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The variation method was used to set upper bounds on the strength of the average h-nucleon potential
in the hypertriton (pe) required to reproduce the observed binding energy of that system for assumed
hard-core radii of 0.2 F, 0.4 F, and 0.6 F. Only two-body A-nucleon potentials were considered. Although
the well-depth parameter of the required potential increases as the assumed hard-core radius is increased,
it seems unlikely that even the largest of the hard-core radii considered here would imply a bound state
for the hyperdeuteron {pH'). The possibility that the scattering length and the eAective range of the re-
quired potential may be insensitive to the value of the hard-core radius is discussed.

I. INTRODUCTION

ECENT phenomenological nucleon-nucleon inter-
action potentials, which have been deduced from

analyses of nucleon-nucleon scattering data and from
the observed properties of the deuteron, contain a hard
core of radius about 0.5 F.' The scattering data seem
to require, for their explanation, the presence of a
short-range repulsion in the interaction in most, if not
all, states; this repulsion is usually represented by a
hard core.' The presence of a hard core in the nucleon-
nucleon potential suggests that a hard core may also
be a characteristic of the A-nucleon interaction po-
tential. '

In the absence of extensive A-nucleon scattering data
and on account of the apparent nonexistence of a bound
state of the A-nucleon system (hyperdeuteron), at-
tempts to deduce the features of the A-nucleon inter-
action have been directed toward analyses of the
binding-energy data of the established hypernuclei
with A &~ 3.' These analyses have so far been aimed at

*The study reported here was begun by TNT, in association
with BWD, at Cornell University with the support of the Once
of Naval Research and the U. S. Atomic Energy Commission;
a preliminary report was given in the abstract by T. N. Truong,
Bull. Am. Phys. Soc. 4, 38 (1958).At the University of Colorado
the work was partly supported by the National Science Founda-
tion. An IBM 650 computer was used at Cornell University;
an IBM 1620 computer, at the University of Colorado.

t Captain, U. S. Air Force.
)Present address: Institute for Advanced Study, Princeton,

New Jersey.' See, for example, T. Hamada and I. D. Johnston, Nucl. Phys,
34, 382 (2962), and the review by M. J. Moravcsik and H. P.
Noyes, Ann. Rev. Nucl. Sci. 11, 95 (1961).' For example, the assumption of the existence of a universal
pion-baryon interaction leads to a pion-exchange contribution to
the A-nucleon potential which is a linear combination of nucleon-
nucleon potentials tsee, for example, D. B. Lichtenberg and M.
Ross, Phys. Rev. 107, 1714 (1957)j. In this case, the existence
of a hard core and a tensor component in the nucleon-nucleon
interaction implies that these are also characteristics of the
A-nucleon interaction.

I See, for example, R. H. Dalitz and B. W. Downs, Phys. Rev.
j.11, 967 {1958},R. H. Dalitz, Proceedings of the Rutherford
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establishing gross features of the A-nucleon interaction;
potentials which have been used are spin-dependent
central potentials which have been considered to
contain the eBect of a possible tensor component. ' 4

Since analyses of hypernuclear binding energy data
have been made in terms of effective central potentials,
it is important to ask what eBect the possible presence
of a hard core can be expected to have in such analyses.
An indication of the importance of a hard core in
effective central potentials in reproducing observed
binding energies can be obtained from studies of the
very light nuclei in terms of such potentials. A con-
sistent reproduction of the binding energies of the
two-, three-, and four-nucleon systems has been ob-
tained with effective central potentials having a hard
core. ' ' On the other hand, when effective central
potentials without hard cores, which are consistent
with the two-nucleon binding energy and low-energy
scattering data, are used in variation calculations, they
lead to binding energies for the triton and the alpha
particle in excess of the empirical values. ' ' It would,

Jubilee International Conference, Manchester, 1961 (Heywood
and Company, Ltd. , London, 1962), p. 103, and A. R. Bodmer
and S. Sampanthar, Nucl. Phys. 31, 251 (1962).

4Although there may well be a tensor component in the A-
nucleon interaction (see footnote 2), uncertainties in analyses of
hypernuclear binding energy data (see the references in footnote
3) would seem to make attempts to separate the eEects of the
central and tensor parts of the potential appear unpromising at
this time.

'T. Ohmura (Kikuta), M. Morita, and M. Yamada, Progr.
Theoret. Phys. (Kyoto) 15, 222 (1956); 17, 326 (1957).'T. Ohmura, Progr. Theoret. Phys. (Kyoto) 22, 34 (1959).
This paper corrected a systematic error in the papers of reference
5. On account of this error, the expectation values of the kinetic
energy of the three-nucleon system given in reference 5 were
about 2'Po too large (d 7=1 MeV for 7=50 MeV).

