z(„0,-„„0„)
(6)

which transforms by a definite unimodular quaternion
matrix under each (complex) rotation of Sos* acting on
the complex triad A&~. The quaternions S build an
irreducible representation D($,0) of SOo*. Moreover,

from/, we can build with the aid of the matrix
~

. t'0
(—I Op

Now we define a comp/ex urtimodulur quatermiom by

S=rio+orQo,

the four complex parameters ao, u& being related by

oo +oooo= I.
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a contragredient spinor:

which remains in the same subspace and transforms
under the quaternion conjugate matrix S:

We get:

t' Z(0)-, )2 i 012&2)

&Z(0, —,, -„.0, ——,, —,)i

The product ~, evidently invariant under S03*,
vanishes in this case.

Now we have seen in paper I how to define (up to an
arbitrary complex coefficient) the charge conjugate of
each eigenfunction, namely,

Ze(l+, l—, ,s'; m+, m—,m')

=Z(l+, 1,s'; —m+, —m, —m'), (9)

which we write (in order to construct spinors more
easily)

Ze (1+,1—,s', m+, m-, m')

= (—1)m++" +"'Z(l+, 1—,s' —m+, —m—,—m'), (9')

the factor &1 in the right-hand side being picked out
from the arbitrary coefficient of the Z functions.

The correspondence Z*~ (Z)o is well defined if we

make a definite choice of arbitrary coefficients in
associated pairs. It allows us to pass from P to the charge
conjugate spinor:

(10)

built with functions belonging to the level m'= —~. Ke
see immediately that this spinor p transforms also under
the quaternion conjugate matrix

/~$5
and we build the contragredient spinor

(12)

with
(13)

One checks also that the product PP is invariant under
SO3* and takes the explicit form

which is the trivial eigenfunction Z(0,0,0; 0,0,0) belong-
ing to D(0,0). The choice of the preceding arbitrary
coefFicients can be restricted by the relation

P*~ P*s* (16)

We thus have to deal with two kinds of spinors with
opposite "chiralities. " As we shall see, we simply re-
explain with their combinations many properties dis-
covered long ago by various authors such as Cartan'
who considered two kinds of spinors respectively related
to self-dual and antidual tensors, or one of us' who
introduced "right-handed" and "left-handed. " spinors
with different transformation laws.

Of course, we may express our spinors in terms of the
elementary particles corresponding to the eigenfunctions
under consideration:

/Pg
0=(—e, ")

e

( e)

&v,$'

0*=(—~, "),
IJ

f P)l
0*= ( ~.,1)—

kv„i

This is the form we shall retain for all expressions
endowed with physical meaning.

B. Interaction Vectors in the Subspace
D(1,0) and D(0,1)

We know from the case of the real group SO3 that
one can build from the four spinors P, P, P, and P trans-
forming under the matrices 5 and S, three-dimensional
vectors (more precisely skew self-dual tensors) with the
help of the quaternion units Qi„namely:

4Qaf=fQi4, 4QI&, »d 4QI4. (19)
The same situation develops for the subspaces spanned
by the eigenfunctions of D(0,q) which are provided by
the complex conjugation of the preceding functions, so
that the matrices acting on the spinors in these sub-
spaces are the complex conjugate matrices 5* and 5*.

As SQ~S=&i,Q, amounts to a complex three-dimen-

~ E. Cartan, I-egons sur la theoric des sp&segrs (Hermann et Cie,
Paris, 1938).' T. Takabayasi, Nucl. Phys. 7, 237 (1958).
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which is equivalent to the abave-recalled, expression in
the usual theory. Let us recall nevertheless that here
m. l,

&') is a three-vector under SOS* acting in E3+ which
is isomorphic to 8(1,0,1;0) and a scalar under 50o*
acting in E3 .

Thus the above considerations yield two vectors,
mathematically identical, in the level h (1,0,1;0),
namely, the vector &QAP built with the state functions
of the leptons" and the vector ml, &') built with those of
the pions. The scalar multiplication of both vectors
provides us a combination of these two kinds of state
functions, which is invariant under G, and which leads
us (at least theoretically) to an invariant representation
of interactions. The same vector combinations can be
built up with the spinors of Es containing p, and v„,
namely &*QI, P* (the relation to E& is denoted by
primed indices) which would correspond to a set of three
particles oo (with io ——0 and 5=2, 0, —2) associated with
the D(0,1) representation.

C. Interaction Vectors in the Subspaces D(—'„—,')
We can follow a similar procedure in the case of

D(—'„2) and combine the spinors of D(—'„0) with those of

D(0,o). In that case, however, the components of the
form &*Q&g mix, under a 50o* transformation, with the
noninvariant quantity p*f. We thus have to add to the

0
vector quaternion units Q~=ia. l, the scalar unit

denoted. Q, : Q, =Qo, Qu (p, = 1, 2, 3, 0). Now it can be
shown that:

5"Q„5=A„,Q,
' Or p, n, v, a,nd A in the Yukawa classi6cation.

(20)

sional rotation (Q&,0&,.=8;;) performed on the quater-
nion basis Ql„ these vectors transform under 5 through
the 3X3 orthogonal matrix 0;;. A simple calculation
then shows that the bilinear combinations of the eigen-
functions of D(~~,0) which appear in the vectors are just
the eigenfunctions of D(1,0) and belong, in each vector,
to a definite value of m', namely,

&egg= peg@ to m'= 0,

Qe P to m'=1,

4Q~4 to m= —1;
so that these three vectors are irreducible interaction
vectors which rotate inside each of the three levels of
D(1,0) as the triad AI,"+ undergoes any given rotation
of 503*. In particular, as we have physically to limit
ourselves to the observed particles of this level, namely
the pions, we have to consider the vector

.~'&=~e.o=ie.~,

which can be written in terms of the state functions of
the pions: '

(or+—ir
—)/v2

( ++or )/iV2, —

(where @=1, 2, 3, 0) with Au, Ai, =8uq so that the
quantity &*Qup transforms as a four-dimensional vector
in a hyperbolic space with metric 1, —1, —1, —1 since
5* acts on the left-hand side and 5 on the right-hand
side. Four-vectors of the type can be built, namely:

'FQA' ~ QA' 0 QuA and O' QA'

They are not satisfactory since their components are
not eigenfunctions of 5". We therefore introduce in
their place suitable linear combinations such as

(~*e.~ ~*e.~),

which belong to s'=0, m'= 0. One discovers easily three
other such combinations associated, respectively, with
m'=1, m'=0, m'= —1, (s'=1).

In this way, we have discovered four irreducible
interaction four-vectors which undergo four-dimensional
rotations inside each of the four levels 8(-,',-'„0;0),
8(-„—,',1;0), 8(—'„-'„1;1), h(—'„—'„1;—1) as the triads
3 I,

"+ perform any rotation of 503~.
In the same way as above, we can express the com-

bination belonging to h( —,',-'„0;0) in terms of the state
functions of the E mesons belonging to this level:

' (E++E )/V2

E (o)
(K+ E )/iV—2—
(E'+X')/V2
(Eo Eo)/iV2,

This is a four-vector with respect to 503*, and in the
level h( —,',—', ,0; 0) which builds a composed four-dimen-
sional space E4. This four-vector can combine into an
invariant scalar product with the four-vector (20) which
contains both kinds of leptons or baryons (Yukawa).

The E-meson functions can also be built in a square
table which is spinor both in E3+ and in E3 .

