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The purpose of this paper is to investigate some consequences of the assumption that elementary particles
are not pointlike, but are rather, extended structures in Minkowski space.

In terms of the hypothesis that the internal quantum states of such structures correspond to internal
"rotator" levels belonging to the Hilbert space containing all irreducible 6nite-dimensional representations
of the group SOs of three-dimensional complex rotations (isomorphic to the Lorents group), we obtain a
particle classification which recovers (including leptons) the Nishijima —Gell-Mann classification of elemen-
tary particles. In this way, we justify the empirical Nishijima —Gell-Mann relation between isobaric spin,
strangeness, baryon number, and charge. Moreover, as will be shown in a second paper, the new internal
("hidden") degrees of freedom which correspond to isobaric spin, strangeness, and baryon number open up
new possibilities for understanding qualitatively and quantitatively the elementary particle interactions
and decays; while a simple extension of "fusion" theory yields possible external state vectors and equations
associated with any given internal quantized states corresponding to known elementary particles.

INTRODUCTION of view is that such variables, if they exist, belong to a
new abstract space (assumed, in general, to be 3 or 4
dimensional with Euclidean metric) quite independent
of Minkowski space-time. As a result, "external" and
"internal" motions are absolutely disconnected and
there is no relation between them. This at first sight
does not seem satisfactory and it is tempting to inves-
tigate the possibility that these "internal" variables
correspond in fact to new "hidden" over-all internal
motions of extended structures endowed with definite
symmetries in physical space-time. In this case, one
expects that there should appear a connection between
external space-time and internal isobaric spin space;
and we find, indeed, that external and internal states
belong to finite-dimensional representations of isomor-
phic groups acting, as we shaH see, on different mani-
folds. s (This was also a,ssumed independently by
Iwanenko. 4)

(c) Part of the divergence difhculties of present
quantum field theory are bound up with the assumed
pointlike aspect of particles and their representation by
8 functions. The introduction of extended models as
starting point is reasonable since they offer the possibil-
ity of a natural "cutoff" if their dimensions are to
0.6X10 '3 cm.

' 'N a series of preceding papers' the idea, proposed by.~ two of us (DB and JPV), of dropping the point-
particle model and of introducing new kinematical
variables in Minkowski space-time in order to represent
extended material distributions enclosed within timelike
tubes, has been systematically developed. Briefly, the
reasons for doing so are the following:

(a) Recent high-energy collision experiments by
Hofstadter and his collaborators' suggest that particles
are not points moving along timelike world lines, as
assumed usually in quantum theory, but are instead
material distributions extended in space.

(b) The new quantum numbers, isobaric spin,
strangeness, and baryon number, should be associated
to new degrees of freedom, that is, to new "internal"
collective kinematical variables. Now the usual point

3The external Lorentz group acts on Minkowski space while
the internal group operates on the manifold of the three-dimen-
sional complex rotation group.

4 A. Brodski and D. Ivanenko, Nucl. Phys. 13, 447 (1959).

~ This paper is a summary of the results of a common program
of research on a particularly simple rotator model started three
years ago in the Institut Henri Poincare in collaboration with
David Bohm. Since then, starting from the same basic idea, the
authors have investigated a wide range of more complex models
which will be discussed and interpreted in subsequent papers.
The contribution of each author is indicated as far as possible in
the text itself. Notations are as usual: All Latin indexes vary from
one to three, Greek indexes vary from one to four (with x4 ict);-—
repeated indexes implying the classical summation convention.

D. Bohm and. J. P. Vigier, Phys. Rev. 109, 1882 (1958);
F. Halbwachs, P. Hillion, and J. P. Vigier, Nuovo Cimento ls,
209 (1960).

~ R. Hofstadter, Revs. Mod. Phys. 28, 214 (1958).
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(d) Finally, several of the authors have further
reasons for assuming that particles are indeed extended,
since this notion is part of the scheme which they have
proposed in the frame of the causal interpretation of
quantum mechanics (in particular, the idea of the
possibility of hidden variables).

We shall attempt to develop the idea of extended
particles in the following way.

In the absence of any clear experimental indication
concerning the new degrees of freedom, we start from
the indirect hint given by the Nishijima —Gell-Mann
scheme of internal quantum number and try to discover
a new "internal" group G which corresponds to possible
internal invariance properties compatible with real
space time s-tructures. The finite-dimensional irreducible
representations of G should then yield the desired
quantum numbers and suggest possible physical
interpretations of the new degrees of freedom.

More precisely, we consider the original extended
model as an heuristic analogy which serves only to
help us to discover the new internal mathematical
structure. One proceeds at some stage to pass from the
assumed —but as yet unknown —extended structure to
an abstract model defined by its invariance under a
suitable internal group (our new isobaric group G),
maintaining, however, general requirements for a
structure in Minkowski s space-time. This line of
research was essentially proposed by Finkelstein in a
very interesting paper' which anticipates some of our
results.

I. NONRELATIVISTIC MODEL

We start from the basic assumption that the isolated
particle, described in first approximation by the
ordinary pointlike picture, can be treated, in a second
approximation, in terms of two kinematical frames
(orthonormal relativistic tetrads) a„&&'(r) and b„t&'(r)
centered on the same point sc„(r), which latter coincides
with the above pointlike picture. The parameter g is
the proper time along the world line followed by x„.
The index $ ((=1, 2, 3, 4) labels the vectors and ts

(ts= 1, 2, 3, 4) their components; )=4 corresponding to a
timelike vector and p, =4 to the time components. a„&&&

and b„&&& will be called for short the L and T frames.
This model may be called a relativistic rotator. Its

fundamental character is the localization, not only of
the center x„, but also of the two sets of vectors, in the
frame of Minkowski space-time, so that the supplement-
ary "internal" parameters needed for the description
of the various particles have a "realistic" meaning
related to the relativistic world (unlike what happens
in the usual theories implying some abstract "isobaric

' See L. de Broglie, Une tentative d'interP~etation causal. . .
(Gauthier-Villars, Paris, 1956); D. Bohm, Phys. Rev. 85, 166
and 180 (1952); D Bohm and .J. P. Vigier, ibut 96, 208 (1954);.
J. P. Vigier, Structure des raicroobjets (Gauthier-Villars, Paris,
1957).

e D. Finkelstein, Phys. Rev. 100, 924 (1955).

spin spaces"). Such a model is able to lead to many
kinds of extended pictures, but all the latter ones have
the common character that they are describable as
structures in Minkowski space-time. This is indeed the
basic characteristic the present theory.

The complete treatment of the so-defined rotator
needs two kinds of parameters: first, the "external"
parameters which characterize the so-called "fixed, "
or L, tetrad, with respect to an arbitrary relativistic
"laboratory" frame, namely, the relativistic coordinates
x„of the rotator center and the parameters defining
the orientation of the tetrad (we have thus ten param-
eters); second, the six "internal" parameters which
define the relative orientation of the T tetrad with
respect to the L tetrad.

Now in addition, we shall make two supplementary
assumptions which simplify the problem.

