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Negative Pion Capture in Heliuln*f
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The capture rates of negative pions in He' into the three modes t+n, d+2n, and p+3n are calculated
phenomenologically, using a two-nucleon capture model. The amplitudes which appear in the phenomeno-
logical interaction are evaluated by a comparison with the pion production cross sections; and the capture
rates are compared with experiment. The calculated ratio of the triton mode to all captures within the
energy range observed by Schiff, Hildebrand, and Giese is 30%, which is in good agreement with the experi-
mental ratio of 1/3.

1. INTRODUCTION

ECENTLY an experimental study of the capture
of negative pions by helium was made by Schiff,

HiMebrand, and Giese which was in striking disagree-
ment with an earlier work by Ammiraju and Lederman. '
The reactions involved are

(a) sr=+He' ~ t+rt,

(b) sr +He'-+ d+2rt,

(c) sr=+He' —+ p+3ts,

where t, d, and p are tritons, deuterons, and protons
Schiff, Hildebrand, and Giese, who studied the reactions
in a hydrogen bubble chamber containing dissolved
helium, found that the triton mode (1.1a) occurred in
about 1/3 of all events whose prong ranges were be-
tween 5 and 110 mm (corresponding to proton energies
of 7.2—38 MeV and deuteron energies of 9.9—53 MeV);
whereas Ammiraju and Lederman, who reported a total
of 60 events in a helium-filled diR'usion cloud chamber,
found that this mode occurred at most once among their
events. Ammiraju and Lederman inferred that their
result was in qualitative agreement with the two-nucleon
capture model originally introduced by Brueckner,
Serber, and Watson, ' which assumes that the mechanism
for pion capture is

7r+X+ jV -+ jV+ jV. (1.2)

In a later theoretical paper, Ammiraju and Biswas4

argue that the triton mode is very unlikely as a result of
the two-nucleon capture model. In earlier quantitative
calculations, based on a one-nucleon capture model,
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Petscheks predicted that it should occur in 22% of all
events; and Clark and Ruddlesden' predicted a ratio of
3% This difference in their results is mainly due to the
fact that Petschek used a He4 wave function of average
kinetic energy 130 MeV, whereas the wave function
used by Clark and Ruddlesden had an average kinetic
energy of only 48 MeV; as a consequence, the He4 wave
function of Petschek is much larger at the kinetic
energies of the triton mode. Indeed, substitution of the
Clark and Ruddlesden wave function in Petschek's
calculation resulted in a triton mode ratio of only 2%
However, these earlier calculations should perhaps not
be taken too seriously, since the two-nucleon capture
model has been quite well verified experimentally. '

Because of these experimental and theoretical incon-
sistencies, it was felt that a calculation of the capture
rate of negative pions in He4, using the two-nucleon
capture model, would be of interest. In addition, the
simplicity of the He4 nucleus makes a quite complete
analysis possible, and thus it affords an attractive
opportunity to check the validity of the two-nucleon
capture model.

In Sec. 2, a discussion of the phenomenological scat-
tering matrix is given. The details of the calculations of
the capture rates are found in Sec. 3; and in Sec. 4, re-
sults, comparison with experiment, and a discussion of
the approximations used are given.

2. THE MATRIX ELEMENT FOR PION CAPTURE

The pion capture rates in helium were calculated
phenomenologically. ' The effective Hamiltonian has the

' A. G. Petschek, Phys. Rev. 90, 959 (1953).
e A. C. Clark and S. N. Ruddlesden, Proc. Phys. Soc. (London)

A64, 1060 (1950).
A partial list of references on this point is as follows: S.Ozatu,

R. Weinstein, G. Glass, E. Loh, L. Niemala, and A. Wattenberg,
Phys. Rev. Letters 4, 533 (1960); M. S. Kozodaev, M. M.
Kulyukin, R. M. Sulyaev, A. I. Fili pov, and Yu. A. Scherbakov,
J. Exptl. Theoret. Phys. (U.S.S.R. 38, 409 (1960) Ltranslation:
Soviet Phys. —JETP ll, 300 (1960));N. I. Petrov, V. G. Ivanov
and V. A. Rusakov, J. Exptl. Theoret. Phys. (U.S.S.R.) 37, 95'7
(1959) Ltranslation: Soviet Phys. —JETP 10, 682 (1960)g; J. V.
Laberrigue-Frolova, M. P. Balandin, and S. Z. Otvinovskii, J.
Exptl. Theoret. Phys. (U.S.S.R.) 37, 634 (1959) (translation:
Soviet Phys. —JETP 10, 452 (1960)7; F. H. Tenney and J.Tinlot,
Phys. Rev. 92, 97'4 (1953); H. Byfield, J. Kessler, and L. M.
Lederman, ibid. 86, 17 (1952).

An identical approach was used to describe the inverse process
of pion production by L. Wolfenstein, Phys. Rev. 98, 766 (1955).
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form

Bceff= d stld 202@'N (stl)QNt (+2)31I4'N(tel)pN (a2)]y (2 1)

where le(x) is the nucleon operator

(4 o(~)
~f N(a) =

I

&4-(*)
(2 2)

Assuming that the pions are captured from s states
only, ' and using a zero-range approximation, the most
general form of DR will be

BR=Q~ [g0+-2 (~l—~2). f12 (frl+ frz) ks (1+P,2 )
+el+-'(~4+~2). 412 (~l—~2) k

X-,' (1&Plz )73(xl—xs), (2.3)

where fl = fl (xl) is the pion operator; ~l and ~2 the isotopic
spin operators of the two nucleons; sr~ and c2 the spin
operators of the two nucleons; k= ——,'i(VN, —VN, ) is

the relative momentum of the two final-state nucleons;
Plz'=-', (1+el ~2) and Pls'=-', (1+f22 frs) are operators
which exchange the isospin and spin of the two nucleons;
and g0+, gl+ depend only on the magnitude of k; how-
ever, in the following, this k dependence will be assumed
to be negligible, and gp+, g~+ will be treated as constants.

In the helium nucleus, which is the initial state under
consideration, aH of the nucleons are in s states, so that
each pair of nucleons is in a spatially symmetric state.
Therefore, the spin and isospin part of their wave func-
tion is antisymmetric, so that —2'(frl+frz). k'2(1+P»')
and 2 (~l+~2) $2 (1+Pls') contribute zero when acting
on the initial state. Thus, the only terms which need be
considered are (after a slight rearrangement)

2 (1+Pl2 )-,' (1+Pls )[&0=2' (frl+frz) .k-', (2,—'22) 11

+ -l( — ) kl( + ) fi]( —.). (2.4)

When the matrix multiplication of the isospin part of
3C ff is carried out explicitly, and only the terms relevant
to negative pion capture are retained, (2.1) becomes

x.ff ———V2 d'xld'x23(xl —x2)y ([——2'z(v„—v„)fp„t(xl)fp„t(x2)72(1+Pls )

[g0 2 (frl+ f22) +gl 2 (frl fr2)]fpo (xl)fpn (x2)+[ 22 (Vx~ Vx4)11'ot (xi/'nt (x2)]2 (1+P12 )

[gl 2 (~l—o2)711"(»)4.(»)} (2 5)

The first term in the curly brackets of (2.5) induces
the reaction zr +P+fz~ n+fz. If the initial nucleon
state is 'Sp, the only available final state of correct
parity is Pp, and if the initial state is S&, the final state
is 'P&. It may be noted that gp

—is the amplitude for the
transition Z=O —+ I=1, 'S~~'P~,' and g~ the ampli-
tude for I= 1 ~ I= 1, Sp ~ Pp. Similarly, the second
term in (2.5) induces the reaction zr +p+p~ fz+p.
Because of the exclusion principle, the only initial S
state is 'Sp, and the final state available is 'Pp. As a
result of charge independence, the amplitude for this
transition is also g~ .