7 L. Cohen and J.B.Willis, Nuclear Forces and the Fete-Nucleon
Problem, edited by T. C. Griffith and E. A. Power (Pergamon
Press, New York, 1960), p. 399, and H. C. Mang, W. Wild, and
F. Beck, ibid. , p. 403.

See, for example, J. Irving, Phil. Mag. 42, 338 (1951).' The success of central hard-core potentials in reproducing the
binding-energy data of the lightest nuclei does not, of course,
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therefore, seem that analyses of the hypernuclear
binding-energy data should be made in terms of hard-
core potentials to complement the studies which have
been made in terms of potentials without hard cores. '

In order to include the e6ect of a hard core in the
A-nucleon interaction, Lichtenberg" adapted the results
of the triton variation calculations of Ohmura (Kikuta),
3Iorita, and Vamada' to the hypertriton for the case in
which the range of the A-nucleon interaction is approxi-
mately the same as that of the nucleon-nucleon inter-
action ' Dietrich, Folk, and Mang" have recently used
the independent-pair approximation of Gomes, Walecka,
and Weisskopf" to deduce the parameters of h.-nucleon
potentials with an attractive square well and a hard-core
radius of 0.2 F.

It is the purpose of this paper to report the results
of variation calculations of the strength of the effective
A-nucleon interaction in the hypertriton qH' for several
values of the hard-core radius. The attractive well was
taken to have an exponential shape and a range
corresponding to the simplest pion-exchange mechanism
(two-pion exchange) which can give rise to a charge-
independent A-nucleon interaction. This choice of range
implies a nonsymmetric structure for the hypertriton";
whereas, in the situation investigated by I.ichtenberg, "
the structure was taken to be symmetric, which is
probably not realistic.

The variation calculation is described in See. II, and
the parameters of the potentials are discussed in Sec.
III. The results of the calculations are given in Sec. IV
and discussed in Sec. V, where a comparison is made
with the work of I.ichtenberg" and of Dietrich et ul."
The implications of the results for the possible binding
of the hyperdeuteron are also discussed.

imply that such potentials provide an adequate representation
of the actual nucleon-nucleon interaction for the description of
manifestations of that interaction other than these binding
energies (see the references in footnote 1). In this connection, it
should be noted that a detailed calculation of the binding energy
of the triton by J. M. Blatt, G. H. Derrick, and J. N. Lyness,
Phys. Rev. Letters 8, 322 (1962), in terms of nucleon-nucleon
potentials which reproduce a wide variety of two-body data,
failed to reproduce the experimental value.

' It might be noted that the effect of explicit consideration of
the tensor potential in calculations of the binding energies of the
very light nuclei is qualitatively the same as the effect of the
introduction of a hard core. The binding energy of the triton has
been reproduced by R. L. Pease and H. Feshbach, Phys. Rev.
88, 945 (1952) and the binding energy of the alpha particle has
been approximately reproduced by J. Irving, Proc. Phys. Soc.
{London) A66, 17 (1953) with nucleon-nucleon potentials which
have a tensor component but not a hard core. Although the
presence of a tensor component in the nucleon-nucleon interaction
is well established (see, for example, the references in footnote 1),
the same cannot be said of the A-nucleon interaction at this time
{see footnote 4)."D. B.Lichtenberg, Nuovo Cimento 8, 463 (1958).

~ K. Dietrich, R. Folk, and H. J. Mang, I'roceedf'ngs of the
Rutherford JNbilee International Conference, Manchester, 1%1
{Heywood and Company, Ltd. , London, 1960), p. 165.

"L. C. Gomes, J. D. Walecka, and V. F. Keisskopf, Ann.
Phys. (N. Y.) 3, 241 (1958)."See, for example, R. H. Dalitg, and Q. W, Downs, Phys. Rev.
Ilo, 958 {$958),

Uo&~pT+ V+ (By+By)$]/2I', (2.2)

where X is the normalization integral, and T, V, and P
are the expectation values of the total kinetic energy,
the nucleon-nucleon potential (2.1a), and the average
A-nucleon potential (2.1b) divided by —U0, respec-
tively; 8& is the binding energy of the deuteron.