First, the laws of evolution of the internal parameters,
that is, the laws of the relative motion of both tetrads,
are independent of the external parameters (of the
global motion of the structure considered as a block)
at least in the absence of interaction with external fields.
Thus, the six internal kinematical parameters have an
intrinsic character and define, as we shall see, the
manifold on which operates our new isobaric spin
group G. The two first sections of this paper are devoted
to the separate study of this internal motion.

Second, the internal structure is assumed to possess
spherical symmetry; that is, the T frame, considered as
a simplified description of the structure, can be chosen
arbitrarily, at least as for its spacelike vectors, in the
same way that for the description of the classical motion
of a sphere all the systems of orthogonal axes rigidly
bound to the sphere are equivalent.

As a first step, let us consider the eoerelatkistic limit

and assume that the particle structure is represented by
two kinematical three-dimensional frames ak("), bI, ("),

the internal configurations corresponding to the relative
orientation of bl, (") with respect to a&(") expressed by
three independent parameters. This means the particle
geometry is the form of the material distribution
carried along by the parameter transformations through
which we denote the chosen internal motion. Whatever
shall be the chosen parameters, it is clear that the
internal state of the nonrelativistic model is represented

by a definite element of the rotation group 503.
We now recall well-known considerations about the

rotation group in order to particularize the manifold
of the group.

For the unit vector and the rotation axis having the
components:

Vi ——sing cosn, Vs= sing sinn, Vs ——cosP

(where n and P are its spherical coordinates), one takes
the point with measure sing on this vector (2y is the
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rotation angle) and one defines the point P:

y, = sing sinP cosa, y2
——sin& sinP sinn,

y~ ——sing cosP. (2)

Evidently, there is a bicontinuous correspondence be-
tween the points I' which fill the bowl with radius 1, and
the elements of the rotation group SO3. But this corre-
spondence is neither one-to-one in the one sense nor in

the other, since the different rotations 7 and m —y
around the same axis correspond to the same point I'.
On the other ha, nd, the points (yi, y2, y&) and (—y„—y2,—y3) correspond to opposite rotations around opposite
axis, which are identical. The 6rst ambiguity is removed

by considering the space R3 to be inside a four-dimen-
sional Euclidean space E4, and by endowing the point I'
with a fourth coordinate, cosy:

yi ——sing sinP cosn, y2 ——sing sinP sinn,

)&ys ——sin& cosP, yo ——cosp. (3)

As a consequence, I' now lies on the hypersphere S3
with radius 1 in the four-dimensional space E4. This
hypersphere is the Riemannian manifold of the rotation
group and the configuration space of the internal
theory, provided two opposite points are regarded as
identical (the hypersphere is the covering manifold of
SO3). In other terms, to each point y„of S3 (all the y„
are real and we have y„y„=1), corresponds a 3X3
rotation matrix Q„=Q „which carries uI, (") on bl, ("&:

b (r) Q rs+ (r) Q rsQ rt —/st
k y A: p y y

or in matrix form

formula:
Qy =Qyg Qy Qyg '.

Such a transformation acting on the elements of a
group is referred to the following general conception due
to J. M. Souriau. If G is some group with elements A,
8, C. , we call bilateral transformation on G that
operation which transforms each element C into

C'=pe~(C) =ACB '.

Each transformation Ii ~~ is thus labeled by two de6nite
elements 2, 8 of G. It is easily shown that all these
transformations form a group, called the bilateral group
on G: Bil(G), with the rules

P A F,A' —P,AA' (P A)—i —P iA i
(7)

r

Of course, two transformations F~, Ii~ ' associated
with two different pairs of elements of G are not
necessarily diRerent. More precisely, let us consider
the direct product O'= GXG composed with the

elements
&

with the rules

1
the unity being, of course,

1
. We can obviously

associate with each element
~ &

of G' the element Fo"

of Bil(G) with the same multiplication rule, but in
general this correspondence is not an isomorphism.
Indeed, the unity of Bil(G) is defined by

(b,)=n„(a,), n„fl„&=1. (4) I;(c)=ac73 i=c-
The internal motion of the particle is thus represented
as the motion of a point on this hypersphere in the same

way as the "external" motion of a pointlike particle
is represented as the motion of a point in a Euclidean
space E3.

The theory is invariant Under the rotations independent

of time acting on the ftxed triad, owing to the general
rotation invariance of the nonrelativistic physics, and
on the other hand Nnder the rotations independent of
time acting oe the nooning triad, owing to the arbitrary
choice of the latter implied by the assumed spherical
symmetry. Kith respect to the group SO3, these trans-
formations are, respectively, the right and the left
translations on the group. More precisely, let us
designate by Q„ the rotation from fixed to moving frame,
related to the moving point y(t) on Ra, and by 0»
the rotation of the (a„) frame, related to the point yi,
and by 0„2 the rotation of the (b„) frame, related to the
point y2. We pass from the frames (a„), (b„), to the
transformed frames (a„')=Q„i.(a„), (b„')=Q,~ (b„). We
then have (b„') 0„"(a„')', with the new rotation 0„.
from new fixed to new moving frame, related to the
new moving point y'(t) defined by the fundamental

for any C. In particular, for C=1 we have AB '=1, so
that A and 8 are identical. Now the condition

for any C means that A commutes with all the elements
of 6, and belongs to the center 8 of G. Thus all elements
of Bil(G) expressed by Fz", A being any element of
the center 8, are identical to the unity of Bil(G); this

unity corresponding to the different elements
~

of G'.

The set with 2 6 builds the nucleus of the

homomorphism between G' and Bil(G). In other words,
the bitateral grolp is isomorphic to the quotient group
G'/g. In the case of the group SO3 we have simply

Bn(so, )=so,&&so,=so./g (11)

(g is the two-element group 1, —1), so that our con-
6guration hypersphere admits as invariance group the
whole four-dimensional rotation group in R4.

The algebra of our internal group G is easily estab-
lished. The infinitesimal left and right translations can
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LgL2 ———L2Lg ——L

with cyclic permutation. The same relations are valid
for the E;.

Finally all the L; commute with all the E&. We have
then:

ay))= (ot'Ii+ot 'Ri)))vyv

Let now F(y) be any function defined in R4,. we have,
by putting a„=a/ay„:

a,=a„(L;)„,y., a, '= a„(R,)„,y.,

a~(y) = (~'a'+~"a'')~(y)

The operators 8; and 8 obey the relations:

~)~i=~i ~i =~ )

(17)

[a,aj]= —2E,t7)a))) [a) )at ]= —2Et7)at) ).
20

[a a,']=o [a a2]=[a,'a2]=o.

According to the ordinary procedure, we deduce from
these infinitesimal generators of the invariance group
acting on the configuration manifold, the corresponding
(Hermitian) quantum operators by multiplication with
)rt/i, namely,

J),= (It/i) a)„Ji'= (It/i) at, ', J'= —5'a', (21)

with the commutations rules

[J,,J;]=(@/i),,&J&, LJ,JO']= (@/i),,„J„',
(22)

[J;,J ]=[J;,J2]=[J,',J2]=o.