The evaluation of the matrix element (flX,ffli} is
carried out using a relationship given by Pock."Con-

sider the state vector IC'} of a system of E fermions

Ic')=(&) '" 0(» xN)4 "(»)

Xfpt(xN) I
0)d'xl .d'xN. (2.6)

It follows that

~l(x) IC')=[&/(& —I)!]'" 4(x,xl »-l)

Xfpt(xl) pt(xN l) IO)d'xl . d'xN l. (2.7)

Using (2.7) to evaluate the matrix element for pion
capture in He4, it is found that

(fl Xeff I z) = (6/ffz )'" d'xlfPxzd'gd'27 8(xl—x2)px(xl) (2[——',z(Vx, —Vx,)yt*(g; xl)x2)27)72'(1+Plz')

[go 2 (frl+fr2)+gl 2 (frl fr2)74'(g, xl
& x2,27)+[—2z(v» —vx, )pf*(xl, xz, g&27)]2 (1+P„')

Lg l( — )74.(, ;4,n)), (2g)

where g, (gl, (2, (2, $4) is the He' wave function of two
protons with coordinates gl, $2, and two neutrons with
coordinates $2, g4', @f(gl', (2,(2,$4) is the final-state wave

The function B, defined by Wolfenstein, is identical with
(2)-1/mg0-

The rate of pion capture from p states is only a few percent of
that from s states. See G. A. Snow, Proceedzngs of the 1960 Anneal

function of one proton with coordinate gl and 3 neu-
trons; and p (xl) is the pion wave function relative to

Imternatiorial Corifererrce on High-Erlergy Physics at Rochester
(Interscience Publishers, Inc. , New York, 1960), p. 407; and also
remarks by Bethe in same reference.

'o V. Fock, Z. Physik 75, 622 (1932);R. Becker and G. Liebfried,
Phys. Rev. 69, 34 (1946).
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the center of mass of the He4 nucleus. The spin indices
have been suppressed throughout, but the notation is
obvious: e; refers to the nucleon whose coordinate is x;.

The He4 wave function may be written as a product of
a spatial and spin wave function. Since both the neutron
pair and the proton pair are in singlet states

@,(1,2; 3,4) =g, (xg,xs)xs, x4)x'(1,2)y'(3, 4)) (2.9)
where xs is a singlet spin wave function and g;(x~ x4)
is symmetric in all four variables.

The final-state wave function is antisymmetric in all
three neutron variables. Therefore Py(1; 2,3,4) may be

written

v=1

XP.F(&xi &s,gs, g4)x(1i 2,3,4), (2.10)

where P. is one of the six permutation operators of (234)
and (—)~" is the sign of the permutation.

After substituting (2.9) and (2.10) in (2.8) and using
the symmetry of g, (x& x4), the expression for the
matrix element simplifies to

&f1&.«li)=2xt(»»34)[(J4+Ps4 Js+Ps4'Js)(1+P»') {gs s(&s+o's)+gt k(o's o's))

where
+(Ks—P» Ks—Ps4'K4) gt s(~i—~s)jx'(»2)x'(3 4), (2 11)

J,= (no~) '" d'xt . d'x45(x& xp)P~(xs)[ —ss(px& —px&)F (x» x&,xs,x4)]$, (x&&xs,xs&x4)~

K;= (m~) '" d'x& d'x48(x& —x;)g~(x&)[—-',s(z» —p', ,)F (x» x&,xs,x4)]d;(xr)xspxs)x4)p

(2.12)

where (jhow) is a cyclic permutation of (234).
As a result of the exclusion principle, which was used

in the antisymmetrization of the final-state neutrons,
the matrix element (2.11) contains terms corresponding
to the capture of the pion by each pair of nucleons in the
He nucleus. Therefore, even though go and g~ are
amplitudes for transitions of different total angular
momentum in the "free" reaction ~+X+X—+ 1V+X,
the capture rates will contain cross terms in go ~g~ be-
cause of interference between capture by different sets
of pairs. Part of these cross terms would appear even in
the absence of the exclusion principle, since they are due
to interference between capture by a p —p pair and an
e—p pair. Additional cross terms will appear in the
triton and deuteron modes, because in these modes the
6nal spin state is partially correlated, so that not all
possible states contribute in the summation over final
spin states.

3. CALCULATIONS OF CAPTURE RATES

A. The Mode f+n
The wave functions of the He4 and H' nuclei were

chosen so as to lead to the nucleon distributions
measured by the Stanford electron scattering experi-
ments. It was found that the nucleon distribution in the
He4 nucleus is well fitted by a Gaussian shape of rms
radius R=R4= 1.44~0.07 F."Therefore, the He4 wave
function was chosen to be

y, (x~,xs,xs,x4) =X.exp[ —-', )t Q (x;—x;)'j, (3.1)

where)%, =9/(32R4') and 1V is a normalization constant:

"R.Hofstadter, Revs. Mod. Phys. 28, 214 (1956).

N '= V '(169/s')' ' and where V is the normalization
volume.

Similarly, electron scattering data on He' show that
the nucleon distribution of the nucleus is well 6tted by a
Gaussian shape of rms radius R=R3=1.65~0.12 F."
Assuming that the nucleon distribution in H' is the
same as that in He', the H' wave function was chosen
to be

p, (xt,xs,xs) =X& exp[ ——,')t' P (x —x )') (3 2)

where X'= (3Es') ' and XP= V '(3V'/s')' '.
The wave function for the state t+«, is given by

(2.10) where we use (3.2) for the triton wave function
and a plane wave state for the neutron

F'(xt, xs, xs, x4) = (2V) '"P&(xJ)xspx4)

Xexp[iq. -'s (x&+xs+x4)+ip xsj,'
(3.3)

x'(1; 2,3,4) =x'(3,4)x(1,2)
= —', (1—Ps4') x (1,2,3,4),

where q is the triton momentum and y the neutron
momentum; x'(3,4) is a singlet spin function; and

x(1,2) and x(1,2,3,4) are arbitrary spin functions.
The wave function used for the pion was that of an

s-state Bohr orbit of He4. Since the variation of this
wave function over the dimensions of the He4 nucleus is
very small, it was replaced by its value at the origin.