It is convenient to formulate the variation problem
(2.2) in the triangular coordinate system, in which the
radial variables (r&,r2, ra) are the three interparticle
separations. In this coordinate system, it is possible to
construct a trial wave function which takes into account
the correlations between pairs of particles which is
necessary if the variation method is to lead to reliable
results. "The trial wave function, appropriate to the
hard-core potentials (2.1), was taken to be

with
4'= f(r~)f(r2)g(r~) (2.3)

f(r) =O, t&D
2.4a

=exp[ —a(r —D)]—exp[ —P(r —D)], r&D,

g(r) =0,
(2.4b)

=exp[ —y(r —D)]—exp[ —h(r —D)], r)D,
'~In the absence of contrary evidence, this assumption about

the equality of the hard-core radii is made for computational
convenience.

"The relevant average is Ut„-pi. t if the triplet interaction is
the more attractive or (3Vsing]et, +Utri plot)/4 if the singlet
interaction is the more attractive. The average A-nucleon potential
and the nucleon-nucleon potential are to be considered to be
effective central potentials which include the gffect of the apprq-
pg satg tgnsor mteractions.

II. FORMULATION OF THE VARIATION PROBLEM

The nucleon-nucleon and A-nucleon interactions in

the hypertriton were taken to be two-body central
potentials with exponential attractive wells and the
same hard-core radius D."
Nucleon-nucleon:

V(r) =
(2.1a)= —Vo exp[ —g(r —D)], r) D,

A-nucleon:

('(r) = ~,
(2.1b)= —Up exp[ —X(r—D)], r&D.

The nucleon-nudeon potential (2.1a), which is effective
in the hypertriton, is that for the triplet spin state. It
has been assumed in (2.1b) that the A-neutron and
A-proton potentials are the same, in accordance with
the charge independence of strong interactions; then
U(r) is the average A-nucleon potential effective in the
hvpertriton. '6

The variation method was used to obtain an upper
bound on the depth L'0 of the average A-nucleon
potential required to reproduce the observed binding
energy 8~ of the A particle in the hypertriton. The
appropriate variation inequality is
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Kith the trial function given in (2.3) and (2.4) and the potentials (2.1), all the expectation values appearing
in the variation inequality (2.2) can be expressed in terms of the two basic integrals

[K(A,B,C)= e "&"' n' s&'~n& o&'~n&r~r~gfrqdrgr~, (2.10a)

I (g g3 C) = s &(~i —&) &-(~a--&) &«~-&&r2j,dr~rfrgra (2.10b)

which have closed algebraic forms. Expressions for all
the expectation values in (2.2) are given in the Appendix
in terms of the integrals (2.10).

bo= b —2D (3.1c)

where b is the intrinsic range of the entire potential. ,
and b' is that of the attractive weH translated to the
origin. The value b=1.5 F was used; this corresponds
to a range of (A/2M c) for a Yukawa potential without
a hard core.""The values of the range parameter X

III. POTENTIAL PARAMETERS

The potential parameters (Vo,g) of the nucleon-
nucleon potential (2.1a) were chosen to reproduce the
binding energy of the deuteron and the zero-energy
triplet scattering length. These potential parameters,
which were determined by Ohmura eI, al. ,' are repro-
duced in Table I.

The attractive part of a hard-core potential can be
characterized by the zero-energy scattering length u'
and the effective range ro' which it would have if it
were centered at the origin (that is, if r Dwere-
replaced by r) These p. arameters are related to the
scattering length u and the effective range ro of the
entire potential by'

(3.1a)

r00 (1—D/——a) '(ro —2D+2D2/a —2D~/3an). (3.1b)

The parameters (a,ro) of the average A-nucleon po-
tential are not known; therefore, Eqs. (3.1) cannot be
used to uniquely determine the potential parameters
(&&o,X) in Eq. (2.1b). In this situation, we used the
form which Eq. (3.1b) takes in the limiting case u ~ ~:

in the A-nucleon potential (2.1b), which result from
this choice of b and the use of (3.1c), are given in
Table II."