D. Interaction Vectors in the Spaces
D(l,—', ) and D(—'„1)

In these spaces, the construction of interaction
vectors is analogous, but more complicated. It appears
that we have two different ways to do this, namely, to
use the product D(1,0)D(0, 2) of the irreducible
vectors built with Z(0,-'„2;O,m, mi') and those built
with Z(1,0,s'; m+, O,mo') and to use the product
D(—,',2)D(i2, 0) of the irreducible vectors built with
Z(-,',—',,s'; m~+,m, mi') and Z(o,0,—, ; mo+, O,mo'). Of course,
we obtain in both cases eigenfunctions of D(1,o) but we

thus build two kinds of irreducible combinations (which,
as we shall see later, account for the difference between
the strong interaction Hamil. tonians, yielding m and E
mesons) which have different variance character under
SOS* transformations. First, if we take into account the
preceding construction of the three-vectors in D(1,0)
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and the well-known Clebsch-Gordan relation:

Z(-' 1 -'; ",m—-')

=—(—Z(0, 1,1; O,m, O)Z(-,',0,-'„m+,0,-,')
v3

+V2Z(0, 1,1; O,m, 1)Z(-'„0, —,'; m+, 0, ——,')}, (21)

we can check. that the vector-spinor combination

~ '*'= LV*Q'4*)4+v2(4*Q'4*) 43 (22)

has the character of a three-vector, whose components
a,re column spinors, all components belonging to s'=
m'= ~. The vector indices are primed because they are
relative to the rotations of space E3 . More precisely,
if we endow the spinors and quaternion matrices with
(upper) primed or unprimed indices we have to write

g„,(„';&t distr'Q„, r's'ptss'yt+~g(pt'r'Q„, r's'p~s'pt') (23)

In terms of the state functions of level h(—',, 1,—', ; —,'), we
have

2 ++ ' X++

The second procedure, however, takes into account the building of four-vectors in D(~, 2) and performs the direct
product of suitable combinations IC„' belonging to s'= 1 (E„'&'&,E„'&'&,E„'& '& according to the values of m'), and
the spinors of E3 . The values s'=-,', m'= —-', particles) are provided by the general expression

(25)

This yields, in terms of the baryons:

(26)

These expressions build a four-vector in the composed space E3
The same procedure provides us for representation D(1,—', ):
(1) a three-vector in E3+, spinor in Ea, namely:

v2( r++S' ) tV2( r+ —r ) (r')
(2) a four-vector in the composite space Et, spinor in Ea+, namely:

Kith these irreducible vectors and their C conjugates
containing the antiparticles, we can build up invariant
combinations with the aid of the quaternion operations
Qt, in three-dimensional spaces and Q„ in four-dimen-
sional subspaces. These invariant combinations will be
the interaction Hamiltonians.

One remarks here that we succeed in this way to
avoid an important difhculty emphasized by d'Espagnat
and Prentki. It is, in fact, rot possible to build within
the frame of the Lorentz group a scalar with the irre-
ducible vectors P and their complex conjugates P*.Here
we use the charge conjugate P of f, resulting from opera-
tion C, instead of the ordinary complex conjugate which
results from operation PC, because the conjugation acts
also on the complex variables and transforms s„+ into
s„, as we have seen in paper I. Thus, if the spinor P
undergoes transformation S, the complex conjugate P
undergoes transformation 5*, while the charge conju-
gate @ undergoes transformation S. Now SS=1, while
S*S/1, so thatsttP is invariant, unlike Pf.

With this new scheme one can evidently obtain the
so-called "elementary" Yukawa strong interactions
(baryon-antibaryon boson interactions) represented by
three-pronged graphs. These interactions result from
scalars under SOS* (multiplied by the usual external
Hamiltonians) which determine all possible interactions.
For example, the interaction between antibaryons and
baryons of the D(-'„1) representation to produce pions
can be written

Ht ——At, &'t2&Q, trt&o&A&, ""&+H.c.
=sr'(X"+X+++ ~ "~')—tr'(X+X++" ~ )+H.c.

+tr (X+X+ +~ ~')+m+(X++X++~'~ )+H.c.
++pp+7r+pn+~ nI&—~'nn+H. c. (29)

These are the usual interactions as regards the known
particles. One sees that this justifies immediately the
absence of the unobserved strong interactions, and also
that the unobserved X particles can never arise from
the observed ones.
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C2 =C&=g» g3 =g» (32)

if they apply to A', which is still doubtful from the
experimental data. 4

FIG. 2. Diagram
for universal four-
fermion interaction.

The application of this scheme to the weak interac-
tions raises important difhculties, since a non)eptonic
decay process, such as for instance A0 —) p+2r, is
evidently not invariant under S03*.In our model, as in
the usual theory weak interactions are not invariant
under the total isobaric spin group. In order to make
possible the use of scalar Hamiltonians under G for
these interactions, one thus introduces a pure D(-'„—',)
representation without spin, momentum, or mass, which
is called a splri02/, as in the usual procedure. This can
be represented in two equivalent forms. I et us consider
the fundamental elementary process implied, at least
virtually, in each weak inteaction, namely, the universal
four-fermion process shown in Fig. 2. The four-pronged
graph can be split into two three-pronged ones and we
can apply to each of them our Clebsch-Gordan rule

40ne can remark here that our invariance group provides us
directly with strong interaction Lagrangians, implying the sepa-
rate conservation of isobaric spin and strangeness. From a formal
point of view one can check. that the subspaces corresponding to
the irreiucible representations D(l+) of 803+ regroup the Z func-
tions according to the scheme I of d'Espagnat and Pren, tki. In-
variant Lagrangians under SOB+ thus correspond exactly to the
classical isobaric formalism.

Similar combinations may be built up with the
baryons and antibaryons of D(1,$), and also with mixed
combinations, with the aid of the four-vectors of E4.
Finally, we have, the A interactions being left aside, the
general interaction Hamiltonian:

—
g Q, (1/2)Q.~,(0)g, (1/2)+g 0 . Q (1/2)P. (l/2)~ (0)

+g (g„12 Q„lt„0 8„02 +H.C. (30)

Ke see that we are left with only three independent
coupling constants, the global symmetry corresponding
to g~=g2. If the A' is assumed to belong, together with
another (charged) particle P+, to the representation
D(0,q) obtained from the fusion of three spin units, we

0

shall have a combination)p"")= + which isscalarinp+
E3+ and spinor in E3 . Now the corresponding interac-
tion Hamiltonians are

g ~()P(1/2)P. (1/2)~. (0)+H c ) and g Ig (1/2)lt (0)$(1/2) (31)

and the usual symmetries are obtained by

Fro. 3. Reduction
of four-pronged dia-
gram into two three-
pronged ones.

(see Fig. 3).But (at least for the nonfermionic processes)
we see that if M belongs to D(1,0), then M' will belong
to D(-„,', 2) and conversely, so that we are led to assume
the mysterious intervention of a supplementary spurion
representation, namely, D(—',,

—', ) which transforms M
into M' (see Fig. 4). This can be expressed in an alter-
native form, by considering the internal parity operator
I' put into evidence in paper I, which transforms each
function or vector of D(l+, i ) into a function or vector
belonging to D(l, l+). If this process, deprived as yet of
any physical meaning, happens on one of the incident or
created fermions during the interaction process, then
the bosons M and M' come to fall in the same repre-
sentation and can be considered as identical, according
to the scheme shown in Fig. 5.