The capture rate into the mode t+e was then found

by substitution of (3.3) into (2.11)and (2.12), and using
the "golden rule, "

iV=2~ EI(f1~ «Ii) I't'(F-' F~)pi (34—).
"R. Hofstadter (private communication).
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momenta p& and p2 only, The result is

dW. (e) =dc L(l go I'+3I gt I'+2 «gs *g )W

+(Igo I'—lg I'+2«go *g )W
+ lgo I'Ws+2 «gs *gt—W4), (3.8)

where the 8', are functions of q, and are shown graphi-
cally in Fig. 1.The function t/t/ & corresponds to captures
in which one of the participating nucleons is bound in
the deuteron; g 3 corresponds to those captures in which
the free neutrons are the participants; 8 2 is a cross
term in the sense that it is due to interference between
those cases in which one participant is bound in the
deuteron, and the other participant is one or the other

.8 1.2 1.6
Momentum in fermi"

2.0

FIG. 1. The functions W, (q) which appear in the expression for
the deuteron momentum spectrum (3.8).

B. The Mode d+2n

The wave function for the state d+2N was chosen as
a product of plane waves for the free neutrons and a
deuteron wave function. Thus, using (2.10),

F (Xt, Xspxs)X4)

= V—
'yg(~ x,—xs()

(3.6)
XexpLipt xs+ips x4+itl -', (xt+x,)g,

x'(1'2,34)=x'(1 3)x(,4)=s( +»')x(, 2, ,4),

where q is the deuteron momentum, p& and p2 are the
neutron momenta; x'(1,3) is the triplet spin function of
the deuteron, and x(2,4) and x(1,2,3,4) are arbitrary
spin functions. The deuteron spatial wave function,
pd(r) was chosen as"

gq(r) =Xq(exp( 0 232r) —ex.p( 1—.202r)]—/r, (3.7)

where Ed is a normalization constant, and r is given in
fermis.

The momentum spectrum of the deuteron is found by
integrating the capture rate of this mode over the

"M.J. Moravcsik, Nucl. Phys. 7, 113 (1958).

A discussion of the integrals involved in this calculation,
as well as the integrals involved in the calculation of the
capture rates of the other modes will be found in Ap-
pendix A. The result is that the capture rate into the
mode t+ts is

Wp= ~gs +gt-~'E 'E 'V'(rPnz ) 't@.(0) ~'2(6)'"s'
Xm(mh, )' ' expL its~&/3(2)+X )3

XP(2)t+)t') (X+—'X')) 'L1+—', X'/ (2K+h') j'
=9 68lgo +gt I'X10'sts-s sec ', (3 3)

where m is the nucleon mass, m the pion mass, h~
=118.1 MeV is the energy release in this reaction, e is
effective radial quantum number of the Bohr orbit
from which the pion is captured; and the g; are given
in F4.

C. The Mode P+3n

Up to this point we have not taken 6nal-state
interactions into account because, in the modes t+n and
d+2ts, the relative momenta of the final-state particles
would seem to be sufficiently high so that the effect of
6nal-state interactions wouM be negligible. However,
the eGect of 6nal-state interactions is expected to be
quite important in the mode p+3ts, because in this case
there are tao bystanders of low relative momentum,
which should interact quite strongly. Since the partici-
pants have high momenta, it would appear logical to
choose a 6nal-state wave function which is a product of
plane waves for the participants and an interaction
wave function for the bystanders. However, use of such
a wave function would be inconsistent with the correct
antisymmetrization, since the bystanders and partici-
pants exchange roles under antisymmetrization. The
only consistent way of taking final-state interactions
into account would seem to be to take a final-state wave
function of four mutually interacting particles. Since
this is rather dificult to carry out, the matrix element
was 6rst calculated using a product of plane waves as
the wave function; then the relative wave function of
the bystanders in the matrix element was replaced by
the correct interaction wave function.

Thus, the matrix element was first calculated using
the free-particle wave function

4

F~(xt, xs,xs,x4) = V ' exp (i P p,"x,), (3.10)

of the free neutrons —thus this term is entirely due to
the antisymmetrization of the final state; similarly, t/I/4

is a cross term due to interference between the cases in
which both free neutrons are participants and only one
free neutron is a participant. lt should be noted that the
factor 2 Rego *g~ which multiplies 8~ is due to the
fact that the 6nal spin state is correlated —i.e., the
deuteron has spin 1.

The total rate for capture into this mode is found by
integrating over the deuteron spectrum. The result is
that the total capture rate is

Wq ——27.5L1.31lgs I'+Igt I'+1.19 «gs *gt g
X10tsts ' sec ' (39)
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where the y; are the momenta of the final-state nucleons.
This wave function was substituted in the expression for
the matrix element (2.11) and (2.12). Then, in the
integral J;, for example, the bystanders are labeled by
the indices (1,j). The function F"(xi, xs, xs, x4) may be
rewritten as

V ' exp(iy„xi, +iyi. xi)

X U
—' exp)-', i(yi+y;) (xi+x;)]

Xexpt-,'i(yi —y;) (xi—x,)7. (3.11)

0
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The s-wave part of the relative wave function of the
bystanders (which is the only part which contributes
to the integral) is (pr) 'sinpr, where y=is(yi —y;),
r= (xi—x;). This function is replaced by that inter-
action wave function f~(r) whose asymptotic form is

(pr) ' sin(pr+8). The correct interaction wave func-
tions were found in the following way: The amplitude
go describes capture from an I=O state. Therefore the
bystanders are also in an I=O state, so that their
configuration must be 'Si', the corresponding f„(r) is the
solution of the Schrodinger equation in a '5~ potential.
Similarly, the amplitude g& describes capture from an
I= 1 state, so that the bystanders will be in an I= 1, '$0
configuration, with a corresponding f„(r). These wave
functions were found by solving the Schrodinger equa-
tion with square well potentials, whose parameters were
chosen to agree with the scattering lengths and effective
ranges known from nucleon-nucleon scattering. "

The results of these calculations were as follows: The
total capture rate for this mode in the absence of final
state interactions was found to be

W~(free particles)
=23.6L[gs ]'+ [gi ['+0.605 Regs *gi]

X10"is ' sec '. (3.13)

After making the above corrections for final-state
interactions, the total capture rate was found to be

W~(interacting bystanders)
=23.6L0.19~go ~'+1.20~gi ~'+0.29 Regs *gi ]

X10"is ' sec ' (3.14)

Comparison of (3.13) with (3.14) shows that the 'Si well
causes an 81% reduction in the relevant term of the
capture rate, whereas the 'Ss well causes a 20%%u~ en-
hancement. The reason for the large reduction of the '5~
capture rate is that the state for which the bystanders
are bound in a deuteron is implicitly included in the
sum-over-states of the plane wave calculation, but does
not, of course, appear in the final-state interaction
calculation.