These commutation relations imply evidently the
existence of three commuting operators, such as, for
example, J', J3, J~', and a corresponding series of
corresponding eigenfunctions Y'(l; m, m') (generalized
spherical functions) satisfying

J'Y(l; m, m') (y) =5'l (i+1)Y (l; m) m') (y) )

JSY(l; m, m')(y) =km Y(l; m, m') (y), (23)

Ja'Y(l; m, m') (y) =5m'Y(l; m, m') (y),

where l can take all possible values 0, -'„1, - while m
and m' take independently all values —l, —l+1
l—1 /.

be expressed, respectively, by

y„—+ (1+ot'I.,)„„y„, y„—& (1+n"Rt)„,„y., (12)

where n' a,nd 0" are arbitrary real infinitesimal param-
eters (i=1, 2, 3), I., and R; are six 4X4 matrices which
are the infinitesimal generators of the left and right
translations on 503, respectively. L; and E; are indeed
left and right quaternion bases as we have:

LgL i—R]R] 1)

and the same holds for the other indices. Also

(14)

As one knows, any function Ii of y can be developed
on the set of the functions Y(l; m, m')(y). These func-
tions span the whole Hilbert space of the functions of y.
As Wigner has shown, the I with fixed values for l
and m' span an invariant subspace which transforms
under the irreducible representation D(l) of SO3.

II. RELATIVISTIC MODEL

According to our program we now pass to the
relativistic theory of extended particles. In the frame
of the first line of research let us assume that extended
classical relativistic particles can be represented
schematically by two kinematical frames a„(&) and b„(&)

centered on a moving kinematical point x„(r) Thes.e
new internal variables form two frames called, respec-
tively, L and T frames. Their relative orientations which
correspond to the elements of the homogeneous Lorentz
group, will de6ne the configurations of our system.

As was shown by Cartan and by Einstein and Mayer,
if one introduces the following set of skew self-dual and
antidual tensors associated to u„(&) and b„(&) by

(r)+—)tran {v)g (t)~ ((t (r)(t (4) t) (r)& (4))
(24)

(p, (r)+=~rvttt) (v)$ (t)~(i') (r)i') (4) It) (r)$ (4))

one can form their three independent components:

QI(;
" += 8&

"
G4 —84 "

GA; &6,&&G;
" 8&'

(25)
gp()')6 —$p()')$4(4) $4( )$p(4)~q . .p$. ( )$ (4)

The 31,(")+ constitute a triad of complex orthonormal
6xed vectors and the Bl,(")+ a triad of complex ortho-
normal moving vectors, which span a three-dimensional
complex Euclidean space E3+. In the same way AI, ('
and 8&(") span a complex conjugate three-dimensiona, l
Euclidean space E~ . Now, if the relativistic tetrad
a„(&) undergoes any special Lorentz transform A, which
carries it onto the tetrad b„(&), the corresponding
complex triad AA, (")+ undergoes a de6nite three-dimen-
sional complex rotation which carries it onto BA,, (")+ and
the correspondence between the connected Lorentz
group M4 on a„(&) and the complex rotation group
SOS* on Ai, (")+ is an isomorPhism. Of course the same
isomorphism happens for the three-dimensional rotation
group on AI, (") in the space E3 .

This important statement allows us to introduce the
hypersphere 53+ in the four-dimensional complex
Euclidean space E4+ as the manifold of the group $03*,
that is, as con6guration space for our internal states,
and to extend the preceding nonrelativistic theory to
the relativistic case by Cartan's "complexification"
procedure.

Indeed each relative orientation of the T frame with
respect to the L frame, tha, t is, each internal configura, —

tion of the structure, may be expressed by the two
(conjugate) three-dimensional complex rotations which
correspond to the Lorentz transform under considera-
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If we put:
8s += (n'+L +n"+P ) z +. (27)

we get
8,+=8„+(L;)„,s„~, 8 +=8„+(R,)„„s„+, (28)

tion; that is, finally by a pair of opposite points (s„, —s„)
on the complex hypersphere 53*.

As regards the invariance of the theory, we shall
erst assume, as an abstract generalization of the above
nonrelativistic treatment, the formalism to be invariant
under independent Lorentz transforms acting on the
fixed and moving tetrads. This amounts to consider as
invariance transformations the right and left transla-
tions on the three-dimensional rotation group, that is
the bilateral group Bil(SOz"'). In the same way as above,
this bilateral group is isomorphic to 503*)&SO3*.

We have thus the infinitesimal transformations:

bz„= (n'L~+n "8;)„„s„, (26)

where n', n" are independent infinitesimal complex
parameters, with the same meaning as above for L, and
R,. Any function P(s) defined in P4 depends both of
Re(s) and of Im(s). But we can also consider as in-

dependent variables the two complex conjugate vari-
ables s„and s„*, which we may write z„+ and z„,
which lie, respectively, in the spaces E4+ and E4 . We
have thus:

discrete eigenfunctions have the form:

U(l+, l—;m+, m'+, m —,m' —) (s+,z—
)

= I'(l+; m+, m'+) (z+) I'(1—;m —,m'-) (s
—

), (33)

where Y(l+;m+, m'+) have exactly the same form as
the generalized spherical functions F'(1; m, m') con-
sidered in the nonrelativistic case. One knows, moreover,
that l+ and I take independently integer or half-integer
values, m+ and m'+ lying in the sets

—l+, —l++1, , l+—1, F'.

The construction of a Hilbert space with these
functions raises some difhculties, as the configuration
space S3* is not compact and therefore allows no
converging integration. Nevertheless, Souriau and one
of us have recently suggested an indirect way .of
computing an invariant measure for the polynomials in
s„+.' Let us consider the functions of the rotation,
defined on 83*, and extend them analytically to the
whole space 64. The eigenfunctions of J'+, which are,
in fact, the spherical functions on S~*, then appear as
the trace on Sz* of the harmonic polynomials P(s„+) in
84. Moreover, each combination F (s„+) of these
polynomials P(s„+) defined on Sz* may be endowed in
an unique way with a harmozzzc exterzsiozz F(s„+) This.
extension satisfies

bF(s s )= (n'+8.++n' 8 +n"+8'
+n" 8.' )F(s+s—

)

We then introduce the quantum operators:

6+7(z„+)=0,

(29) in the whole space 64, and

F(s„+)=F(s„+) on Sz*. (35)

J,+= (iiz/z)8;+, J,'+= (I'z/i)8 +,

with the relations~:
~ See reference 6.

(36)$J;+,J;+)= (5/z)e, ,i,Ji,+, $J +,J,'+]= (lz/z)e„iJi'+,

(g,+,Z,'+]=P,+,J,+j=P,'+,Z,'+]=P,+,J,'+~=0,
PZ'+, Z,+)=Pe +,Z +)=P +,Z,"]=LJ'+,~,"g=o.

(31)

This is immediately generalized to the eigenfunc-
tions common to J'+ and J' which are products of
polynomials:

P(z" z )=P(z') P'(z )

Now if we consider the value F(0) of F(s„+) at the

(30)
center of the sphere, we know it provides a measure of
F(s„+) which is invariant under the rotations in 64, so
that we can write by definition:

(P(z„+))=F(O).