Now it is remarkable that the preceding analysis can
be formulated in a simple "internal" scalar Hamiltonian
scheme if one drops the idea that weak processes are
invariant under 6 and accept the assumption that they
have weaker internal symmetries corresponding to sub-
groups of G. Indeed, following one of us (P. H.) one can
check that these graphs correspond to processes in-
variant under the subgroup SO3XS03' of our group
SO3XSO3'. If we note that the group SO3 is built with
the real rotations of SO3*, we see these rotations are
identical to their product with the parity operation I'
(which amounts to a complex conjugation). We thus
construct the corresponding wea¹interaction vectors
irreducible under the representation D(s) of SO2 intro-
duced before, and one checks easily they recover exactly
the observed weak interaction Lagrangians. In other
terms, the transposition in our scheme of the M space
of d'Espagnat and Prentki yields an explanation of
weak-interaction decays. Detailed analysis of this ques-
tion will be published by three of us (F. H. , P. H. ,
and J.-P. V.).

To conclude this study of "internal formalism, " let
us recall that each interaction vector component has to
satisfy separately the second-order equation,

(J'++~' )4 = D+(i++1)+i (i +1)3&V (33)
I

Fro. 4. Diagram for a four-fermion process
with a supplementary spurion s.



458 DE 8 ROGL I E, HALB %AC H S, H I LL I ON, TAKABA YAS I, AN D V I G I E R

FIG. 5. Diagram for
a four-fermion process
with an intermediate
boson.

However, in the case of fermions (t++t half-integer),
as was shown by two of us (P. H. and J.-P. V.),s one can
extend to the internal state vectors Dirac's linearization
ideas. One checks indeed that in that case one can find
linear equations whose solutions obey condition (33)
to second order.

For instance, in the case of lepton interaction vectors
of D(s,0), we can write

o i+s $ Xllt'y +i 4o k X24 (34)

Multiplying each side of both equations with o-;J; and
taking into account the commutation relations of the
o. s and the JI,'s, we get easily

J'+4 =Xi(Xi—s&)lt,

J'"~=x.(x.+-;~)i, (36)

so that the constants x& and y2 can be determined by
identification with the general condition (33) which
becomes

namely,

J2+P —s @2lt, J2+y —s $2y (37)

pi ———,'A[1& (13)'"$, xs ————,'AL1+ (13)'"7. (38)

The same constants are used for the interaction vectors
p and lt of D(s,0) and for the interaction vector it* and
P*, P*, and P* of D(sr, 0). In the baryon case, we have
simultaneous linear and second-order equations. In the
D(—'„1) case, for example, we get:

(osjs+—x)$=0, (Js Ji —s)/=0, (39)

p being the interaction vector, that is, a skew symmetric
self-dual tensor with spinor components. In the boson
case we have only (33).

Two essential facts result from the preceding
discussions:

P, Billion and J. P. Vizier, Cahiers Phys. 121, 345 (1960).

(I) Every internal level can be built out of sums or
differences of bilinear terms combining levels associated
to other representations.

(II) Any internal interaction vector of a given repre-
sentation D(t+, t ) can be built out of a combination of
interaction vectors belonging to two other representa-
tions connected by Pauli matrices.

Both are summarized in the classical Clebsch-Gordan
formula:

SECTION II

Ke are now in a position to discuss the structure of
external waves associated with the elementary internal
states.

First, as we have seen in Appendix of paper I, if we
start from a Lagrangian formalism based on very plausi-
ble assumptions, the general state function p(x„,s„+,r),
restricted to stable states, splits into a product
exp( —inc'r/A)@(x„, s„+) with

+(x„,s„")= 1.(x„) I'(s„+,s„), -(41)

and the general Lagrange equation splits into an
external and an internal equation, namely:

( 3f'c'/A'—) q .(x„)= 0, (42a)

(J+'+J—'—8')F(s + s —
) = 0. (42b)

This means the internal factor F(s„+,s„) is necessarily
an eigenfunction of J+' and J ' belonging to the irre-
ducible representation D(t+,t ) of our internal group G.
Further the external wave &p,(g„) must be an eigen-
function of and thus belongs to an irreducible repre-
sentation X)(j,k) O+ X)(k,j) of the full Lorentz group,
according to a very classical result of ordinary quantum
mechanics. As was empha. sized by one of us (T. T.),
this can be expressed otherwise, independently of any
Lagrangian assumption. Indeed our stable-state func-
tions 4'(x„,s„+), which must have the form P(x„,s„+)
P'(x„,s„) (I' and P' being polynomials in s„+) as we

have said in paper I, can be developed in terms of our
basic functions Z(t+,t,s', m+, m, m') which build a
complete set for such polynomials, so that we can write

+(x„,Z„+)= C(t+,t,s'; m+,m, m') (x„)

&& Z(t+,t,s'; m+, m, m'). (43)

L. de Broglie, IrItroductiorl, e lu Nouvelle 2'heorie des Particules
Etereerltaires (Gauthier-Villars, Paris, 1961).

D(t+,t-) Cgl D(k+,k- )
=D(t++k+, t +k )0+D(t++k+ 1,—t +k )0+

O+D(i t+ k—+i,
i
t y-k i)-O+ "~

O+D(t+yk+,
i

t-—k-i)
0+D(t++k+ —1, it-—k-i) 0+

O+D(it+ —k+i, it-—k-i), (40)

which describes the result of the product of two irre-
ducible representations of a given group. The second
member of (40) containing all vectors (or levels) which
can be built out of the combination of vectors (or levels)
belonging to the two representations D(t+, t ) and
D(k+,k—).

Relation (40) plays an essential role in our theory.
As one of us has shown, ' it expresses in mathematical
form the starting point of fusion theory and, because
of the isomorphism between 503* and SZ4, governs
interaction theory in our new isobaric spin space.
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Of course, according to our basic interpretation, which
relates each internal function Z(l+,l,s', rrt+, trt, m') to a
definite elementary particle, when we have to deal with
an isolated particle, our state function reduces to the
corresponding term of the development (43). Now the
coefficient C(l+,l,s', rtt+, m, srt') (x„) must xpress the
whole behavior of the particle, taken as a block, with
respect to the external world, in particular the properties
bound to the spsrt, and this opens the problem of the
relations between the internal state expressed by the
quantum numbers l+, l, s', m+, m, m', and the external
behavior —mainly the spin —expressed by the corre-
sponding function C(l+,l,s', rrt+, rrt, rrt') (x„). The first
approach to this problem is given by the requirement
that the global held equation —whatever it shall be-
which governs the function 4 must be invariant under
any change of the laboratory frame, as a general condi-
tion of relativistic invariance. More precisely, as was
pointed out in paper I, the assumed internal equation
(33) is valid only in the L frame, since the internal
quantization must be performed in a well-defined
kinematical frame, to acquire a specific meaning. Its
solution %(x„,s„+) represents, as we have seen, the
stable state of motion of the frame 7, referred to the
I. frame, x„being their common origin.

On the contrary, there must exist also an "external"
equation expressing the variations of the field at
neighboring points x„and x„+dx„, in a form which can
be expressed in any possible laboratory frame Z, and it
governs solutions C(l+,i,s', m+, rtt, rtt') (x„) expressed in
this frame Z. This external equation must have a form
invariant under any change of Z.