Because of the approximation method used, it is
dificult to evaluate the effect of the cross terms. How-
ever, a plausible order-of-magnitude estimate is ob-

'~ M. J. Moravcsik, Ann. Rev. Nucl. Sci. 10, 324 (1960).The
corresponding square-well potential parameters are: V,=14.3
MeV, b, =2.56 F, Vg=36.5 MeV, bg=2.00 F, where V is the po-
tential depth and b the range of the potential.

Io
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l.6 2.0

Fro. 2. The functions V;(p), V (p) which appear in the ex-
pression for the proton momentum spectrum (3.16). Vs'(P) is the
estimated function, as discussed in Appendix A.

4. RESULTS AND DISCUSSIONS

In Appendix B the absolute squares of the amplitudes

go and g& are determined by a comparison of the ex-

tained by multiplying the coeKcient of Rego *g& in
(3.13) by the square root of the product of the two
correction factors for the direct terms. This leads to the
cross term given in (3.14).

The proton momentum spectrum is needed in order to
be able to compare the ratios of the capture rates with
experiment. However, since f~(r) is a function of the
relative proton-neutron momentum, it is rather difficult
to evaluate the absolute momentum spectrum of the
proton accurately when final-state interactions are
taken into account. Therefore, the spectrum was esti-
mated simply by normalizing the various terms in the
momentum spectrum calculated without interactions in
the final state in such a way that the total rate agreed
with (3.14).

When final-state interactions were neglected, the
proton momentum spectrum was found to be

d~ (p)=dp (Igo I'Vi+'lgi
X(Vi+ Vs —Vi' —Vs'+2Vs']

+2 Regs *gi LUi'+ Vs'7}, (3.15)

where U, a,nd V are functions of the momentum p, and
are shown graphically in Fig. 2. The function V&

corresponds to captures in which the participants are
both neutrons, ' V2 corresponds to captures in which the
final-state proton is a participant; V»' is the cross term
due to interference between captures in which two
different pairs of final-state neutrons are the partici-
pants, ' V2' is the cross term due to interference between
captures in which one of the participants is the final-
state proton and the other participant is a different
neutron in each case; and V3' is the cross term due to
interference between captures in which the final-state
proton is a participant and those in which it is a
bystander.
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perimental cross sections of the inverse reaction of pion
production with the theoretical cross sections. It is
found that

lgo l'=0.32 Fs'
g& I

'= 0.29 Fs ' (4.1)
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FIG. 3. Deuteron momentum spectrum.

go =~lgo lexl Ct&('&~)3

e =~lg~ lexlCt~('&o)3,
(4 2)

where 5('E~) and 5('Eo) are the nucleon-nucleon phase
shifts for c.m. energy 140 MeV. These phase shifts have
not been unambiguously determined, but their differ-
ence is known to be small (about 20'), '4 so that go and

gi are, to a good approximation, relatively real. In
order to determine the relative sign of the amplitudes,
the total capture rates were calculated by substituting
thevaluesof lgo

—l'and lg~ l'in (3.5), (3.9), and (3.15),
and assuming that the difference in phase is either zero
or 180'. For go and gi relatively positive, the capture
rates are

W& ——11.9&(10" n' sec '=22% of total,

W„=29.7+10"n—' sec '=56%%u of total&

W~= 11.8&(10' n. sec =22% of total.

For go and g& relatively negative, the results are

H/'(=0,

Wq ——9.4)&10"n ' sec '=55% of total,

W„=7.6&(10"n ' sec '=45% of total.

(4.3)

(4.4).

The experimental result of Schiff et a/. is that the t+n
mode occurs in about 1/3 of all captures in the energy
range which they observed, so that it appears that (4.4)

a,nd within experimental accuracy these amplitudes are
equal in absolute value.

Under the assumption of time-reversal invariance, the
phases of these amplitudes a,re identical with the
nucleon-nucleon scattering phase shifts, i.e.,

t+n: d+2n: p+3n =30%: 54%: 16%, (4.5)

which is in good agreement with the experimental ratio
of tritons to all captures of 1/3.

In addition, the deuteron and proton momenta
spectra were transformed to range spectra by use of the
range-energy relations in hydrogen; in Fig. 5, these
range spectra are added and compared with the experi-
mental range spectrum. The experimental and theo-
retical spectra appear to be in fair agreement.

The calculated ratio of captures in the triton mode to
all captures does not depend very sensitively upon the
assumed rms radius E3 of the nucleon distribution in
H'. For example, an increase in R~ from 1.65 F to 1.70 F
causes a 10% decrease in the capture rate of the triton
mode, and a, decrea;se of Ea to 1.60 F ca,uses a 10% in-
crease in the capture rate of this mode. However, the
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FIG. 4. Proton mo-
mentum spectrum, esti-
mated as discussed in
Sec. 3.

ratio of the capture rate of the triton. mode to all cap-
tures changes by only 2%: for Rz ——1.70 F, this ratio
changes from 22% to 20%, and for Ra ——1.60 F, the ratio
becomes 24%.

is inconsistent with experiment, and go
—and gi are

relatively positive, ' thus these amplitudes are equal
within experimental accuracy. This is quite suggestive:
Perhaps the nature of the pion-nucleon interaction is
such that these amplitudes are required to be equal. In
Appendix C it will be shown that, to the extent that the
nucleon-nucleon interaction is due to the exchange of
p-wave pions, this is, indeed, the case.

The deuteron and proton momenta spectra can now
be found; they are given in Figs. 3 and 4. These spectra
have double humps: the "slow" hump corresponds to
captures in which the proton or deuteron is a bystander,
and the "fast" hump corresponds to captures in which
the proton or a nucleon bound in the deuteron is a
participant.

In order to compare the results of this paper directly
with the experimental results of Schiff et al. , the deu-
teron and proton spectra were integrated over the range
of observed energies. Within these ranges, the calculated
ratios of the three modes are as follows:
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This ratio is also very insensitive to the ratio of
amplitudes gs /gt ——x (if it is assumed that the ampli-
tudes are relatively positive). In fact,

9.68 (1+x)'

W(+ W g+ W„50.2x'+58.9x+65.5
(4.6)

The value of this ratio is 15% for x=0; 22% for x= 1;
and 19% for x= ~. The ratio obtains its maximum
value of 23% at x= 1.7. All of these values agree fairly
well with experiment. Thus, it is not possible at present
to determine the ratio of the amplitudes from the ex-
perimental information of pion capture.