P(s+,s )=P(s+) P'(s ), (32)

where P and P' are polynomials. In the present theory,
we shall restrict ourselves to such functions. Now the

As a consequence, we can consider six commuting
operators, namely J'+, J3+, J3'+, and seek their common
eigenfunctions. As the manifold is not compact, we know
we get first a continuous spectrum corresponding'to the
infinite-dimensional representations of the group. Mak-
ing the plausible assumption these representations will

play no role in our theory which considers only stable
quantum states, we shall exclude these functions. This
entails the drawback that the remaining discrete
eigenfunctions no longer constitute a complete set for
all the functions F(s+,s ). But it can be shown that they
do form a complete set for the functions of the form:

F(s+,s )=P(z+) .P(s—
),

—

and consequently the invariant measure

(F(s+,s ))=F(0,0).

It is now easy to see that:

(P(s') P'(z ))=(P(s')) &P'(s ))

(37)

(38)

(39)

F. Halbwachs and J. M. Souriau (to be published).

each of them being harmonic, respectively, with respect
to the two operators:

=8 /8sp 8' q
A = 8 /8' 8'

so that the product is harmonic with respect to A=A+
+A . We thus can define the harmonic extension
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This measure coincides in the real case with the ordinary
measure obtained by integration of F(y) over the
compact sphere S3. This leads to a definition of scalar
product in our functional (pseudo-Hiib crt) space,
namely, the invariant measure:

(Fi F2) (Fl 'F2) (Fl )'(F2)

The use of the complex conjugation, which, of course,
acts both on the functional and on the variables, is
justified by the fact that the complex conjugation is the
only operation which commutes with the complex
rotations. With respect to our eigenfunctions, we get:

(U*(l+,l; m+, m'+, m, m' ) ~

=(U(l l+ —m, —m', —m+, —m'+) ~, (41)

so that the bra-ket transition transforms the poly-
nomials in s+ into polynomials in s; so that certain
eigenfunctions have their norm equal to zero.

With respect to this indefinite metric, our basic
operators are "pseudo-Hermitian"; they do not obey
the usual Hermiticity conditions

(F*,AG) = ((AG}*,F). (42)

Nevertheless, they have real eigenvalues.
On an other hand, one can consider the set of common

eigenfunctions of the Hermitian conjugates of our basic
operators, which form another set of functions V(l+,l;
m+, m'+, m, m' )(s+,s ). Now we can check by forming
the scalar products (U, V) that each function U(l+,l;
m+, m'+, m, m' ) associated with given values of l+, l,
m+, m, m'+, m', is orthogonal to all functions V
associated with other values of these quantum numbers,
so that the splitting of any function F(s+,s ) =P(s+).
P'(s ) on the set of functions U is unique. All the
questions related to this pseudo-Hilbert space are
treated in detail in a paper to be published by Souriau
and one of us. '

The functional space X of the polynomials of the
form F(s+,s ) =P(s+). P'(s ) is then spanned by the
set of "pseudo-orthogonal" functions U(l+,l; m+, m'+,

m, m' ). Moreover, it is obvious, if we consider all the
functions U with the same given values of l+, l, that
they span inside X a subs pace H (l+,l ) which is invariant
under Bil503* and transforms under the irreducible
representation D(l+, l ) of S03~XS03*.

Finally, 'if we consider more rigorously the set of
functions U with the same given values of /+, l—,m'+,
m', they span inside H(l+, l ) a subspace, called the
level E(l+,l,m'+, m' ), which is invariant under the
left rotations SOg* and transforms under the irreducible
representation D(l+, l ) of the group SOS*.

Naturally, the assumption that transformations from
the a„&&' to the b„'&) frames are related to real possible
motions restricts us to proper Lorentz transforms. On
the contrary, as regards the transformations on the
tetrads leaving the formalism invariant, we are allowed
to make inversions acting on both tetrads together.

Such an inversion transforms the proper Lorentz trans-
form A, into another proper Lorentz transform.

Let us first consider the space inversion, which
applies to both tetrads the matrix:

We have:
A(g z) gAgg (44)

The external automorphism s —+ Ps is not included in
the group BilS03*.It is easy to show that:

Ps++s, Ps =s+.

The inversion I' induces in the functional space BC of
the polynomials the transformation defined by:

PU(l+, l ;m+, m'+—,m, m' )
= (—1)"+' + '+ ' U(l-, l+; m-, m' , m+-, m'+) (4.6)

The factor ~1 is chosen for reasons to be explained
later, (the P conjugated functions being defined to an
arbitrary constant coefficient).

Further, the time reversal employs the matrix —g, and
thus gives the same transformation Ts+ —+ s, Ts —+ s+.
But it can be shown that the correct quantization leads,
as regards the derivatives, to

T (8/Bs+) = —a/as+,

so that the T conjugation transforms JI,+ and JA,.
'+ into

—J~+ and —Jl, '+ and induces in the space 3C the trans-
formation

2'U(l+, l; m+, m'+, m, m' )
( g)

i++i=a+ na—
X U(l ,l+; —m-, —m—'—.—m+, —m'+). (48)

Finally the total imersiom, that is the I' T operation,
which simply changes the sign of s+, induces in the
space K the transformation (C conjugation):

CU(l+, l; m+, m'+, m, m' )—
( $)l++l +~ te' +m' ~n+ rn—,

X U(l+, l; —m+, m'+, —m, —m' ). —(49)

Thus the I' conjugation, and also the T conjugation,
transfer us from the subspa, ce H(l+, l ) to the subspace
H(l, l+), while the C conjugation leaves the subspace
H(l+, l ) invariant but transfers us from the level
E(l+,l; m'+, m' ) into the level E(l+,l; m'+

,
—m' ). — .

Let us now come back to our invariance statement.
We intend to generalize in a suitable relativistic way
the invariance assumed for the nonrelativistic model.
The general nonrelativistic rotation invariance gives
rise in relativistic physics to the Lorentz invariance, so
that we allow all Lorentz transforms acting on both
tetrads together. But the spherical symmetry of the
nonrelativistic structure cannot be extended in four
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dimensions, since the vector b„&4~ plays a particular role
as a four-velocity and cannot be chosen arbitrarily.
Consequently, we have to deal with arbitrary Lorentz
transforms on both tetrads considered as a block, and
in addition with arbitrary three-dimensional rotations
on the spacelike vectors of the moving tetrad. Or,
equivalently, we have Lorentz transforms on the left
and spatial rotations on the right: If A, designates a
Lorentz transform related to the point s on S3*, we
have the transformation

0 )
A, .=A„A,

0 Q„i
(50)

where 0„ is any 3X3 spatial real rotation matrix.
Thus we deal in fact not with the bilateral group

BilSZ4 ——BilSO3* studied above, but with a subgroup of
it, obtained by restricting the right translations on the
group to spatial rotations. This is finally our actual
invariance group G which is isomorphic to 524XSO3,
or equivalently to SOS*XSO3.

The condition for h Lorentz transform A, 2 to be real,

that is to restrict to the form, with 0 real, is
0

equivalent to taking

above U functions, with the aid of Clebsch-Gordan
coefficients, namely, '

' C. van Winter, thesis, Groningen, 1957 (unpubhshed).