If we know a possible solution of (33) at a given point
x„ in the L frame, we must express it in 2 with the help
of the parameters A. tt(x„) of the Lorentz transform
which carries I. into Z, and of the transformation laws
of such solutions C(x„)~ SC(x„).This leads us, in the
frame of the usual theory of Dirac, to the very im-

portant mathematical point, that such external wave
functions C(x„) must belong to irreducible finite-
dimensional representations of the external invariance
group, which we shall choose, as usual, to be the full
I,orentz group 24. Consequently, we have to consider
state functions 0' with several components, of the form

(Zl+,l,s', rtt+, rtt s')( )sq, (x ) (44)

where q, (x„) is an irreducible vector of the representa-
tion X)(j,k) 0+ X)(k,j) of the external group Z4, for
instance, a four-component spinor for the lepton fields.

Now the question arises what is the relation between
the "internal" quantum numbers 1+, l, s'; m+, m, m',

expressing isobaric spin, strangeness, and baryon num-

ber, and the "external" quantum numbers j, k, related
to the ordinary spin. A directing clue is given by the
fundamental fact that the internal group 503 is iso-
morphic to the external group g4 (or at least to the
subgroup SZ4). This can relate a definite transformation

of SOe* considered in all representations D(l+, f ), to a
definite transformation of SZ4 considered also in all
representations $(j,k), but cannot give a relation be-
tween the representations D(l+, l ) and X)(j,k) them-
selves. If we want that, we need a new principle.

We have seen in the preceding section that the func-
tions Z(l+,l,s', rrt+, trt, sit')(s„+) can be grouped in irre-
ducible vectors belonging to definite internal levels
$(l+,l,s', rrt') and that the irreducible vectors belonging
to higher values of /+ and l can be obtained as suitable
combinations of those belonging to the lower values.
We shall extend this conception to the external formal-
ism by the fundamental assumption that in the global
formalism, an interaction vector is represented by the
direct product of an irreducible vector of the internal
formalism, namely:

each component of the internal vector P(s„+) of the
preceding section beingmultiplied by the same irre-
ducible external vector q,(x„)of Z4, that is, each particle
of the same internal level is assumed to belong to the
same representation of 24. This is evidently necessary,
if the "interaction vectors" have a physical meaning at
all (which is, in fact, needed by the interaction theory).
Indeed, if it were not the case, any change of laboratory
frame would "split" each particle into "subparticles, "
which is, of course, meaningless. Now if we want to
pass from the lower representations to the higher ones,
we must combine the interaction vectors im the global
formalism, that is, perform the same combination on
the external vectors and on the internal vectors. This
limits strongly the possible associations between the
external and internal representations.

This can be related to a basic idea of one of us~ in
his "fusion" theory. The statement is that in the frame
of the "external" formalism, all the particles can be
built up—at least in a formal point of view —from a
certain number of elementary "spin units, " according
to a fusion process which follows the mathematical
Clebsch-Gordan multiplication. For instance, two —,'spin
waves obeying the Dirac equation split after fusion into
a 0-spin wave, scalar, obeying the Petiau-Kemmer
(meson) equation and a I-spin wave, relativistic vector,
obeying the (generalized) Maxwell equation. Now this
very powerful idea can be generalized in the following

way in the frame of the present conception. There must
exist two kinds of elementary spin units, which are
simultaneously internal spin units and external spin
units, namely,

Ln(-', ,0) o+ n(o, -,')jXD(-'„0)

LQ(—',0) 0+ Q(0,—',)$XD(0,—',).
More precisely we can build two kinds of elementary

s L. de Broglie, Thdorie Generate des Partienles 0 SPin (Gauthier-
Pil)ars, Parj.s, f9$$),
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external-internal spinors, which are indeed our irre-
ducible interaction vectors of the lepton levels D($,0)
and D(0,2) considered as Dirac spinors in the external
formalism, according to the usual assumption. Now all
the other interaction vectors can be built up from
several of these units, the Clebsch-Gordan multiplica-
tion acting simultaneously on the representations
$(d,h)O+$(k, j) of the external formalism, and on the
representations D(l+, l ) of the internal formalism.

The consequences of these conceptions are as follows:

(1) An odd number of e-spin —i-spin units yields irre-
ducible vectors which are fermions, with half-integer
spin, for the external formalism, and "isofermions",
with half-integer values of l++l, for the internal
formalism.

(2) An even number of e-spin —i-spin units yields irre-
ducible vectors which are bosoms with integer spin, for
the external formalism, and "isobosoms" with integer
values of l++l for the internal formalism. Thus the

integer or half integer -character is the same for the

ordinary spin and for the st4m l++l of isobaric spin
and half strangenes-s

Let us note that the relation between spin and isospin
was a very cumbersome aspect of the original classifica-
tion of Nishijima and Gell-Mann, who were puzzled by
the fact that the fermions h. and Z have an integer iso-
baric spin, while the bosons E have an half-integer
isobaric spin. Here we give a basic argument which
binds the character of the internal irreducible vectors to
the sum l++l which happens, even in the Nishijima-
Gell-Mann scheme, to have the same integer or half-
integer character as the spin.

Of course, the preceding selection rule leaves open
several possibilities. For instance, the boson-isoboson
states tr, belonging to D(1,0), and E, associated with

D(—,',—,'), may be represented in external formalism either
as belonging to $(0,0), that is as scalars (as is usually
assumed), or as belonging to $(1,0)O+$(0,1), that is,
vector mesons, according to some recent proposals. '
Similarly, the baryon states obtained from three
e-spin —i-spin units can belong to $P„O)O+$(0,—,') and
obey Dirac equation (which is the assumption generally
made in quantum field theory), but they can also belong
to $(0,2)O+ $(2,0) as in Rarita and Schwinger's theory
or also, as proposed in a recent paper from two of us', to
$(-,', 1)O $(1,—;).

This question evidently remains open and should only
be solved by detailed examination of the consequences
of each assumption in the domain of interactions. In
particular, we can return to the problem of A. UVe have
seen A does not find any place in the D(1,t2) level, as in
this level the values 0, —$, —

2 for m+, m, m' already
characterize Z . It was therefore proposed to localize A

The associa, tion of e-spin 1 and 0 with i3 1, $=0, 8 -0, that
is, scalar and vector mesons with i~=i, 0, —1, seems now ex-
perimentally established.

J. P. Vigier and P. Hillon, J.Phys. Radium (to be published).

+neutrino tt e(~p)~(2 t t2 t 2 &012)(sn ) &
(47)

eo„,„„——q, (x„)Z(2', 0, -', ; -'„0, —-', )(2„), (48)

Pentineutrino 0'e(&i4)+(2& 0y 2t 2i 0i 2)(ee )& ( 9)

we get a scalar term of the form

L„= my.+(x„)y4q,(x„)

This treatment can clearly be generalized to all our
representations. For example, in the case of D(1,0) the
rest mass term will contain the term Ae.Ae (with
Ae. ——

&geist)

which splits into a sum of antiparticle-
particle terms. More generally, all rest mass terms will

contain a sum of antiparticle-particle terms which build
together the internal scalar associated with the con-
sidered representation. The construction of such scalar
Lagrangians evidently implies that all particles belong-

9" This is not true in Yukawa's proposal.

in the D(0,2) level; but this raises some difficulties in
interaction theory. Now we can associate it to the level

D(0,2) where we have also the values 0, —2, —2. A
possible objection" is that these values also characterize
already the particle v„. However, if we recall that each
particle is also characterized by an external part, we
can propose that v„corresponds simply to one e-spin-
i-spin unit, while A. corresponds, like the Z and I"
baryons, to the fusion of three e-spin —i-spin units, in
such a way that two of the i-spin units are opposite,
so that we get (in agreement with the usual isobaric
spin theory) an isobaric spin singlet lying in the internal
level D(0,—,'); but here the three e-spin units can be
added, so that we get an e-spin state lying in $(1,2)
0+$(—',, 1), t which would differentiate this state from
t„which lies in $(0,—2')O+$(2t, 0)j or combined in the
same way which would yield $(2,0) O+ $(0,2).