As it was pointed out in Sec. 2, cross terms in go *g~

appear in the capture rates, even though go and g~ are
amplitudes for transitions of different total angular
momentum in the "free" capture rr+1V+E —+ Ã+1V.
Although the cross term is most important in the triton
mode, it is by no means negligible even for the sum of
capture rates over all modes. Since these cross terms are
due in large part to the exclusion principle, it appears
that neglect of the exclusion principle is a rather poor
approximation, at least in the case of very light nuclei,
where the momentum of the bystander recoil nucleons
is of the same order of magnitude as that of the partici-
pating nucleons. Srueckner, Serber, and Watson' calcu-
lated the total capture rate of pions by using a partial
closure approximation, in which the final states of the
bystander nucleons were summed, using the closure
theorem. In order to use this method, one must neglect
exchange effects between the participating nucleons and
the bystanders, and so it would seem that the results of
this approximation should be applied with some
caution. "

It should be noted that although the ratios of the
capture rates in the three modes are not very different
from those given by Petschek, the results of this paper
were obtained with the use of a He4 wave function which
did not differ significantly from that of Clark and
Ruddlesden. The average kinetic energy of the He4 wave
function which was used is only 52 MeV, compared
with 48 MeV for the wave function of Clark and
Ruddlesden, and 130 MeV for the Petschek wave
function.

At first sight the large ratio of the triton mode is
rather puzzling in view of the low kinetic energy of the
nucleons in the He4 wave function which was used. It is,
of course, a consequence of the requirement that the
two nucleons responsible for the pion capture are
correlated. This requirement, which was expressed as a

'5 The use of the closure approximation does not always necessi-
tate the neglect of the Pauli principle. In the cases of muon
capture and hypernuclear decay, the final state contains a neutrino
or a pion in addition to nucleons; then the closure theorem may be
used to sum over the entire nucleonic part of the final state, and
exchange e6ects may be taken into account with respect to the
nucleons. See, for example, R. H. Dalitz, Phys. Rev. 112, 605
(1958) for a discussion of the use of the closure approximation in
hypernuclear decay.

8 function in configuration space—8(xr —xs)—becomes,
in momentum space 8(q+y&+ys —yt' —ys') where yt,
ys(yt', ys') are the momenta of the participating initial
(final) nucleons, and q is the pion momentum. This
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condition is far less stringent than the condition
which occurs in the absence of correlation, namely,
b(q+yt —y&')8(ys —y, '). As a result of this latter condi-
tion, if f(y&) is the probability that a nucleon in the He'
nucleus have momentum p&, then the rate for the triton
mode is proportional to f(yr'), where yt' is the momen-
tum of the free neutron (when the pion is absorbed from
rest). Thus, if the He' wave function does not contain
high momenta components, the rate for the triton mode
is proportionately small. However the less stringent
condition in the case of two-nucleon capture can be
satisfied by low momenta components of the He4 wave
function, e g, Iytl = Ii t'I —I»I —Iys'I.

The results of this paper are in complete disagreement
with the qualitative arguments of Ammiraju and
Biswas, 4 who concluded, on the basis of the two-nucleon
capture model, that the deuteron and triton modes
should be exceedingly rare. This difference between our
results stems from their implicit assumption that the
two-nucleon capture model implies that two fast nu-
cleons must be ejected from the nucleus; the probability
that one of these nucleons would then "stick" to the
residual nucleus would be very small indeed, and fur-
thermore, the fast nucleon would impart an extremely
high excitation energy to the residual nucleus. However,
the point of the two-nucleon capture model is not so
much that the available momentum is shared by two
nucleons, but that the capture of a pion proceeds pri-
marily in the presence of two correlated nucleons. In
fact, as was seen above, the pion, which is absorbed
from rest, does not impart any momentum at all to the
nucleons; the transition probability to a state of
nucleons of given momenta is proportional to the

It fl
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FIG. 5. Proton and deuteron range spectra; sum of these spectra;
and histogram of events observed by Schiff, Hildebrand, and
Giese (see reference 1).The total range spectrum is normalized to
the number of events in the histogram. The experimental peak at
28 mm is due to the triton mode, which does not appear in the
calculated curves.
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probability that this distribution of momenta already
exists within the nucleus. Thus, there is no reason to
believe a priori that the two-nucleon capture model
necessitates two fast nucleons in the final state.
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APPENDIX A. DISCUSSION OP INTEGRALS
USED IN CALCULATIONS

In this Appendix the integrals which appear in the
evaluation of the matrix elements and in the integrations
over phase space will be discussed.

First, in the mode t+n, if the wave function (3.3) is
substituted in the expression for the matrix element
(2.12), the result is

J2' ——K3' ——K4' ——0,

J,'= —J4' ——K..'

= (2Vns ) "'E,1V d'x, d'x, d'x3 [-', (y—3q)+—',9,'(2x2 —xi—x3)]&~(x2—4[2x~+xi+x3]) (A1)

Xexp{——,'X[2 (xi—x2)'+2 (x2—x3)'+ (xi—x3)']}exp{——',li'[(xi —x&)'+ (xi—xa)'+ (x2—x3) ]}
Xexp[—iq -', (xi+x,+x3)—ip x,].

Using the transformation:
r = -', xp —-', (x,+x,),
8= Xy—X3,

t= -', (x,+xa),

and integrating over the variable t, the expression for J3' simplifies to

(A2)

J3'——(2Vm ) '"SV,1V (2~)'B(y+q) d'rd's g (r)PP+2ili'r] exp[ —4ip r/3] exp[ —Sr'(li+-,'li') —s'(X+~X')]

= p(2Vm ) '"1V N~qb (0) (2~)'B(p+q) f s'/{ (2K+X') (li+-'X')}]@'[1+-,'X'/(27~+X')] exp[—P'/9(2K+X')], (A3)

where the pion wave function was replaced by its value at the origin, as discussed in the text. The phase space
integrals for this mode are carried out completely by the use of the 6 functions.

In the mode d+2e, when the wave function (3.6) is substituted in (2.12), the result is

J2 =K4"——(m ) '~'X V ' d'xid'x&d'x3 P.(2x&——,'[xi+x3J)

X[~ (p2 2q)4'&(I» "2I) 2z(x, —xi)y~ (I »—»I)/I »—x~1]

Xexp{——',X[2(xi—x&)'+2(x,—x3)'+(xi—xa)')} exp{—i[pi x3+P2. x2+q —,'(xi+x2)]},

J4 (p4p2) J2 (p2)p&) K2 (p4p2)) (A4)

J3'= (ns ) "'A' V '-', (yi —P2) d'xid'x2d'x3$ (2x2 4[xi+x3])A(~ xl x8~ )

K,"=0. Xexp{——,'X[2 (xi—x2)'+2 (x&—x3)'+ (xi—x3)']}exp{—i[(pi+y&) .x2+q. —', (x,+x3)]},

Using the transformation (A2) and integrating over the variable t results in the simplified expression

J2 ——(m ) "'4E Q (0)V '(2')'8(yi+p&+q) d'rd's[(p2 —2q)pd(~2r ——,'s~) i(2r 2s—)pz'((—2r )2)s/(2r———,'s~]

Xexp{—7i(8r'+s') —i[2r (p2+-,'q) —-', s. (Pi——',q)]}. (AS)
Introducing the new variables

R=2r ——',s, ~=-', (4r+2s),

and integrating over the variable ~, (AS) becomes

J~"——Q-,'(m~) '~'X~g~(0) V '(2~)'8(pi+ p2+ q) (2s/3) )'" exp[ —pi2/6li] J(Q)