The range parameters in Tables I and II lead to an
appreciably more rapid fall-oB of the potentials in the
asymptotic region than that to be expected on the
basis of the simplest pion-exchange mechanism antici-
pated in each case. This effect, which becomes more
pronounced with larger hard-core radii, is a consequence
of the choice of a two-parameter function to represent
the attractive well. ~ In order to investigate the possible
effects of these compressed (and therefore very deep)
attractive wells, a calculation was made (with the
single hard-core radius D=0.4 F) in which the asymp-
totic form of the attractive wells for both A-nucleon
and nucleon-nucleon potentials was taken to correspond
to that expected from the relevant pion-exchange
mechanisms. This leads to a range parameter X= 2.361
F-' (b' = 1.5 F) for the A-nucleon potential and g = 1.180
F ' (b'=3 OF) for t.he nucleon-nucleon potential. The
depth V0=128.9 MeV was taken for this nucleon-
nucleon potential in order to give the correct binding
energy of the deuteron. "Moreover, a 6nal calculation
was made with the A-nucleon potential described here
and the nucleon-nucleon potential given in Table I for
a=0.4 F.~

IV. RESULTS

The variation expression (2.2) for the depth Uo of
the average A.-nucleon potential was minimized with
respect to the variation parameters (a,P,y,b) appearing

TmLE II. A.-nucleon potential range parameters.

D (F) & (F) {F-1)
TAsxx I. Nucleon-nucleon potential parameters.

D (F)

0.2
0.4
0.6

V, (Me~
286.2
475.0
947.0

~(F ')

1.895
2.521
3.676

"This A,-nucleon range was chosen as being representative of
the lowest-order pion-exchange mechanism which can give rise to
a charge-independent A-nucleon interaction. Calculations of the
A-nucleon potentials which arise from simple meson-exchange
mechanisms indicate that it is more likely that the observed
spin dependence of the A-nucleon interaction can be explained in
terms of a dominant pion-exchange mechanism than in terms of
a dominant kaon-exchange mechanism. See D. B. Lichtenberg

0.2
0.4
0.6

1.1
0.7
0.3

3.219
5.059

11.804

and M. Ross, Phys. Rev. 107, 1714 (1957); 109, 2163 (1958);
and F. Ferrari and L. Fonda, Nuovo Cimento 9, 842 (1958).

~ See, for example, J. M. Blatt and J. D. Jackson, Phys. Rev.
76, 18 (1949).

~ For a discussion of more complex hard-core nucleon-nucleon
potentials whose asymptotic form is consistent with the one-pion
exchange mechanism see, for example, the references in footnote 1."This nucleon-nucleon potential has a scattering length
e 6.0 F and an effective range ro 2.5 F; the correct values of
these parameters for the triplet nucleon-nucleon potential are
a =5.4 F and ro 1.7 F.

~ These potentials are approximately those used in reference 11.



TmLE III. Results of the deuteron variation calculation.

D (F)

0.2
04
0.6

v(F ')

0.566
0.600
0.632

&(F ')

5.58
4.68
5.00

Ba (MeV)

1.981
1.916
1.665

TmLE IV. Results of the "hyperdeuteron" variation calculation.

D (F)

0.2
0.4
0.6

~(F ')

0.588
0.653
0.792

~ (F-')

7.90
7.49

11.78

Up (MeV)

696.5
1677
8835

~ At erst glance, the trend of the optimum parameters 8 and P
in Tables III, IV, and V as functions of the hard-core radius D
appears spurious. The same behavior of the larger of the two
nucleon-nucleon parameters was, however, reported in references
5 and 6. Variation calculations of the binding energy of the deu-
teron with the trial function (2.4b) were made for hard-core radii
D=0.1 F, 0.3 F, and 0.5 F to supplement the calculations reported
in Table III. The optimum parameter y was found to increase
monotonically with increasing hard-core radius; on the other
hand, the optimum parameter 8 was found to decrease as D
increases from 0.1 F to 0.4 F and then to increase as D increases
further.

in (2.4). Three of these parameters were flxed, and Uo
was minimized with respect to the fourth. The varied
parameter was subsequently set at its "best" value and
Uo minimized with respect to one of the other pa-
rameters. This procedure was carried through the set
of four variation parameters and then iterated until the
desired accuracy was obtained. The initial values of
the nucleon-nucleon parameters (y,h) were obtained by
using the trial function g(r), given in (2.4b), in a
variation calculation to maximize the binding energy
of the deuteron. Similarly, the initial values of the
A-nucleon parameters (u,P) were obtained by mini-
mizing the depth of the A-nucleon potential required to
give a flctitious bound A-nucleon system (the hyper-
deuteron) with zero binding energy. The results of
these two-body calculations are given in Tables III
and IV for the potential parameters given in Tables I
and II.

The values B~——2.225 MeV and By=0.2 AIeV were
used in the variation inequality (2.2). The results of
the variation calculation are given in Table V for the
potential parameters given in Tables I and II. It is
interesting to note how close the optimum parameters
(P,y,5) given in Table V are to those obtained in
Tables III and IV for the two-body calculations. "
That the parameter n divers appreciably in the two-
body and three-body calculations is not surprising
because this parameter is most sensitive to the sepa-
ration energy of the A particle in each syst m; and, in
the 6ctitious hyperdeuteron, an incorrect separation
energy was assumed.