%e are now in a position to discuss a very important
point, namely, the possibility of writing Lagrangians of
bare particles invariant under the whole external-
internal group Z4)&G. Clearly we can limit our discus-
sion to the rest mass term. If we assume that all particles
associated with a certain representation D(l+, l ) have
the same external state vector q, (2:„) t the antiparticles
being associated with the corresponding bra vector
to, (x„)j, the way to build a scalar expression invariant
under 24)&G, is to associate those particles into multi-
plets and form a scalar with the product of two internal
interaction vectors belonging to two charge-conjugated
representations. For example in the case of the D(q,0)
representation where the state vectors of the bare
particles can be written

+electron= pe(&n)~(2& 0t 2 t 2t 0t 2)(saba )& (46)
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ing to the same multiplet have the same external waves
and bare rest masses. It also shows our general La-
grangians are invariant under the charge transformation
Q,~, fermionic charge transforrnations Ss', and the two
three-dimensional complex subgroups corresponding to
isobaric spin and strangeness.

We conclude this brief discussion on external waves
by four remarks:

(a) In all cases one can linearize the external wave
equations associated with fermions by using the anti-
particle wave functions according to Dirac's ideas. One
can also evidently stick to second-order equations within
the frame of Feynman and Gell-Mann's conception. "

(b) The parity operation P has not the same mathe-
matical meaning for external and internal waves, since
it is not an automorphism of Z4. This explains, as we
shall see, the difference between external and internal
interaction Hamiltonians.

(c) It is a general consequence of any unified theory
of elementary particles in terms of a realistic model that
it leads to certain connections between the external
properties (spin, mass, parity) and the internal prop-
erties of particles. In the case of the original simple
relativistic rotator model, we discover that spin and
isospin for each particle become either both integer or
both half-integer; while empirically all strange particles
but and X, i.e., E, A., and Z, have integer (half-
integer) spin and half-integer (integer) isospin (although
in Tiomno's assignments this can be avoided). This
point has until now always been regarded as an essential
objection to rotator models. " Evidently, this type of

difhculty does not appear in any theory which intro-
duces internal space merely as an independent abstract
space. However, this difficulty does not occur in the
present theory where e+ is identified with the magnitude
of isospin (J+=I, so m+ = Is), while the magnitude of spin
has the same integer —half-integer property as 1++l .
Thus, when / is half-integer, spin and isospin take
diferent integer —half-integer properties, and we see that
such cases just represent the A., K, Z particles of our
table.

(d) The e-spin —i-spin fusion scheme provides a rather
strong selection on possible physical terms of (43), but
leaves open many as yet unobserved possibilities. These
might naturally correspond to unstable states but
further restriction can be obtained for two reasons. The
first is that we have only discussed free-particle theory
until now, and we know that such a thing never exists
in nature; so that interaction theory will furnish a
further selection on the external states y.(x„) attached
to our internal levels. The second reason, if it turns out
that fermionic leptons and baryons are correctly de-
scribed. by Dirac waves (s and IC bosons corresponding
to scalar external waves) would be that in the fusion

"R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
(1958)."H. Yukawa (private communication).

scheme the most stable states correspond to the lowest
states, meaning that the fusion of two spin & units leads
to D(0,0), the fusion of three units going Lpreferabiy to
D(1,sr), for examPle], into D(sr, 0) or D(0,—,'), and this
both for i spin and e spin. This is reasonable, since it
fits with our general argument that only the lowest
states (with /+, J & 1) are easily observed in nature.

SECTION III

Until now we have only discussed bare particle
theory. Clearly this is not sufBcient, since no such thing
as bare particles exist in nature; and our scheme was
essentially built to try to understand elementary
particle interactions and decays.

Two questions thus appear immediately:

(A) What is in such a scheme the connection between
internal and external motion?

(8) Is it possible to justify in this scheme the way
in which the internal symmetries of the Lagrangian
formalism should be broken in order to explain the
known interaction coupling constants and rest mass
differences in the known particle multiplets. In group-
theoretical language: "Is it possible to find a wider

group G' which contains the necessary symmetry and
asymmetry properties to account for experimental
evidence P"'2

Let us first discuss question (A). Following Nataf, we
first note that such a connection must appear in any
scheme which associates isobaric spin with internal
motion (whether this motion happens in physical space
or not). This results from the very existence of the
Nishijima —Gell-Mann formula Q=Is+ —',S+rsB, which
shows that electric charge, which has evident conse-
quences in the particle's external behavior in the
presence of electromagnetic field, is related to internal
motions.

The answer to question (A) can be given in our
opinion in the way opened by a remarkable paper of
Utiyama" whose essential results we shall now recall.

Utiyama first considers the Lorentz-invariant La-
grangian L(Q, B„Q) of a free Geld Q(x„) and assumes it
to be invariant under another group Gr (for instance,

"The problem of the breaking of the symmetries is one of the
most difficult of the theory of elementary particles, as was recently
emphasized by Sakurai. Even for the usual isobaric spin group,
we know that the basic assumption of charge independence is
only a good approximation, since the various components of each
charge multiplet have not exactly the same rest mass. Although
this is usually related to the auxiliary influence of electromagnetic
couplings, this is a rather arbitrary statement and the situation
is not absolutely satisfactory. But if one wants to introduce
higher symmetries, that is, wider invariance groups, such as 0,'3

SO', '4 or our group G, one has to account for more important
splitting, for instance between the nucleons and particles. This
means that we must immediately break the assumed symmetry
and implies that the arbitrairness of the invariance statement is
very unsatisfactory."J.Schwinger, Phys. Rev. 104, 1164 (1956)."J.M. Souriau, Compt. Rend. 250, 2807 (1960);J. Tiomno,
Nuovo Cimento 6, 69 (1957)."R.Utiyama, Phys. Rev. 101, 1597 (1956).
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bA„= fb, A„b»'+8„» (x), (51)

the field equations for the free field A„being deduced
from a Lagrangian L&(F„„~) satisfying the supple-
mentary condition

with

BLp
.f aF b O-

8F„„

F ~—BA ~ BA ~ if (A bA A bA„~) (52)

Though very interesting in itself, this formalism
presents an evident difficulty. As an example, let us
treat the case of the electromagnetic Geld. Every free-
particle Lagrangian is invariant under the Pauli gauge
transformation: 8Q= —i»Q, so that the application. of
Utiyama s formalism implies that all gauge-invariant
6elds have the same interaction with the Maxwell field

A„. Naturally, this is not true, so that one gets out of
trouble by introducing the a priori assumption that
particles have various coupling constants (electric
charge) with the field. This amounts in ordinary particle
theory to an arbitrary breaking of the Pauli gauge
symmetry of the Lagrangian.