(A6)

(A7)
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where Q= s(pq —~q) and

J(Q) = O'R [3&g(R) —iQ Rgq'(R)/Q'R) expL —'X—R' i—Q R)

Integration of J(Q) over angles, and integration of the @q'(R) term by parts, results in

(A8)

J(Q) = 16nQ ' RdR pz(R) exp( —4XR'/3)(sinQR —(2X/3Q') (sinQR —QR cosQR) }. (A9)

I'he function J(Q) was then evaluated numerically.
The transformation of variables (A2) was also used to simplify J3 . The result is

J3~——(m ) '~ E g (0)V ~~(pz —p2) (2n)38(yz+p2+q) (m/2X) I2 expt —
q /8X) d Rgz(R) exp| —XR ). (A10)

The differential capture rate then becomes

dWd=i N '@ '(0)/m V)(2n)'8(p&+p2+q)8(hq (p—p+p +2-q'~)/2m)t V/(2~)')'d'y~d'p O'2q

X((IPK'+I2 Q )(~go ~
+3~gq ~'+2 Rego *gq )+2(K.Q)IqI2(~go ~' —~gq ~

+2 Rego *gq )

+s (y&
—p&)'I3'~go ~'+2 Rego *g& t (p&

—y2). (I&K—I2Q))I3}, (A11)

where b,&=112.4 MeV is the energy release of this reaction;

and
K=-', (p~ ——',q); I~ (2m/3X)31——' exp( —p2'/6X) J(E); I2= (2~/3X)"' exp( —pp/6X) J(Q);

I3= 2 (s/2lb, )+' exp( —q'/8X) O'R Pz(R) expL —) R')

The energy spectrum of the deuteron is found by integrating this expression over the neutron momenta y~ and
y~. The functions of the deuteron momentum W; which appear in (3.8) are the following:

W&(q) =2q~(2n/3X)SL1V ~p 2(0) V2/m (2m) ) d'
p& O8p28(p&+p2+q)

X8 (&g—(pl +p2'+-;q'-)/2m)LKJ (K))' exp (—P2'/3lw. )

where

=9q(2'/3X)'t mAT~'p, '(0) V'/m~(2w)') exp( —md'/2X) K/KJ(K) exp(3K'/4X))'dE

I.~= ~s
I q~ (ma. —r'q') U2I.

(A12)

The right-hand side of (A12) was found by using the 8 functions to integrate over p2 and over the angle between K
and q. The integral was evaluated numerically using the tabulated values of J(E).

W2(q) =2q (2~/3lb, )'Pt' 'g (0)V'/m (2~) ) d p&day& 8(pz+y2+q)

X8(ag —(pp+p22+-', q')/2m)K QJ(E')J(Q) expL —(pp+p22)/Q)

= (2/9) (2n/3X)'Lm1l1 ~'p~'(0) V'/m~(2s)') exp( md&/3X—)q'(2q' mhz) (m—hz ,'q')"'——

Xexp (q'/12K) d (cos8)JP, (2+8 cos8)'I') JL-'(A —8 cos8)'") (A13)

where
A =mezz+ q and 8= 2q(md' ~q )'

The right-hand side of (A13) was found by transforming to the new variables u= 2 (K+Q) and v= 2 (K—Q); and
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then using the 8 functions to integrate over u and the magnitude of v. The values of the function J at the points
(A+8 cosset) were found by interpolation from the tabulated values of J(E).

W3(q) = 2q (2r/2&) t 1V g (0)V /m (22r) ] PR @&(R) exp( —&R2)

1ppld P2 ~ (Pl+P2+31)~ (~.—(pl +p"+231')/2m) (Pl —P2)' exp( —q'/4~]

= (2r/71)3LmlV '4' '(0) V'/m (22r)']q'(m/4, ~ 'q')—'/' -exp) —q2/4lw, ] /f, 'R pd(R) exp( —XR') (A14)

W4(q) =4q2(2r/ll)3(X. 2p.2(0) V2/33/2m (22r)4] d3R yp(R) exp( —XR2)

X d'pld'p, &(pl+P2+41)&(&z—(yl'+P2'+2'31')/2m)K (pl —p2)J(E') expL —q'/8& —P2'/6X]

= (12)'/'(2r/7 )3pmlV y2,'( 0)V'/m ( 22)r3] d'R 4tlg(R) exp( —XR2) q exp/ (mh—g+2'q2)/4lw, ]
L+

X dE tEJ(E) exp(3E'/471)](3mhz —2q'+3E'). (A15)

The right-hand side of (A15) was found Las in the case of (A12)] by using the 5 functions to integrate over p2 and
over the angle between K and q.

In the mode p+323, the calculation was first carried out for noninteracting final-state particles. In that case,
when the plane wave function (3.10) was substituted in (2.12) the result was

J;"= [S y. (0)/2m. '/2V2] (22r)36 (g p,) (m'/2ll2)3/2 Jl 1

K.3' P7 y (0)/2m 1/2V2](2~)3g(Q p ) (~2/27 2)3/2J.

where (jM) is a cyclic permutation of (234) and

J&&= (y& yl) exp{ 52(Pa+Pl)'+ (p —p„)']/16K),

and (klm23) is any permutation of (1234).
The differential capture rate for this mode is then found to be

dW~(free particles)

=( )'~(Zp;)~(A —(Zp')/ )L&'~'(o)/m. ']('i l')' ll 2 d'P~/( )']
g~y ... 4

XL(21go I'+ lgl I')(J23'+J24'+J34')+
I gl I'(J»'+J»'+J14' —J» J»—J» J14—J» J14)

—([gl
—['—4 Regp *gl )(J23 ~ J24+J32'J34+J42'J43)+([gl ['+2 Reg3 *gl )

(A16)

(A17)

X (J21' J23+J21' J24+J31' J82+J3l' J34+J41 J42+ J4l' J43)]) (A18)

where 6=109.9 MeV is the energy release in this reaction.
" 'The proton momentum spectrum for free particles in the final state was found by integrating (A18) over the
neutron momenta p&, p3, and p4. Because of the symmetric way in which the neutron momenta appear in the
integrals, there are only five different terms appearing in the momentum spectrum. These are the functions V,
and V discussed in Sec. 3. These functions are as follows:

Vl(P1) = Pl' J3P~(Z P )~(~—(E P,'/2m))d'PA'P3&P4

=48(3)"2mp1'u exp( —p12/3lw)(42r)'R' x'(1—x')"' exp( —3R233'/2X)dx
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() p+p--'+p+p,
(b) p+p-+pr++p+e,

(81)

and comparing the calculated values with the experi-
mental cross sections. In order to do this, the effective
Hamiltonian which describes the production reactions
must be determined. Part of this Hamiltonian has
already been given by (2.1), which, of course, describes
s-state pion production with the nucleonic system
undergoing S—+P transitions. Since there are two
identical protons in the initial state, the channel which
is described by (2.1) is 'Sp —+ 'Pp, so that only the gt
term contributes to this part of the cross section.
Stallwood et aI." have fitted the experimental cross
section to a power series in the maximum possible pion
momentum g. The cross section of the 'So —+ 'Po channel
is proportional to g', but the calculated value cannot be
compared directly with the g' term in the experimental
cross section, because the 'D2 —+'P2 transition also
contributes to this term. In addition, the experimental
value of the g' term is ambiguous, even with respect to
sign. Therefore the matrix (2.1) cannot be used at
present to deduce the values of the amplitudes go and

gi directly from a knowledge of the production cross
sections. Thus, it is necessary to find the terms which
describe other production channels, in particular the
P —+ S nucleonic transitions.