The results of the variation calculations using the
potentials discussed following Table II are given in

Table VI. In the last two rows of Table VI, the value
X=2.361 F ' (b'= 1.5 F) leads to the same value of the
depth Uo of the A-nucleon potential and to nearly
equal values for the optimum A-nucleon wave function
parameters (a,P) for nucleon-nucleon potentials of
quite diGerent range and depth. This would seem to
indicate that, for a A-nucleon potential of given range,
the A-nucleon parameters are relatively insensitive to
the structure of the nucleon part of the hypertriton
provided that the nucleon-nucleon potential is con-
sistent with the binding energy of the deuteron.

The A-nucleon potential parameters given in Tables
V and VI were used to calculate the well-depth pa-
rameter s," and the scattering length a and effective
range ro of the average A-nucleon potential'6 according
to Eqs. (3.1). These parameters are summarized in
Table VII; the last row in this table corresponds to
the last two rows in Table VI.

It is inherent in the variation method that the value
of Uo obtained from (2.2) is an overestimate. Previous
calculations of Uf) in terms of potentials without hard
cores have indicated that reductions in Uo of the order
of 10% might be expected with trial functions of
greater flexibility than that given in (2.4).~4 The effect

TmLE V. Results of the variation calculation for the hypertriton.

D q Vp
(F) (F ') (MeV)

0.2 1.895 286.2
0.4 2.521 475.0
0.6 3.677 947.0

(F ')

3.219
5.059

11.80

Up e
(MeV) (F ')

426.0 0.297
1202 0.325
7352 0.389

7.36 0.547 6.52
6.94 0.578 4.55

11.28 0.606 4.79

that such an improvement would have on the scattering
parameters is indicated in Table VIII, where the values
of Uo were arbitrarily reduced by 10% from the values
given in Table VII.

a= —1.5 F,

ro= 28 F.
(5.1a,)

(5.1b)
~ S. W. Downs and R. H. Dalitz, Phys. Rev. 114, 593 (1959)."The values (5.1}were taken from results reported in reference

24 for Bp~0.25 MeV, modified slightly to correspond to the
current value By=0.20 MeV used here. An indication of the

V. CONCLUDING REMARXS

Since the potential U(r) represents the average
central, two-body A.-nucleon interaction eGective in
the hypertriton when an S state is assumed for each
A-nucleon pair, " it is convenient to characterize U(r)
by the S-wave scattering parameters a and ro. The
range of values to be expected for these parameters is
indicated in Tables VII and VIII if the variation
calculation described here leads to values of Uo within
10% of the correct ones. An accurate analysis of the
hypertriton in terms of Yukawa potentials of intrinsic
range b=1.5 F without hard cores led to the values'4"
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Improvement of the values of Uo given in the first
three rows of Table VII by less than 10% could bring
the corresponding scattering lengths into agreement
with (5.1a) for any value of the hard-core radius
considered here, the corresponding eR'ective ranges
(2.4-2.5 F) being somewhat smaller than (5.1b). This
suggests the conjecture that (5.1) may provide an
approximate characterization of the average A-nucleon
potential in the hypertriton independent of the value
of the hard-core radius for D&0.6 F. In this connection
it should be recalled that the intrinsic ranges b' which
led to the results in the first three rows of Tables VII
and VIII were determined from Eq. (3.1c), which is
related to the equation LEq. (3.1b)] which preserves
the e6ective range of a potential with the introduction
of a hard core. Neither the scattering lengths nor the
effective ranges listed in the fourth row of Tables VII
and VIII bracket the values (5.1). Reduction of the
value of Uo by more than 10% would be required here
to bring the scattering length into agreement with
(5.1a), and the corresponding value of ro would be ap-
preciably larger than (5.1b). It is, of course, possible
that the results in the fourth rows of Tables VII and

TABLE VI. Results of the variation calculation for the hypertriton
for potentials having a hard-core radius D 0.4 F.

D g Vo
(F) (F ') (MeV) (F ')

0.4 2.521 475.0 5.059
0.4 1.180 128.9 2.361
0.4 2.521 475.0 2.361

Up
(MeV)

1202
234.5
234.5

0325
0.200
0.222

I3 v
(F ') (F ') (F ')

6.94 0.578 4.55
4.40 0.414 2.99
4.30 0.580 4.67

shape dependence of the scattering length ro is given in reference
14, where results of analyses of the hypertriton in terms of
exponential and Yukawa potentials are reported.