In our scheme, the situation is different if we make the
fundamental assumption that the Gz groups considered
by Utiyama result from Lagrangian invariance under
subgroups of our internal group G. For instance, let us
treat the case of electron-neutrino doublet. Clearly, the
corresponding Lagrangian is invariant under the opera-
tor Q=A++ Js —Ss' which gives, applied to the total
wave field, the infinitesimal transform

the Pauli gauge group). Let us then introduce the
inhnitesimal transformation e of the group Gz such that
Q(x„) becomes Q(x„)+T,Q(x„)»', where T, are the
transformation matrices for the Q fields. These matrices
satisfy the Lie relations $T„Tbj=f,b'T, where f~b'
denote the structure constants (f b' = fb—e ) of the group
Gz. If we further "extend" Gz and dehne the group Gz' in
which these transformations will depend on the co-
ordinates x„Lso that the terms» become arbitrary
functions»'(x„) of x„$, we see this determines the form
of a general Lagrangian invariant under the "extended"
group Gz'. Such a Lagrangian can only be obtained:

(1) if one introduces a supplemtemtary field described
by relativistic vectors A„'(x„),each of them correspond-
ing to one of the parameters e of the group Gz,'

(2) if the initial Lagrangian is supplemented by an
interaction Lagrangian (expressing the interaction of the
original field Q(x) and the new field A„(x) of the form
j„'A„,where j„ is the current derived from the initial
Lagrangian Lp, by substituting to the operator
8„=8/Bx„ the operator p„=8„T,A—„'.

(3) if the fields A„ transform under the extended
group Gz' according to the law

0 0
»Q"LV.(x) l4(s")j= V.(x)» 4(s+),

0

pO Oq
»Q"P~'(x) I 4 (s')3 =

b '(x)»4(s') I

0 1 7

(53)

As a consequence, Utiyama's extension to our present
scheme of the internal Pauli gauge group» —+»(x) leads
to the correct splitting between charged and neutral
particle; the latter ones having no coupling with the
electromagnetic fields given by the theory. We thus

, correctly break the gauge symmetry, explain the elec-
tron-neutrino mass difference, as a consequence of
the electron's electromagnetic self-energy, and also
answer question (8) with respect to electromagnetic
interactions.

A. Strong Interactions

Now it is clear that we can use our internal irreducible
interaction vectors and write as a global Hamiltonian a
combination of antibaryon-baryon state functions. This
combination is invariant under our internal group G,
which plays the role of a gauge group for our global
Hamiltonian. Then, extending this group to a local gauge
G' according to Utiyama's method, we obtain the corre-
sponding set of interaction vectors. As our group G is
the direct product SO3+XSO3 &SO3' of three rotation
groups, it yields three triads of relativistic vectors, the
vectors of each triad being bound together by Yang-
Mills equations with intervention of the structure con-
stants of the rotation group. These interaction vector
mesons, coupled in different ways with the various
baryon fields, break the symmetry between the baryons
of the same level according to Sakurai's ideas. " One
thus sees that question (A) and question (8) are closely
related in our scheme, and we can make the fundamental
statement that the complete particle theory (including
the breaking of the symmetries) are not invariant under
Z4XG, but under the group Z4)&G', where G' is the
local gauge group, that is, Utiyama's extension of our
internal group G.

If one accepts the preceeding ideas, this implies that
in our model the external motions of particles (and their
behavior in interactions) is essentially determined by
their coupling with the preceding vector mesons, ac-
cording to Sakurai's point of view.

In our scheme, the theory of strong interactions of
fermions with bosons can thus be represented, as Fujii'"
first suggested, by graphs of the form indicated in Fig. 6.
If we assume, for example, that the Bi and 82 baryons
belong to the D(1,si) representation, the graph expresses
the basic idea of our interaction formalism, namely:
There is no physical difference between the observed bosom

(7r rmeson) amd the bostnd baryon antibaryon state. This—

binding evidently results from the exchange of the inter-

ib J. J. Sakurai, Ann. Phys. (New York) 11, 1 (1960).
'r Y. Fujii, Progr. Theoret. Phys. (Kyoto) 21, 232 (1939).
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action vector mesons introduced through Utiyama's
formalism.

With these assumptions, we see that Sakurai's theory
of strong interactions results naturally from our theory,
with slight differences (resulting from the utilization of
different internal gauge groups) which will be discussed
in a subsequent paper. More generally, we can say that
all interactions can be constructed along his (or
Utiyama's) line of thought, as a, result of the extension
of some local gauge groups.

Indeed we can summarize our conceptions as follows:

(A) To each internal quantized attribute (bound in
our model to new "hidden" internal kinematical vari-
ables) there correspond external dynamical features.

(8) Each conservation law results from the invari-
ance of the Lagrangians under a particular gauge group
which must be a particular subgroup of our general
isobaric group G.

(C) Since all strong Lagrangians must be invariant
under Z4 (the external Lorentz group) and G (our
internal isobaric group), the strong and weak inter-
actions should result from specific Lagrangian invari-
ance under definite subgroups of G.

(D) In the case of strong interactions we have shown

that, with the help of our preceding interaction vectors,
we can build scalars under G which are also:

(a) invariant under the internal complex rotation
group 503*, that is, as is well known, under two separate
irreducible representations D(t+) for any rotation 0,
and D(l ) for the complex conjugate 0*;

(b) invariant under the internal three-dimensional
real rotation group 503",

(c) invariant under the Abelian one-dimensional

gauge group Qo, =J3++J3 —5,'.

These invariances imply:

(a) the conservation of isobaric spin I3 through the
intervention of three vector mesons B„(r) (namely, the
classical Yang-Mills field) with their coupling constant

fr andthe interaction Lagrangian Zr —— frB„(r) J„(r);-
(b) the conservation of strangeness through the

intervention of three vector mesons B„(s) with their
coupling constant fo snd the interaction Lagrangian
g&——f&B (s) .J . (8)

(c) the conservation of baryon (fermion) number

through the intervention of the three vector mesons
B„(~) with their coupling consta, nt f~ and the La, -

grangian Zi) ———fsB„(o) J„(o).
(d) the conservation of electromagnetic cha, rge

through the intervention of a single vector meson 3„
with the usual interaction Lagrangian 2, = —A„J„.

With Sakurai, we can assume that fJ)& fs& fr.
(E) The question of the masses of these fields (a

stumbling block in Sakurai's theory) can be solved in

FIG. 6. Diagram
for strong interaction
of fermions with
bosons.

our scheme according to one of us' by assuming that
the three fields B„~which satisfy the usual Yang-Mills
bare field eauations, are in reality built out of the sum

of a strongly fluctuating unobserved vacuum part B„~'
and a slowly varying effective observable part b„". If
one then considers average values over small space-time
cells, one sees that this amounts to the existence of an
"effective" mass for each observable b„~ field which

results from the S„~'b„~ interaction: the total field

satisfying the usual Yang-Mills equation and the total
Lagrangian satisfying strictly our new gauge principle.

(F) The above qualitative theory yields strong argu-
rnents for the elimination of some strong-reaction proc-
esses which correspond to mathematical possibilities
(according to Sec. I) but are not observed in experiment.
In accordance with the objection'" raised by I'eynman

at the Aix en Provence Conference, w'e can formally
build invariant interaction Hamiltonians with lepton-
antilepton (or lepton-antibaryon) pairs with creation of

w or E. mesons, a thing which never happens in nature.
But in these processes we would have to deal at least
with a 8„& ~ exchange process in our scheme; that is,
with a loss of mass of the order of 3000 electron mass
units. This is not possible since we start in both cases
from a much too small initial mass, Our external vector
meson theory thus provides us with supplementary
selection rules which complete in a very suitable way
our internal interaction formalism. This is a very im-

portant consequence of our external formalism: since it
forbids strong baryon-lepton transition and secures the

separate conserve)ation of baryon and lepton number, while

our internal fomalism implies only the conservation of
the quantum number m'.