Z(l+,l,s', m+, m, m') = P (1+,l,m'+, m'
~

',m')
m'+, fe'

X U(l+, l-; m+, m-, m'+, m'-) .(58)

The Z functions with the same given values for /+

and l lie in the same invariant subspace H(l+, l ) as
the corresponding U functions. But the Z functions
with the same given values for /+, l, s', m' split this
subspace into new kinds of levels $(l+,l,s'; m') invar-
iant under the left rotation group SOs*, which transform
under the irreducible representation D(l+, l ) of this
group.

On these new functions, we have the inversions:

PZ (l+,l,s', m+, m, m')
= (—1)' +' "Z(l,l+,s' m m+ m') (59)

TZ(l+, l,s'; m+, m, m')
= (—1) "+ ="'Z(l, l+,s'; —m, —m+, —m'), (60)

CZ(l+, l,s' m+ m m')= (—1)'++'="+~"++ = '~

XZ(l+,l,s', —m+, —m, —m'), (61)

ss+=ss =-'. (ss++ss ).

Now our infinitesimal transformations become

(51) so that we have:

PH(1+, l )= TH(l+, l—) =H(l—,l+), (62)

( n' +n'
Bs "=

i

n'+I. +- R
i

s+
PV V (52)

Ss'= Ja'++ Js',
I

and consequently the operator

S"=Sl'SI'.
We have:

(54)

LS,',S $= (ls/i)e;;pSs', LS,Jr+)=0, (56)

and S" commutes with J'+, Jl,+, SI,'. We can consider
once more six commuting operators: J'+, J3+, S", and
S3' and seek their common eigenfunctions which will
have the form Z(l+,l; s', m+,m, m'), with

J'+Z= l+(l++1)ls'Z S"Z=s'(s'+1) A. 'Z
(57)J +Z=m+AZ, S 'Z=m'AZ.

s' lies in the series l++l, l++l —1, . ~l+ —l
m' in the series —s', —s'+1 . s' —1, s'.

These results are established by a well-known
procedure on the addition of the spin operators, which
yields the Z functions as linear combinations of the

oF(s+,s )=tn'+r)~++n' r) +n"(&'++&' )$

XP(s+,s-), (53)
where n"= —'(n"++n'"' ) is real.

We are thus led to introduce, instead of J~'+ and JI,'

the operators

Ch(l+, l,s'; m') = g(l+,l,s': —m'). (63)

As stated before, let us now classify our internal
eigenstates in connection with the experimental elemen-
tary particle classification.

Following three of us, ' we accept the usual assump-
tion that the two charges conserved in all interactions,
namely, the baryon number E and the electric charge q,
are related to two operators B and Q (acting on each
eigenfunction Z(l+,l,s', m+,m, m') associated with two
gauge transforms

B,pZ(l+, l,s'; m+, m, m')
=e'~ Z(l+, l—,s', m+, m—,m'), (64)

Q,pZ (1+,1 ,s'; m+, m ,m')——
pZs(l+, l,s', m+, m ,m'), (6—5)

kiln and qP being real quantities.
This assumption facilitates the identification of the

quantum numbers. We have three operators which
perform such gauge transformations, namely, J3'+
+J,', which is equivalent, as we have seen, to a real
rotation of the Bs " + frame, and Js++Js, which is
similarly equivalent to a real rotation of the AI, &"~+

frame, and naturally their sum or difference which
both correspond to multiplication by exp(sX), with
X real.

~0 D. Bohm, P. Hillion, and I. P. Vigier, Progr. Theoret. Phys.
(Kyoto) 24, 701 (1960).
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TAiirz I. Classification of particles (ievels).

Representation —m'= $N m+ 1s m $S Q=m++m +m' Particle Levels

D(-'„0), m'=$

D(-,',0), m'= —xs

D(0,$), m'=

D(0,—,'), m'= —x

1

1
2

1
2

0
0

—1

0 Vq

e =e+
Vet

Z(„0,„.—„0,$)
Z(s~0~st skies)

Z(012&st 0)4)2)

D(1,0), m'=0

D(s, s), e'=0

D(-,',1), s'=xs m'= ——,
' (Particles)

D(1,—,'), s'=-,', m'= ——,
' (particles)

0

0

1
2
X
2

1
0

1

0
—1

2

1
1

0
0

—1

x
E+

Eo
Eo

p++
p'+

P'0

g+
y0

Z

Z(1,0,1; 1,0,0)
Z(1,0,1; 0,0,0)
Z(1, 0, 1; —1, 0, 0)

Z(s, s 0; s,k0)

Z(ho, e;
Z(1, „„
Z(1~ s~ st
Z(1 —' -'

Z(1

Q.,=Js++Js —Ss',

whose eigenvalues (always integer) are

—nz'+trt++ns =q. (67)

As we shall see later, these operators J3+, J3, 53', and

Q commute with the internal Hamiltonian and are
constants of the motion.

This leads us very naturally to identify J3+ with
I3op and J3 with ~5 since we know that their eigen-
values must be constants of the motion. This identi6ca-
tion yields the expression

Q..=Is+ sS+s»
which justices the Nishijima —Gell-Mann formula, and

Now we can tentatively identify the operator J3'+
+Js' =Ss' with —srB,o, and the oPerator Js++Js
—Ss' with Qoo, as two of the three operators providing
gauge transformations exp (iX), where X is a real
argument.

With these conventions we see that the baryon
gauge corresponds to —Ss', with integer (or half-integer)
eigenvalues —nz'=E/2, the integer E being the usual
baryon (fermion) number. The Pauli electric gauge is
then obtained by the action of:

we see that the corresponding "level" or "particle"
classi6cation recovers the Nishijima —Gell-Mann empir-
ical scheme. (See Table I) in which each line gives the
quantum numbers associated with a given "level" and
its corresponding element in the Nishijima —Gell-Mann
empirical table. '"

At this stage, we shall only stress the following
features of Table I:

(a) It ascribes isobaric spins and strangeness to
leptons, thus extending the Nishijima —Gell-Mann
scheme.

(b} It contains two kinds of neutrinos associated,
respectively, with e and p—,the existence of which is
presently assumed by Pontecorvo" and various authors.

(c) It contains an (as yet) unobserved doublet in
D(—,', 1) and triplet in D(1,~s). As we shall see later, the
fact that these multiplets are the only ones which

'"Note added frt proof. jf one accepts instead of this scheme the
proposal of Yukawa (see Appendix of Paper II) one should, write
p, rt, s, and tt instead of e+, r., ti+, and r„(in D(-'„0) and D(0, -', ))
in Table I; N of D(L1) becoming a resonance. The four basic
leptons f!,r„p, and r„are then introduced in the representations
D'($,0) and D'(0,$) of the group G'~SOeXSOs'+XSOe' obtained
by interchanging the role of L and T."B.Pontecorvo, J. Expti. Theoret Phys. (U.S.S.R.) 37, 1751
(1959).
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contain a charge 2 particle may account for their
instability.

(d) The A' does not appear in this table, but, as we
shall discuss in a following paper, it can be identified
with a isobaric spin singlet in the D(0,—,) subspace, pro-
vided that some external property differentiates it from
leptons.