VIII describe the actual situation for D=0.4 F better
than do those in the second rows. In any case, compari-
son of the results in the second and fourth rows of these
tables indicates the range dependence of the average
A-nucleon interaction required to reproduce the binding
energy of the hypertriton.

The range parameter X of the average A-nucleon
potential, which led to the results in the fourth row of
Table VII, is essentially that used by Lichtenberg" for
a potential of the form (2.1b) with D=0.4 F. The
value of Vo that he reported leads to a weO-depth
parameter s=0.88, a scattering length e= —7.6 F, and
an effective range ro ——2.7 F. The values of these
parameters indicate that Lichtenberg required a
stronger potential than that given by the fourth rom
of Table VII. A part of this diGerence is to be expected
on account of the error in the work of Ohmura et al. ,

5 6

upon which Lichtenberg's calculations were based. The
rest of the difference is presumably due to the fact that
Lichtenberg used a trial function of the form given in
(2.3) and (2.4) in which the A-nucleon variation

TABI.E VII. %ell depth and scattering parameters
of h.-nucleon potentials.

D (F) Uo (MeV) b (F) ro {F)
0.2
0.4
0.6
0.4

426.0
1202
7352
234.5

1.1
0.7
0.3
1.5

0.744
0.851
0.955
0.762

—2.20—2.56
—4.09
—3.20

2.13
2.01
1.80
3.32

TABLE VIII. Nell depth and scattering parameters of
A-nucleon potentials of reduced strength.

D (F)

0.2
0.4
0.6
0.4

Vo (MeV} bo (F)

383.4 1.1
1082 0.7
6617 0.3
211.0 1.5

0.670
0.766
0.860
0.686

a (F)
—1.49—1.31—0.76—2.08

r. (F)

2.47
2.58
3.49
3.90

"It was pointed out by Lichtenberg in reference 11 that an
improvement is to be expected if (a,P) are allowed to differ from
&~,&).

~2 It should be noted that the method of calculation reported
in reference 12 is quite different from that used in the present
paper; see Sec. I.

parameters (a,P) were taken to be the same as the
nucleon-nucleon parameters (y,b). The sets of optimum
parameters given in the third row of Table VI, which
we found in the corresponding case, are not the
same. '6

The results of the present paper can also be compared
with those of Dietrich et c/. ," for a hard-core radius
D=0.2 F. Their results for an attractive square well
with an intrinsic range b0=1.08 F lead to a well-depth
parameter s=0.76, a scattering length a= —2.6 F, and
an eGective range r0=1.9 F for the average A-nucleon
potential in the hypertriton. These parameters corre-
spond to a slightly stronger potential than that reported
in the first row of Table VII, whose attractive well has
essentially the same intrinsic range. "

For a potential which is characterized by an effective
range and a negative scattering length (and, therefore,
by a well-depth parameter s &1), Eqs. (3.1) imply that
the well-depth parameter will be larger, the larger the
value of the hard-core radius. This leads one to specu-
late, as Lichtenberg" did, on what value of hard-core
radius might be required in order that the bound state
of the hypertriton would imply a bound hyperdeuteron.
The A-nucleon interaction which might lead to a bound
hyperdeuteron is the more attractive of the triplet and
singlet interactions. If the triplet is the more attractive,
then the hyperdeuteron potential is the same as the
average potential effective in the hypertriton. " The
well-depth parameters given in Table VII show that,
in this case, the hyperdeuteron wouM not be expected
to exist for a hard-core radius of 0.6 F or less. If the
singlet interaction is the more attractive, then the
well-depth parameter s, which would be appropriate to
the hyperdeuteron is related to the average well-depth
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parameter s calculated in this paper by'~

s.=sP/4+ st/4s, g', (5.2)

where si/s, is the ratio of the well-depth parameters of
the triplet and singlet potentials. Empirical estimates
of this ratio, based on analyses of the hypertriton and.
one other light hypernucleus in terms of A.-nucleon
potentials with an intrinsic range 6= 1.5 F, are 0.45 for
potentials without a hard core and 0.55 for potentials
with a hard-core radius D=0.2 F.~ Both the value of
this ratio and the validity of expression (5.2) depend
upon the absence of appreciable three-body A-nucleon
interactions. " Even in the absence of three-body
interactions, the ratio si/s, should be determined for
each assumed value of the hard-core radius before (5.2)
can be applied with any certainty. As an indication of
the results which might be obtained, we use {5.2) with
the value s&/s, =0.5 suggested by existing estimates.
This leads to s, =8s/7 and to an implied bound hyper-
deuteron for s)~7/8. A value of s in excess of this
critical value is given in Table VII for D=0.6 F; an
improvement in this calculation by less than 10% (as

indicated in Table UIII) would, however, reduce s below
the critical value. These estimates indicate that a
hard-core radius of 0.6 F or more would be required in
order for the existence of the hypertriton to imply the
existence of a bound hyperdeuteron.