These terms in the effective Hamiltonian were found
by noting that

eff Teff ~ (82)

where T is the time-reversal operator. This relationship
may be proved by recalling that

BC.H= V+ V -V
E—Hp+is

+V -V U+, (83)
E Hp+se E H—p+ie—

from which (82) follows immediately if V is invariant
under time reversal.

Therefore, the effective Hamiltonian must contain a
term which is the time-reversed Hermitian conjugate of
(2.1). Since the field operators transform under time
reversal as

where gT, gT' are phase factors of amplitude 1, it is
found that the time-reversed Hermitian conjugate of

' R. A. Stallwood, R. B. Sutton, T. H. Fields, J. G. Fox, and
J. A. Kane, Phys. Rev. 109, 2726 (1958).

APPENDIX B. EVALUATION OF go- AND g1-

The amplitudes go and g& were evaluated by calcu-
lating the cross sections of the inverse production
reactions

(2.1) is given by

»As*s 0r*Llt ~t(~i)N~'(*.)Sit'r V~(»)4~(») j, (83)

where

5Krt=gg $gp+-', (1&Pip )-,'(~i —~s) Pt-', (et+o's) k
+xi's(~t+~s). ~i's(1~P»')

Xis(ei —es) k]8(xt—xs),

where k is now the relative momentum of the two initial
state nucleons.

It is clear that (BS) refers to P + S nucleonic transi-
tions, with pion production in the s state; the go term
describes S= 1 —+ S= 1 isospin-Qip nucleonic transitions,
and the g~ term describes I= 1 —+ I= 1 spin-Rip transi-
tions. It was therefore possible to determine g& by
using (85) to calculate the cross section of reaction
(81a), P+ P ~ prP+P+P in the 'Pp —+ 'Sp channel. This
part of the total cross section, which is proportional to
p', was equated to the p' term in the experimental cross
section. ' In order to evaluate go, it is of course neces-
sary to consider an isospin Qip transition. Such a reac-
tion is conveniently available, namely,

(81b')

Crawford and Stevenson'~ have fitted the experimental
cross section of this reaction to a power series in the pion
momentum gD. The part of the cross section due to the
'P& —+ 'S~ transition is proportional to q~. This part was
calculated by using (85), and gp was found by equating
the calculated expression to the g~ term in the experi-
mental cross section.

The evaluation of the matrix elements of the. produc
tion reactions was carried out in an analogous fashion to
the calculations of Sec. 2. The wave function used for
the initial state of two fast protons was an antisym-
metrized plane wave function

lt;(1,2) = (2'IsU) 'Lexp(ikt xt+iks xs)x;(1,2)
exp—(iks xi+iki xs)y, ;(2,1)j, (86)

where x;(1,2) is an arbitrary spin wave function. In the
final state, interactions between the nucleons cannot, of
course, be neglected, because in order to obtain the
values of the amplitudes corresponding to absorption of
pions from rest, the production reactions must be con-
sidered at energies close to threshold. Therefore, even in
the tr++p+ p final state, the 'Sp potential well must be
taken into account because of the low energies of the

'7 F. S. Crawford and M. L. Stevenson, Phys. Rev. 97, 2305
(1955).The results of this paper are consistent with-the observa-
tionsof R. Durbin, H. Loar, and J. Steinberger, ibid. 84, 582
(1951);H. L. Stadler, iMd 96, 496 (1954);.M. G. Mescerjakov,
B.S.Neganov, N. P. Bogacev, and V. M. Siderov, Doklady Akad.
Nauk S.S.S.R. 100, 677 (1955); M. G. Mescerjakov, N. P.
Bogacev, and B.S.Neganov, Suppl. Nuovo Cimento 3, 120 (2956);
and T. H. Fields, J. G. Fox, J. A. Kane, R. A. Stallwood, and
R. B. Sutton, Phys. Rev. 109, 1704 (1958).
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protons. The anal-state wave functions used were

ilia= V '$(I Xi—X2I) ezpLiQ -'(Xi+X2)+iq Xi)
X-;(1+Pi2 )Xr(1)2), (87)

where P(r) is the relative wave function of the two
nucleons; Q is the c.m. momentum of the nucleons; q is
the pion momentum; and the & sign corresponds to the
triplet or singlet spin state of the nucleons.

It was found that for the 'Po —+'So channel of re-
action (8ia), P+P —& 2TO+P+P,

!2 I
~.«l'= lgi I'(m-V') '(2~)'~(q+Q)

xk2lq(0) I2. (Bsa)

The value of the relative wave function of the 6nal-
state protons P (r) at the origin was found by the solu-
tion of the Schrodinger equation in a So square-well
potential, with the parameters given in footnote 14."
The result is

d p p'+m V,
ly(0) I'd22, =

(22T)' P'+mV, COS/b, (P2+mv )'")
=m V,dp/ (22T2), (89a)

where y is the internal momentum of the p—p system,
and de~ is the number of states with momentum be-
tween p and p+dp.

For the 'Pi ~ 'Si transition of reaction (81b')
P+P —& 2r++d, it was found that

Q I
K ff I'= 2

I go I'(m„v') '(22r)'

xb(q+Q)k'ly, (0) I' (Bgb)

The deuteron wave function at the origin was found in a
manner analogous to the p —p wave function, although
this means that go may not be determined as accu-
rately as it wouM have been had a better wave function
beenused. However, the value of theratio Igo I'/lgi I'
will probably be more accurate because the same type of
approximation is used in both cases. If 8 is the deuteron
binding energy, then

I @,(0) I2= (2&)-i(mB)i'2m(V, —B)I 1+B/(V, —B))
XI 1+bi(mB)"'—B/(Vi —B))—'. (89b)

The cross section for the 'Po —+'So transition of

p+p —+2ro+p+p was found to be

APPENDIX G

In Sec. 4, it was seen that the amplitudes go and g~
were equal within experimental accuracy. In this Ap-
pendix it will be shown that these amplitudes are pre-
dicted to be equal, within the approximation that only
corrections due to the exchange of p-wave pions be-
tween the nucleons are included. The limitations of this
approximation will be discussed briefly at the end of this
Appendix.