(e) The table is not exclusive. Even if we limit
ourselves to representations with /+&1, we can find
"levels" belonging to D(1,0), D(0,1) or D(—'„-', ) with
m =&1. This yields the possibility of highly excited
states, some of which could correspond to recently
observed resonances.

CONCLUSION

We wish to conclude this first paper (which is based
essentially on pure group-theoretical considerations)
with some remarks on the geometrical meaning of the
variables and operators.

As was shown by Synge, "van Winter, ' and the first
approaches of the authors, " the Lorentz transform
from fixed to moving frames can be performed by a
series of elementary transformations, namely:

(1) spatial rotations which are represented by real
Euler angles pi, Oi, i',

(2) pure Lorentz transformations which can be
represented by hyperbolic rotations from one spacelike
vector to the timelike vector, and which use imaginary
arguments iq 2, i82, iipr.

It is possible to perform these six transformations in
a suitable order, such as to realize any particular.
Lorentz transformation. These six generalized Euler
angles are then a special kind of parameters labeling
the Lorentz transform. Now it can be shown that, if we
consider the complex conjugate combination

Pl+i9 2 0 01+i02 iP $1~&$2 (6g)

the three parameters lt+, 8+, iP+ represent the complex
three-dimensional Euler angle of the rotation of Bl,&"~+

with respect to Al, &"~+ in E3+, so that they can be con-
sidered as coordinates of the figurative point P on the
complex hypersphere S3~. The same holds for the three
complex angles p, 8—,iP in the space Et .

Now in the above formalism each coordinate y„of
point P splits into a real part related to a real rotation
and an imaginary part related to a pure Lorentz
transform. In particular each of the basic operators JA.,+

is related to an infinitesimal space-rotation and Lorentz
transform in a perpendicular direction.

More precisely, it can be shown the chosen third
operators are related in a very simple way to the

complex Euler angles, namely,

Je+= (pt/i)c}/8 p+, Je'+ ——(5/i)a/ctip+, (7(})

so that, for instance, J3+ represents together two
infinitesimal transformations, namely, a rotation in the
plane a„', a„"' and a pure Lorentz transform along
the vector a„&'). In the same way J3'+ implies a rotation
in b„&", b„&" and a pure Lorentz transform along b„&3).

The quantization introduced simultaneously on the
real and imaginary parts of the complex Euler angles
is therefore quite natural. It can evidently be interpreted
as expressing the very plausible statement that elemen-
tary particles correspond to internal motions in which
the T and I.frames come back periodically to the same
relative orientation. In another form, as indicated before
by one of us (L. d. B.) this is just a concrete representa-
tion of the "clock" attached by wave mechanics to
every material element.

APPENDIX I

As stated in our introduction, we shall briefly
discuss in this Appendix the question of the interpreta-
tion of our model from three different points of views.

(A) The first point of view considering elementary
particles as extended structures starts from a classical
extended model and quantizes it along the usual lines.
When we do this, however, a well-known stumbling
block appears immediately: The transition from a
classical pointlike particle to an extended structure
necessarily introduces an infinite number of new
"internal" degrees of freedom corresponding to the
extension of the particle in space. In order to treat
mathematically such an internal fieldlike structure one
must therefore, as was proposed by some of us in a
detailed study of the classical level, " abstract out of
this infinity a finite number of average collective
kinematical variables (which correspond to essential
characteristics of the internal motion) and determine
the internal energy. Such a procedure, however,
raises many difficult problems (especially in the
relativistic domain); and it will be discussed in another
paper.

Now one way around this stumbling block exists,
which has already been introduced by the authors";
namely, to describe a priori this average internal motion
by a finite number of new kinematical variables tt(r),
which are added to the usual kinematical position
variables x„(r) (r being the proper time along the
world line followed by the particle's center x„) associated
with the classical point particle. In this procedure,
which we shall now develop in some detail, one must
keep in mind two essential points:

(a) It is necessary to be very careful to use only

"J.L. Synge, Relativity, the Special Theory (North-Holland
Publishing Company, Amsterdam, 1956)."F.Halbwachs, P. Billion, and J. P. Vigier, Ann. Inst. Henri
Poincare 16, 115 (1959}.

"D.Bohm, P. Billion, T. Takabayasi, and J. P. Vigier, Progr.
Theoret. Phys. (Kyoto) 23, 496 (1960).» F. Halbwachs, J. M. Souriau, and J. P. Vigier, J. Phys.
Radium 22, 393 (1961}.



ROTATOR MODEL OF ELE MENTARY PARTI CLES

independent kinematical variables since, after quantiza-
tion, the existence of a total wave function P(i„,q, r)
describing internal and external motions implies the
existence of a representation in which x„and q are
simultaneously diagonal. This point has been stressed
in particular by Pryce" and one of us. '

(b) All these new variables q are assumed to be
functions of the proper time r of a single point x„(r),
so that we avoid all causality troubles and many-time
problems occurring in preceding theories.

As indicated in Sec. I, in the nonrelativistic domain,
where y reduces to the ordinary time t. one can add to
the classical external point Lagrangian

G), BL/—B—xs by (5/i) (c)/Bx&), (80)

we see that the generalized Schrodinger equation,
associated with the Lagrangian

L=L()+L(') (81)

the relation y„y„=1being taken into account, and it is
immediately shown it has just the expression

II(')"= (1/2I)I'

so that we immediately recover aH. the preceding
group-theoretical treatment.

Replacing moreover the "external" canonical mo-
menta

(71) becomesL (g) —g 5SXQXA;
1

(where A denotes dA/dl), an internal Lagrangian:

I (;)——~IQJ,Qk,

~here I is a moment of inertia and

(72)

(73)

represents the instantaneous rotation of the T frame
bl, (") with respect to the I frame aA, (").' The motion of
the extended particle thus represented by two frames
(L and T) centered on a moving point can be quantized
by the usual method.

If we start from the classical point of view, we know
that the evolution of our internal state can be rep-
resented as the motion of a point I' along a line 2 on
the Riemannian manifold S3. Now, as a calculation
shows (the Riemannian metric being taken into
account), the internal rotation kinetic energy

(74)T= -,'IQI, QI,
——-', It) I,

(")t)~(")
)

if expressed in terms of the coordinates y„of I' on 53,
is simply:

iPiBC/—Bl=II,~C = —(5'/2m) AC —(1/2I) I'C (82)

where C is a function of xj„y„, and t. The internal
stationary solutions of (82) are evident. Writing

C (xg„y„,t) =exp( —iE(,)t/5) q, (xi„t)F(y„), (83)

p. (xs,l) and F(y„) being external and internal state
functions associated to the internal energy E(,), we
see that relation (82) splits into an external equation

( iAB/Bt+ (h/2r—n) 6) p, (xt, l) =0, (84a)

and an internal equation

(JsA —2E(;)I)F(y„)=0, (84b)

invariant under our internal group G=Bil(5gs). Rela-
tion (84b) is evidently the internal counterpart of the
external Schrodinger equation (84a) (which is invariant
under the Galilean group) and defines stationary
internal waves which determine internal quantum
states of the structure of the particles. Moreover, any
solution Ii can be developed in terms of the functions
F(l; In'') (y„).We shall have F (y„)= Y(l; nz, m') only if

ps= ()T/Bgs =4Igp

and the classical Hamiltonian

(76)

II(') = (1/8I) p.p' (77)

The quantization replaces p„by (ft/i) (8jBy„) Fina'lly.
the quantum Hamiltonian is

II(')"=—(&'/8I)(d'/dy. ~y.) (78)
"M. H. Pryce, Proc. Roy. Soc. (London) A195, 62 (1948)."T.Takabayasi, Progr. Theoret. Phys. (Kyoto) 25, 901 (1961).» D. Bohm, P. Billion, and J. P. Vigier, Progr. 'Zheoret. Phys.