An improvement in the results reported here could
be expected with the use of a trial function of the form
(2.3) with each factor being of the form

(expL —a (r—D)j—expL —P (r—D)$)
+${expg—a'(r —D)j—expL —P'(r —D)]), (5.3)

analogous to the trial function used by Downs and
Dalitz24 for potentials without a hard core. The use of
such a trial function would require an appreciably
greater computational eGort than that expended. in the
present work, but would not require any modihcation
in the formulation of the variation problem outlined
here. The extent of the improvement which can be
obtained with a more flexible trial function, such as
that suggested above, will have to be known before the
conjecture following (5.1) can be taken seriously.

Explicit expressions for the expectation values appearing in the variation inequality (2.2) are given here in
terms of the integrals X and L defined in (2.10).'i Algebraic expressions for these integrals, which can be obtained
from the basic integral

I(ABC)=fe "'" ' ~' & ~' ~'dr, drgfr,

e
—AD e

—BD e
—CD

are
ABC A (A+8)(A+C) 8(A+8)(8+C) C(A+C) (8+C)

(A1)

8 1 — D' D D' D D D 1
E(A 8 C) = e&"+e+c&n — e t"+s+c&DI(A 8 C) = D'+ + + + + + +

BABBBC ABC A B C AB AC BC ABC

e-AD

A (A+8) (A+C)

D2DD' 3D' 3D"- 2D D 4D
2D'+—+ + + + + + +

A A+8 A+C (A+8)' (A+C)' A(A+C) A(A+8) (A+C)(A+8)

e—BD 3D'2 2 D' 3D'
+ + + 2D'+—+ +

(A+8)'(A+C) (A+8)(A+C)' A (A+8) (A+C) 8(A+8) (8+C) 8 A+8 8+C

2D D D
+ + + + + + +

(A+8)' (8+C)' 8(A+8) 8(8+C) (A+8)(B+C) (A+8)'(8+C) (A+8)(8+C)"-

e—cD

+
8(A+8)(8+C) C(A+C)(8+C)

DD' 3D' 3D' 2D 2D
2D'+—+ + + + +

C A+C 8+C (A+C)' (8+C)' C(A+C)

D+- + + + + (A2)
C(8+C) (A+C)(8+C) (A+C)'(8+C) (A+C)(8+C)' C(A+C)(8+C)

"For a discussion of the effect of three-body A-nucleon interactions see, for example, A. R. Bodmer and S. Sampanthar,
Nucl. Phys. 31, 251 (1962).
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I.(A 8 C) =e&~+~+c&D
a2 D D 1

e '~+s+c'DI(A, B,C) = D'+ +—+ ——

888C A J3C 8 C Bc

D D
LP+ + +

A (A+8) (A+C) A+8 A+C (A+8) (A+C)

e ~~ — D D 3D 1 1 2
2D'+—+ + + + -+

8(A+8) (8+C) 8 A+8 8+C 8(8+C) (A+8) (8+C) (8+C)'

3De
—~D — D 1 1 2

2D'+ —+ + + + +
C(A+C)(8+C) C A+C 8+C C(8+C) (A+C)(B+C) (8+C)'

(A3)

The normalization integral is

where

d~r~(A;, Bg,CI,),

Al=Bl=2o, ,
A R 82 ++Py

A3=8s=2p,

Cl= 2y;
Ca= v+~;
C3= 25.

The variation parameters (a,P,y,b) are defined in (2.4). The expansion coeffKients in (A4) are

and, otherwise,

d~~~= —8, d;;g, =4 if two indices are 2

if ~+j+k is
even

The values of the arguments A;, 8;, and Cq given in (AS) and those of the expansion coefficients d;;I, given in
(A6) are used throughout the Appendix.