One sees also that our scheme evidently leaves room
for a similar treatment of weak interactions. Indeed if,
recalling the results of Sec. I, we build Lfollowing one
of us (P. H.)] Lagrangians invariant under the groups
503 and 503' the invariance under 503 implies, accord-
ing to Utiyarna's formalism, the introduction of three
new vector mesons B„&~' which insure the conservation

' J. P. Vigier, Nuovo Cimento 23, 1171 (1962).
'"' Not applicable of course to Yukawa's proposal.
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of nt++ns, that is, Is+-,'S. These vector mesons, first
introduced by Feynman and Gell-Mann, "will be re-
sponsible for weak interactions in our scheme. Their
rest mass must be assumed to be of the order of 1200
electron masses. The corresponding interaction La-
grangians take the form Zrr f——rr—B„&~& J„i~&; the
currents J„&~' contain the usual 75 matrices, according
to Sakurai's" demonstration,

Let us emphasize that these conceptions provide us
with a deeper, but qualitatively equivalent, interpreta-
tion of the strong interaction theory developed in Sec, I.
The irreducible vectors built with the baryons allow us
evidently to build up a collective Hamiltonian of the
isolated baryon-antibaryon pairs, such as

Ag, "AI, nn+——p p+ ""+. +X+X++X++X++,

which expresses simply the basic invariance of our whole
free-particle formalism under the group Z4XG (the
symbol ne recovers the internal-external Lagrangian,
with derivative part, invariant under Z4).

As seen before, the assumption that the group G
must first be considered as a local gauge group, then
extended to the corresponding enlarged Utiyama group
G', implies the introduction of the vector mesons and
the corresponding interaction term to obtain extended
Hamiltonians invariant under Z4)&G'. We are then led
to the idea that, when a baryon and an antibaryon come
near enough, they interact and build a stable edifice
(a bound state) which appears as a boson. Of course the
whole process is basically invariant under the group
Z4XG, so that we are compelled to adopt the statement
which was primarily introduced as a principle in Sec. I:
Strong interactions are invariant under theinternal group
G. The graph (Fig. 6) where vector mesons are assumed
to act at the bound state branch, is indeed a more
detailed, but equivalent, picture for the Yukawa graphs
(Fig. 1) of Sec. I. Finally, the currents contained in the
interactionterms to be added to the "bare" Hamiltonians
introduce just the combinations of internal baryon
functions which build the suitable internal boson func-
tions; and this is just the mathematical relation between
the present vector meson formalism and the internal
formalism used in Sec. I.

As emphasized by Sakurai, this bound-state concep-
tion evidently implies a qualitative theory of the rest
mass problem of elementary particles. If a vector meson
is emitted by one of the baryons and absorbed by the
other, it yields an attractive coupling which amounts to
a mutual potential well. Such an attractive "exo-
thermic" coupling entails a "loss of mass" which insures
the stability of the created boson, and we can consider
the corresponding mass difference as characterizing
the coupling energy.

CONCLUSION

In conclusion, we want to stress certain new aspects
of our model and some of its consequences.

As stated in our introduction, the main difference
between our ideas and the treatment of other authors
is that we consider that the new quantum number of
the Nishijima —Gell-Mann classification correspond to
real physical periodic motions within the extended
particles in Minkowski space. This is a new step since
practically all former attempts are associated with
abstract new spaces (four-dimensional with Euclidean
metric, etc.) in order to preserve the point-like character
of elementary particles.

Such a step is in line with the general idea of three
of us" to re-interpret quantum mechanics with the help
of new realistic (as yet "hidden") parameters. The
rough idea is that there are no such things as points in
space or instants in time but only space-like domains
and time-like intervals. As a consequence, seemingly
point-like structures at one level contain in reality an
infinite number of field parameters out of which we
can abstract a finite number of collective variables
(which characterize a deeper level) governed by specific
mechanical laws. For example, the new parameters
utilized here correspond to motions happening within
distances smaller than 10 " cm so that it is not sur-
prising we should discover for them new qualitative
laws. This picture also implies that any seemingly stable
structure at one level always recovers violent internal
periodic space-time motions at a deeper level; so that
the qualitatively different particles we observe, when
we consider as points distances smaller than 10 "cm,
are really different quantized states of excitations of
deeper field concentrations. In a crude sense we thus
propose to make with respect to elementary particles
the step made by quantum theory when it first at-
tempted to explain the levels of the hydrogen atom.

The second point we want to make clear is that our
model, like any other model, can only be compared
with experiment if it yields a correct theory of experi-
ments and accounts for the experimental mass spec-
trum. We purposely put the problems in that order, for
a simple discussion shows that the mass problem should
be attacked last in our scheme. The reason is that i;1'~

observed masses are probably built of different elements.
Clearly part of the masses result from "vacuum polari-
zation" and cannot be calculated without a complete
knowledge of interactions. Besides, one sees immediately
that our model offers various new specific possibilities
to account for the mass spectrum which require further
investigation. For the moment, we shall leave aside
this question until we achieve the complete analysis of
interactions in our scheme.

Finally, we want to say a few words on possible future
implications of this theory. If our starting point is
correct, it clearly implies a research to explain the laws
of quantization themselves in terms of topological and
physical properties of deeper subquantum material

L. de Broglie, D. Bohm, F. Halbwachs, P. Billion, T. Taka-
bayasi, and J. P. Vigier, preceding paper LPhys. Rev. 129, 438
(1963)3.
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behavior, possibly along the lines developed by two of
us (D. B. and J.-P. V.). Moreover, subquantum prop-
erties which have already been used to justify the sta-
tistical laws of quantum mechanics" may also provide
a justification of the "fusion" procedure as suggested
by one of us. '

Anyway, it is clear that the substitution of rela-
tivistic extended rotators by point-like elements as the
starting point of quantum theory implies deep modifica-
tions never considered before. For example, in all that
precedes, it has not been necessary to introduce the
dimensions of the particles themselves; but a more
detailed analysis will have to do so in our scheme. If, as
results from preliminary considerations, it turned out
that the de Broglie wavelength were to be greater than
the basic particle radius ro, then ro would play the part
of the fundamental length introduced in many modern
attempts to eliminate the divergences of quantum field
theory and introduce a natural "cutoff" in quantum
mechanics.

ACKNOW LEDGMENTS

The authors would first like to express their gratitude
to Professor Hideki Yukawa for his support of their
investigations. Many of the preceding results have been
inspired or had been anticipated by his research and
that of his colleagues. As stressed before, our basic
rotator model can be considered as a natural extension
of Professor Yukawa's bilocal model, "the reasoning of
Sec. II presenting evident analogies with Professor
Sakata's" compound model of elementary particles.

We also want to thank especially Professor L.
Schwartz, Professor A. Lichnerowicz, and Professor
J. M. Souriau for helping us to claify many mathe-
matical points.

One of us (J.-P. V.) wants to thank personally
Professor Blokhintzev for an invitation to Dubna which
proved very helpful.