(Kyoto) 24, 701 (1960).

T=2Ij„j„=2I(ds/dt)',

where ds is the element of the line 2 on the hypersphere.
This is highly analogous to the usual expression for
the translation kinetic energy, T= —',r)s(ds/(Il)', where ds
is the element of trajectory in Euclidean space.

From this analogy the mechanical quantization is
easily deduced. 1A'e have the internal canonical momenta

I.(.) ', m(x„x„+c)———(86)

()I being a Lagrange multiplier corresponding to the
constraint x„x„=—c'), and the external relativistic
action function W(,) with

L(,)d7

2E(,)I= )s'l(l+1).

The corresponding relativistic model proposed by
one of us (JPV) also rests on the idea that the extended
particle can be represented by two kinematical frames
L(a„(&)) and T(b„(&)) centered on a moving point x„(r).

Let us 6rst recall certain well-known results of the
relativistic point-particle theory. If we de6ne the
particle's position in Minkowski space by four kine-
rnatical parameters g„(r), r being as before the proper
time along the world line followed by x„, we can define
its path by the "line" Lagrangian
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the real motion corresponding to the path

QV(,) =0. (88)

The corresponding classical and quantum motions are
evident. Classically, we introduce the canonical
momenta by

One can show, finally that x„spirals around X„ in a
motion constituting the classical counterpart of Schro-
dinger's Zitterbewegung; X„and x„playing, respectively
the part of M5(ilier's center of mass and of the center of
matter density dedned by two of us. ' Evidently' the
WeyssenhoA' equations, "

G„=()L(.)/()x„=mx„ G„=0 and S„,=G„x„G—„x» (98)

The scalar relativistic Hamiltonian then becomes

H &,) G„x„——L(,) (—1/2m)——G,G„——',mc'. (90)

G„=()L/()x„ (93)

is no longer parallel to i„, so that the rest mass

The corresponding equations -of motion then yield
immediately

6„=0 and G„G„=—c'= const; (91)

so that m corresponds to constant rest mass. As a
consequence, we see that H(, )

———mc' is also (as it
should) a constant of the motion.

The quantization can be performed along the usual

lines. We introduce a general wave function C(x„,r),
replace P(,) by ih()/—()r, and G„by i7i()„, and—thus
obtain the generalized Schrodinger equation:

—ih(ay/()r) = L
—(Is'/2m) —-', mc']g. (92a)

Introducing then stationary solutions of the form

exp( —i mc rs/ )It((p, (x„) into (8), we see that q, (x„)
must satisfy the usual Klein-Gordon equation:

(H —p') (p, (x ) =0 with y'= m'c'/5'. (92b)

The factor exp( imcsr/5) —is just the "beat" of the
"clock" associated by one of us (L. de B.) with every
particle since the very beginning of wave mechanics.
We know, moreover, that the field p, (x„)must evidently

be invariant under transformations of the Lorentz
group 4, and, therefore, associated with its 6nite
dimensional representations. We shall discuss this point
later in paper II.

Now, as indicated in Sec. I, the transition from
pointlike to extended particles can be performed by the
introduction in the Lagrangian of new internal variables

q (&)(r). As a consequence one discovers, in general,
that

b„(&)b,(&)=co„„=B„u,—8,u„. (100)

Another frame appears immediately if we consider,
besides the internal current density, the interval corI-

served energy-momenturfI, desi ty:

esp (with ()„lpga= 0), , (101)

for we can take its values at the point x„. t„„(x ) defines
a frame a„(&) studied in particular by Lichnerowicz"
(called L frame for short), defined by the relations:

(102)t„„g (5) =s(5)g (5)

where s(&) denote the usual dilatation coeScients. These
two frames u„(&) and 0„(&) we tentatively introduce as
new internal kinematical variables.

Now the basic physical assumption made here is to
assume that the internal Lagrangian depends only on
the relative orientation of the 1and L frames through
the expression 4Ico pcs p, where co p expresses the relative
instantaneous rotation of T with respect to L:a rotation
which can be expressed in terms of the complex variables
z„+, z„on the sphere S3*. This means that in the L
frame we have (writing b„(&) as functions of z„+ so that
the orthonormality is automatically satisfied):

correspond to the invariance of L under the displace-
ment and Lorentz groups.

As proposed by one of us, a first group of internal
variables appears immediately. If we assume with two
of us (D. B.and J. P. V.) the existence of an internal
conserved current desi ty:

gp= ps(s (with ()spy=0),

we can introduce, if the particle is small enough, a
frame b„(&) representing its instantaneous rotation
around x„. This Takabayasi frame, or T frame, is
defined by the well-known relations:

(94)G„i„=—.nsc' L =L(.)+L,(;)=-,'m(x„x„+c')
+ sl(d~()o) p+o( f)„x» (103)

is no longer equal to the inertial mass

G„G„=—M'c'.

Moreover, the point X„defined by

X~—x„=(1/M'cs) S„„G.
(104)

(96)
» D. Bohm and J. P. Vigier, Phys. Rev. 109, 1882 (1958).
~ T.Takabayasi, Progr. Theoret. Phys. (Kyoto), 23, 915 (1960).
@ J. WeyssenhoB and A. Raabe, Acta Phys. Poion. 9, 8 (1947).
~ T. Takabayasi, Nnovo Cin)ento, 13, 532 (1959).
IA. Lichnerowicz, Ann. ecole normale supdrieure 60, 247

(1943).

describes, in general, a straight world line parallel to
G„, 5„„indicating the internal angular momentum:

(95) where m and n&"' are Lagrange multipliers (variable in

principle) which imply the relations
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x„=icb„(4) (s)

Introducing then the canonical momenta

(105)

and

we get

G =mx+(r')h (')(s)

II,.=()L/()s+,

(106)

(107)

H= smxpxo smc +H(g)
= (1/2m) (G„G„—(r (")n("))—-,'mc'+H .

= —mc'+H(;).

(109)

(110)

Now H(, ), containing only 2„+, evidently has a
vanishing Poisson bracket with H and is a constant of
the motion. Relation (109) therefore implies that
arm(G„G„—(r(")n("))—ismc' is also a constant of the
motion, so that if we note that it is equal to —mc'
Las a consequence of the squaring of (106)j, we see
that the rest mass G„i„=—mc' and n("&n(") are separate
constants of the motion. The existence of the supple-
mentary constant m results from the invariance of I.
under the one-parameter Abelian group of pure Lorentz
transforms along icb„(4'. All the other constants dis-
covered are evidently related (as they should" ) to the
invariance of I under the translation and G trans-
formations.