The expectation value of the»~etic energy is

vrhere

T=P Tg,

h'(My+ M) A2 3

Tl- (o fI)' Z d—vsK(As, » C~)+ (V—&)' E ~'nK(A'»~iC~)~
2MMg 2M i, i l

(A7a)

(A7b)

A&(m, +i+ 3 (a+p) 3

TQ— a Q d~, &(A~,B~,CI)+ Q dg, &(Ag, B;,Cg)+p Q dlggI. (AS,B~,CI)
MMg j,k~1 j,k~1

(A7c)

(~+~) *
2's= —v 2 O',I (Ci,A',»)+ Z 4'~L (C~ A'»~)+& Z de'~&(CI A'8~)

M 2 i.t i, j~l
(A7d)

The expectation value of the nucleon-nucleon potential (2.1a) is

3

V= —Vo Q da, I,K(As, B; Ca'), (Aga)
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where
Ck'= Ck+q,

and that of the average A-nucleon potential (2.1b) divided by —Uo is

I'= Q d;, I,K(.4,8, ,CI,), (A9a)

where
(A9b)

The parameters q and X are the potential range parameters given in (2.1).
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Propagation of the Single-Scattering Distribution in Multiple Scattering:
Muon Scattering in Iron*

NoRRIs A. NIGKoLS) AND WALTER H. BARKAs

Lawrence Radiation Laboratory, University of California, Berkeley, Californi a
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The moments of the projected angular distribution of the single-scattering process are shown to be deriv-
able from the emergent angular distribution of a beam that has traversed a thick absorber. Since very small
deQections do not contribute to the observed moments, ambiguity is avoided by adopting a formulation of
the electronic screening that leads to a de6nite total scattering cross section. The theory is applied to an
experiment in which 2-Bev muons are incident on an iron scatterer 18 in. thick. The observed angular
distribution is analyzed. It is shown that the nuclear electromagnetic form factor derived from the muon
data is consistent with that found from electron scattering, and is completely incompatible with a point-
nucleus model.

I. INTRODUCTION

ECAUSE they are thought to interact only with
the distribution of charges and currents in an

atomic nucleus, charged leptons have been considered
excellent probes for a study of the detailed structure
of atomic nuclei. Extensive use has already been made
of electrons for this purpose. ' In some respects muons
should be even better suited for this task, but until
recently the only "beams" of muons available were
those of the cosmic rays. A complication also was intro-
duced when muons were reported to scatter23 as pre-

~Work done under the auspices of the U. S. Atomic Energy
Commission.

f Present address: Lockheed California Company, Los Angeles,
California.' R. Hofstadter, Ann. Rev. Nucl. Sci. 7, 237-316 (1957).' J.L. Lloyd and A. %'. Wolfendale, Proc. Phys. Soc. (London)
A68, 1045 (1955).'I. B. McDiarmid, Phil. Nag. 46, 177 (1955};W. L. Whitte-
more and R. P. Shutt, Phys. Rev. 88, 1312 {1952};and J.L. Lloyd,
E. Rossle, and A. %. Wolfendale, Proc. Phys. Soc. (London)
A70, 421 {1957).fSummary of muon experiments to 1958 in:
G. N. Fowler and A. %. Wolfendale, Progress in Elementary
Particle and Cosmic-Ray Physics, edited by J. G. Wilson and S.
A. Wouthuysen (North-Holland Publishing Company, Amster-
dam, Holland, 1958), Vol. 4, p. 123.j

dieted by the Moliere theory, 4 which is inapplicable if
the nucleus cannot be represented by a point charge.

In this paper we describe an experiment designed to
study this question. Since it was initiated, however,
results have been reported by other investigators that
leave little reason to believe that the muon scatters
anomalously. Decisive experiments were carried out by
Connelly et c/. ,

' Masek et ul. ,
' Kim et ul. ,' Citron eI, ul, ,

'
and others. Our results, therefore, are merely confirma-
tory, but in obtaining them we have introduced a new
method for analyzing the data that presumably has
utility for many related problems in high-energy
physics.

After a beam of particles has penetrated a finite

' G. Moliere, Z. Naturforsch 2a, 133 (1947}; 32, 78 (1948);
H. A. Bethe, Phys. Rev. 89, 1256 (1953).

g P. L. Connolly, J. G. McKwan, and J. Orear, Phys. Rev.
Letters 6, 554 (1961}.' G. E. Masek, L. D. Heggie, Y. K. Kim, and R. W. Williams,
Phys. Rev. 122, 937 (1961).

7 C. Y. Kim, S. Kaneko, Y. B. Kim, G. E. Masek, and R. W.
williams, Phys. Rev. 122, 1641 (1961).

A. Citron, C. Delorme, D. Fries, L. Goldzahl, J. Heintze,
E. G. Michaelis, C. Richard, and H. @verbs, Phys. Letters 1, 175
(1962).