The basic interaction between pions and nucleons is
of the form o Vs P. In order to maintain Galilean
invariance, an additional term of theform o (p~+yr)~ P
(where p; and pr are the initial and final momenta of the
nucleon) must be present in the interaction. It is this
latter term which is responsible for s-wave pion ab-
sorption (emission).

Consider, first, the exchange of p-wave pions between
the nucleons. In any order of perturbation theory there
will be two closely related matrix elements corre-
sponding to pion absorption by two nucleons. In Fig. 6,
(a) will correspond to a matrix element of the form

LN (Pi )&igrig' ' '&i„Tj„O' (liv+Pv+i)&' $
X iv+1 vv+1 in i+(vpl))'

XI 2i (p2)ok, T&, ok„ri.2i(p2)),

and (b) to a matrix element of the form

M2 ~ LQ (Pl )0'k~Tli' ' '0k„T Q(iP ))2'
XL2i (p2')o;, T;, o;„T;„o

(1.'+P.+') .0 ', „,". '.'. (P)).

(C1)

(C2)

The set of indices {ki k„}is a permutation of the set
{ii . .i„}an.d the set {li l„}is the same permutation

where qD, the pion momentum, is again given in units of
the pion mass.

The experimental value of the coeKcient of the g'
term in the P+P —v ir'+P+P cross section is 25 pb to
within about 50%"; and the coefficient of the gn term
in the P+Pvir++d experimental cross section is
138 pb. ' Vsing these values it was found that

lgo I'=0.32 F' lgi I'=0.29 F'. (812)

It is clear that the amplitudes are equal in absolute
value within experimental accuracy.

I gi I'v, m'm 2'/32(2)'122r2 (810)
1

pa

where q, the maximum available pion momentum, is
given in units of the pion mass; and the cross section of
the 'Pi-+'Si transition of P+P-+2T++d is

I go I'(Vi B)m2mv(m B)—"'(22T') $1+B/(V —B))
XI 1+bi(mB)'"—B/(Vi —B)) 'TID, (811)

' Coulomb forces were neglected, since we are interested in the
value of the wave function close to the origin, where the Coulomb
interaction may be treated as a small perturbation.

Ml

(a}

Pro. 6. Diagrams for pion absorption.
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of (ji. j„).As an example, for the simple ladder
diagram (c) this permutation is the identity, and

Mi (oi og) "(ei p„+p„~i)
X(ei e2)"-'(~i ~2) "(~ p)(~i ~2)"—".

FIG. 7. Lowest or-
der diagrams for pion
absorption.

The sum of momenta p„+p„+i is equal to 2pi' —q—P q; where the q, 's are momenta of internal pion
lines. The terms in the matrix element proportional to
e q, will vanish after integration over the internal pion
momenta; and since by our assumption q=0 (absorp-
tion from rest) Mi will be proportional to pi',. and
similarly M2 will be proportional to p&'. In the c.m.
system pi' ———p2' ———,

' (pi' —p2') =k. It can easily be seen
that Mi is the same function of (oi,s2,o, .k) as of
(~i,~2,~i P). Therefore, the most general form of the
matrix element Sf' is

Mi ——[2 (ei+02) k+8(ei —o2) k-,'(1+Pi2 )
+C(ei —op) k-', (1—Pi2 )7
X(A(~i+~2) p+&(~i—~2) $2(1+Pi2 )

+C(~i—~~) y-', (1—P»')].

The matrix element M2 will have the same form, with
ei~ e~, k~ —k and ~i~ ~, Thus.

M,+M, =2aIlf(e, +e,) k(.,—.g). y-, (1+P,2 )
+ (&1+&2) ' $(&1 &2) 'kg (1+P12 )]
+2ACL(ei+eg) k(~i —~2) p-'(1 —Pi2')
+(s,+~,).y(e, —e,) 1-,'(1—P„)7. (C4)

A comparison with (2.3) shows that all diagrams in
which only p-wave pions are exchanged between the
nucleons contribute equally to go and gi (and also
contribute equally to go+ and gi+).

In addition to the terms discussed above, the pion-
nucleon interaction contains terms which are quadratic
in the pion field, of the form

&o47r(f/p)'Q'+'A47r (f/p)'~ PX ~, (CS)

where ~= P is the conjugate pion field. In lowest order
these terms correspond to diagrams such as (b) of
Fig. 7. In this case an s-wave pion is exchanged between
the nucleons. It can easily be seen that the ),0 term will
give rise to a matrix element whose spin and isospin
dependence is of the form

Mg, ~ (~i. p)(oi. k) —(~2 y)(e2 k)
'C1 —0'2 0'y 0'2 '

+( + ) O( = ) k], (C6)

thus giving equal contributions to go and gi (and also
go+ and gi+). The lI, term will give rise to a matrix
element whose spin and isospin dependence is of the

(a) (b)

This term contributes only to go+ and not to g&+ at all.
Thus go will not equal g& to the extent that the ) term
contributes to the interaction.

In a semiphenomenological analysis, WoodrufP' cal-
culated the production amplitudes for the process
p+p —+~++d close to threshold, taking into account
diagrams of the type (a) and (b) of Fig. 7. The parame-
ters Xo and P were Gtted to the zero-energy s-wave pion-
nucleon scattering data in Born approximation. Al-
though his calculated results agreed with the p-wave
pion production data to better than 10%, the calculated
value of the s-wave production amplitude was 60%
greater than the experimental value. (When the quad-
ratic terms were neglected completely, the calculated
value of the s-wave production amplitude was one-sixth
of the experimental value. ) If there is a large contribu-
tion from the quadratic s-wave scattering terms, the
isospin dependent part would give rise to an appreciable
difference in the values of go and g&, contrary to the
result we have obtained here from the analysis of the
m+lV+N —+N+N process. However, Woodruff's cal-
culation includes only rescattering effects and not the
corrections arising from the exchange of p-wave pions
between the nucleons.

Note added im proof While this pap. er was in press,
M. V. Bortolani, L. Lendinara, and L. Monari reported
the results of an experiment on pion absorption by He'
in a helium bubble chamber LNuovo Cimento 25, 603
(1962)]. According to this experiment, the ratio of
captures in the triton mode (1.1a) to all modes is
0.22~0.03. This is in excellent agreement with the
ratio 22% calculated here Lcf. Eq. (4.4)7. However, the
inference drawn by Bortolani et al. that pion absorption
takes place essentially on the proton-neutron pair is at
variance with our result on the equality of go

—and g& .
This is due to certain unjustified assumptions which
they made. For example, they assumed that the only
deuterons which are emitted are bystanders; but as a
result of our calculations, we have seen that there is a
greater probability that a nucleon bound in the deuteron
be a participant than that both nucleons be bystander»
(see Fig. 3).

I A. E. Woodruff, Phys. Rev. 117, 11.13 (1960).

form

My ~ (iXi+0'n) 'kl (%1X%2) ' p

EJI 0'2

XL-', (1—Pi2') —-', (1+P„')]. (C7)