The quantization of internal motion is now straight-
forward. Writing

II= i hr)/()t, G„=——itic)„,

II;= i fir)/()s+, —

we get, introducing the total wave field C (x„,s„+,r)
(representing simultaneously the x„distribution and
the L T frame orien—tation),

i' =
~

—mc'+ fJ'++—J' ) ~(t-.
)o~ k 2I

(112)

Relation (108) and this general internal equation (112)
yield, if we insert the form

4 =exp( —iMc'r/)s) (o, (x„)F(s+,s ),

the two fundamental relations:

—(M'c'/5') ](o, (x„)=0

(H(,)++H(;) —W)F(s+,s-) =0,

(114a)

(114b)

G G =m'i x„+n(")(r(")= —M'c'= const, (108)

a,nd (with H=pq L):—

Relation (115) is evidently the internal counterpart
of the second order Klein-Gordon equation, relation
(114a) describing the radial motion of x„. As to the
symbolical substitution II,+= —i58/c)s+, we know that
the correct quantization must be performed by the
substitution of commutators to Poisson brackets, but
one sees easily that this procedure leads to the same
results.

Ke shall not discuss this model here in more detail.
(B) Now it is clear that the preceding interpretation

still contains many unsatisfactory aspects (though it
follows step by step the usual presentation of quantum
theory) since it leaves open, for example, the problem
of the justification of the quantization procedure. In
the opinion of two of the authors (D.B. and J.P.V.) a
much deeper physical interpretation, which incorporates
immediately all results obtained in paper I, can be
obtained by starting directly from a field point of view
Indeed one can represent the vacuum of subquantum
mechanical level by a space-time net of points related
by 0-length light rays. Each vertex of such a net has
three incoming light rays (equivalent, as Synge" has
shown, to a four-frame L), and three outgoing light
rays in the forward time direction. Since these outgoing
rays are also equivalent to a four-frame T, see that
such a model can be assumed to be invariant under the
external group L4(x„) defined at each vertex x„, which
rotates I. and T as a block with respect to an arbitrary
laboratory frame, and also under our internal group G
of relative I.—T motions. Since we further know that
if the vertex system is dense enough, L4(x„) is, as
Coish'4 has shown, physically equivalent to the usual
Lorentz invariance, such a model, if endowed with
chaotic "vacuum" or background Quctuations, carries
regular quantized excitations which can be classified
according to the results of paper I.

- The development of this point of view will be
published later. Preliminary investigations of one of us"
show that such a theory can justify the quantization
procedure.

(C) Finally the authors, following an idea of Profes-
sor Geheniau, have recently discovered that their new
isobaric group G can be introduced within the frame of
the line of thought initiated by Pauli'6 and Heisenberg, '7

as a possible gauge group for a generalized nonlinear

Heisenberg equation. To show this, let us brieRy recall
Heisenberg's ideas.

Let us start with a wave field X,~ which transforms
as K)(ts,0) under SL4, and as D(rs) under SOs, and
satisfies Heisenberg's equation:

(116)

being a constant of the motion. Consequently we write

(J'++J' )F(s+ s ) = WF (s+,s ). (115)

24 H. R. Coish, Phys. Rev. I14, 383 (1959).
» D. Bohm, in Q»ar)t»ra Theory, edited by N. R. Bates (Aca-

demic Press Inc. , New York, 1962), Chap. 6."W. Pauli, Nuovo Cimento 6, 204 (1954).
"W. Heisenberg, Revs. Mod. Phys. 29, 269 (1957).
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where o-" are the four-dimensional Pauli matrices. The
introduction of parity in the theory can be obtained by
the introduction of a new index r=I., 2, namely, the
substitution of X,~, to X,~, that is X,~~ transforming as
X)(-,',0) under SL4, and Xgg2 transforming as $(0,—,')
under SL4. Relation (116) is then replaced by the
system

with
Z'=QZ, (120)

(121)

composed with two independent complex vectors. We
shall now submit this manifold to the transformation

O' B„Xi=Pa Xi(Xi 8&Xi)& (117a)

with
0 l3yX2 =PoX2 (X2 O''PX2)

1

0 =04.

(117b)

APPENDIX II

In this paper we have used as an invariant internal
isobaric group the four-dimensional complex rotation
group SO4* acting on the complex sphere S3* taken as
the configuration manifold. Moreover we have utilized
simultaneously as independent variables the two
complex conjugate points s and s* on this sphere. This
raises the following well-known difhculties. First, two
conjugated variables are not independent. Secondly,
any complex rotation performed on the sphere destroys
the complex conjugation between two conjugated points
s and s~. The formalism used in Sec. II is nevertheless
correct and can be justified in the following way.
Let us consider the direct product of two independent
four-dimensional complex spaces C4+ and C4 and the
direct product of two spheres taken in each space,
namely S3+)&S3 . This will be a six-dimensional
complex configuration manifold, the fundamental
variables being represented by the column

A further generalization is finally obtained by
replacing X„„byP„„where r is an index in isospace
which enables f to transform like a Dirac spinor in
isospace. f„„thus transforms according to D(—'„0) or
D(0,2) in isospace and satisfies the relation

(118)

where P=P*P and r" are the Pauli matrices in isospace.
One sees immediately that the new gauge group
coincides with G so that by the usual "fusion" procedure
one obtains all internal states of our classification.

~ being any elements of SO4* acting on C4+ and or~ tkie

complex conjugated transformation which acts on C4 .
We now see that the variables s+ and s are truly
independent so that we can use partial derivatives with
respect to s+ and s and consequently the two independ-
ent operators J+ and J . Now we can build without
ambiguity the functional space of the functions Ii(Z)
defined on S3+XS3 . However, the variables Z with six
complex degrees of freedom do not represent a Lorentz
transform, unless s+ and z are mutually conjugated.
Ke must therefore consider the intersection of the
manifold S3+)&S3 with the surface 0. defined by

(122)

and take the traces of the functions F(s+,s ) on this
intersection, S3+XS3 /0, which is now our genuine
configuration manifold. This manifold is obviously
invariant under the transformations 0 (which build
our invariance group) so that the above-mentioned
difhculties no longer arise.

This result can be interpreted physically in the follow-

ing way. The general point Z on the manifold S3+)&53
represents a transformation of the group S04* which
contains the Lorentz group as the subgroup correspond-
ing to the product of two conjugate complex three-
dimensional rotations, that is to the preceding intersec-
tion S3+XSz /0. . As Einstein and Mayer" first pointed
out, the transformation from one sphere to the other
corresponds to the transition from covariant to con-
travariant tetrads in real Lorentz space (or i ~ i-
transformations in Minkowski space) as they are
related, respectively, to self-dual and antidual skew
tensors. Independent motions on both spheres would
amount to independent variations of covariant and
contravariant quantities, something that never happens
in real physical space.

(119) '8A. Einstein and M. Mayer, Sitzber Preuss. Akad. Wiss.
Physik. -Math. Kl. 522 (1932).