Finally, may Professor Sakata, Professor Nakano,
Professor Fukutome, Professor Wheeler, Professor
Pontecorvo, Professor Lagunov, Professor Ogiovitski,
Professor Prentki, Professor Burhop, Professor
Iwanenko, Professor Terletzki, and many others with
whom we had the privilege to discuss our model also
find here the expression of our gratitude.

APPENDIX. YUKAWA CLASSIFICATION

Fio. 7. Diagram
for the process

E +P ~X'+n,
with V+ or P+
exchange. y+ ~ y+ ]L

Representation

m'= ——,
' (particles)

m+= r3
1
2
1
2

2
1
2
1
1
2

1
1
0
0—1—1

Particle

Starting from our model, Yukawa remarks that our
fundamental bilateral group S03+)&S03 &&S03'+&(S03'
can be collapsed (as we have done) into

G=SO+&&SO )&SO ',
but also into

G'=SO &(SO '+)&SO ' .
G is obtained by interchanging the primed and un-

primed operators in I, an operation which amounts to
interchange the role of L, and T.

Assuming then the same operators for T3, S, and 8,
Yukawa proposes to associate baryons and bosons with
the D(l+$ ) representations of G, the leptons correspond-

ing to the representations D'(sr, 0) and D'(0, —,') of G'.
In other terms, the Yukawa classification

(1) associates D(-'„0) with the nucleons X (e,p);
(2) associates h.' and a new particle V+ with a

strangeness doublet in D(0,—',);
(3) associates higher baryons to the representations

in Table I;
(4) defines the bosons as we have done by the repre-

sentations D(0,0), D(1,0), DP, rs), and D(0,1), which

correspond respectively to mo', pions, kaons, and possible
strangeness 2 particles. "

In such a scheme, one can evidently introduce

TABLE I. Representations for various particles and resonances.

The model discussed in this paper and the preceding
one can evidently be modified and improved in various
ways. One of the most promising attempts to do so has
been recently worked out by Yukawa. "We wish to
indicate his results since they seem to fit nicely with
very recent experimental data.

D(1 -'), S'=~s
m'= —

2 (particles)
1
0—1
1
0—1

1
1
2
1
2
1
2
1
2
1
2

y++
Ir'+
P'0

g+
g0
Z

~ H. Yukawa, Phys. Rev. 91, 415 (1953)."S. Sakata, Progr. Theoret. Phys. (Kyoto)."Y. Katayama Katsumori, J. P. Vigier, and H. Yukawa,
Progr. Theoret. Phys. (Kyoto) (to be published).

"'|II'". Kan Chang, in Proceedings of the ninth international Con-
ference on High-Energy Physics, Eiev, 1959 (Academy of Sciences,
U. S. S. R., 1960); H. Ting Chang, J. Exptl. Theoret. Phys.
(U. S. S. R.) 11, 1172 (1960);T. Yamamouchi and M. F. Kaplon,
Phys. Rev. Letters 3, 283 (1959').
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leptonic isobaric spin, leptonic strangeness, and
leptonic number through the operators J3'+, J3', and
Ss=Js++Js, the fundamental lePtons corresPonding
to D'(s, 0) and D'(O, sr), namely e, v., P, , and v„.

These proposals of Yukawa present the following
advantages:

(a) They explain directly the separate conservation
of baryon and lepton numbers.

(b) They establish a simple and beautiful corre-
spondence between the four "fundamental" baryon
states of D(s,0) and D(0, sr), namely m, P, A', and V+,
and the four fundamental lepton states of D'(s, 0) and
D'(O, sr), namely e, v., P, and v„. This symmetry can
be utilized as the starting point of a modified version
of the Sakata model in which one utilizes four basic
particles instead of three. In our case, as seen in II, all
higher baryon states of D(~~, 1) and D(1,—,') can be
obtained as products of the eigenfunctions of D(-'„0)
and D(0,—,').

. (c) This correspondence is strengthened by the recent
discovery of a second neutrino (Brookhaven), and the
existence shown in Berkeley, of a 1480-MeU backward-
scattering resonance in E +p=E'+e; since, as
Yukawa and one of us (J.-P. V.) have remarked, the
graph of Fig. 7 evidently implies backward scattering
as a result of V+ or Y+ exchange.

(d) They lead, following step by step (with the new

group G) the work of Ohnuki, " Ne'eman, 's and
Gell-Mann, "to an "e-fold way" which also introduces
the co, p, E~ vector mesons. Such bosons could also have
been predicted directly from the fusion scheme of
Sec. II, since, with every representation D(l+, t ) one
can associate spin 0 or spin 1.

The corresponding strong- and weak-interaction
theories will be discussed in subsequent papers. "

'4 M. Ikeda, S. Ogawa, and Y. Ohnuki, Progr. Theoret. Phys.
(Kyoto) 22, 715 (1959).

Y. Ne'ernan, Nucl. Phys. 26, 222 and 230 (1961).
'"' M. Gell-Mann, Phys. Rev. 125, 1067 (1962).
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Translational Inertial Spin Effect
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(Received 12 February 1962; revised manuscript received 11 May 1962)

The following results are shown: (a) Contrary to widespread belief, two energy-momentum. tensors T'&'

and O'& with a divergenceless difference are not necessarily physically equivalent; in fact, they will not be
equivalent if the Aux fJf (T' —O~' )ds dt through the external surface of some test body between an
initial and a final state is nonzero. (b) It follows necessarily from basic postulates of the Dirac one-electron
theory that Tetrode's asymmetrical energy-momentum tensor is physically the good one, and that, in the
circumstances mentioned above, use of the symmetrized O"&= (T'&+T&')/2 tensor would yie1d a wrong
result for the variation of the energy-momentum between states 1 and 2. (c) This being so, a macroscopic ex-
periment based on ferromagnetism or ferrimagnetism can be devised, which demonstrates these facts as a
measurable "translational inertial spin e6ect." (d) It is highly plausible that the above predictions, based
on the one-particle electron theory, would be valid in the framework of the many-particle electron theory
obeying Fermi statistics (the argument is based on the so-called bound-interaction hyperquantized forrnal-
ism). The last point can be verified experimentally.

(T" 0'&)du, — (2)

is zero when taken over any closed domain, but not zero
when taken over an open domain (ice'& "'dstt= $dx'dx& dx'"),

'

'To avoid confusion with the spin density 0-', Schwinger s
notations do;- and 0 are discarded in favor of dl,. and S.

I. INTRODUCTION

'WO energy-momentum tensors T"&and 0~'&'' '(i,j, P,
&= &, 2, 3, 4; x'= x, x'=y, x'=s, x'=ict) are said

to be equiea/eel if their difference is divergenceless:

8 (T'& 0'&)=0—
This entails that the three-fold. integral'

3-dimensional volume element; e"~' is Levi-Civita's
indicator).

One principal purpose of this note is to show how this
remark yields the principle of physical experiments
where mathematically equivalent energy-momentum
tensors will not have physically equivalent behavior,
so that (in the case we will consider) one of them may
be selected as being, physically, "-the good one. "

The reason why such a fact has often been overlooked

is that in a fairly large class of physical situations the
values of the T'&' tensors drop down at spatial infinity at
a rate such that the integral (2), taken over any time-like

domain at spatial infinity, is zero. When this is the case,
the value of the integral (2) taken over any space-like
domain' 5 extending to infinity will be independent of


