
NEUTRONS FROM PROTON BOMBARDMENT OF Li

slowly with energy and the angular distribution of
neutrons to both the ground state and first excited
states becomes quite isotropic at higher energies. The
possibility of a direct-interaction mechanism has been
suggested at lower energies" but the angular distribu-
tions, especially at high energies, show none of the

"H. R. Striebel, S. E. Darden, and %. Haeberli, Nucl. Phys.
6, 188 (1958).

strong forward or backward peaking usually associated
with direct processes.
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The change in nuclear charge by one unit in beta decay causes initial and final atomic states to overlap
imperfectly. The efFect of this imperfect overlap on the shape of allowed electron and positron emission
spectra is calculated. The calculated change in the spectrum shape can be simulated by including the average
excitation energy of the final atom in the energy balance. The inhibition, due to imperfect atomic overlap,
of electron-capture rates, as well as total electron and positron-emission rates, is also determined. In all
known cases, imperfect atomic overlap increases beta-decay lifetimes by at most a few percent, and usually
by an amount less than a few tenths of one percent. Antisymmetrization between decay and bound atomic
electrons, in conjunction with the change in nuclear charge, gives rise to exchange efFects in electron emission
and electron capture. Due to exchange terms, the usual allowed electron spectrum is multiplied by a quantity
that is of the order of 1—2Z ' for energies less than the binding energy of a E electron in the initial atom.
This exchange correction is negligible for higher energies of the emitted continuum electron. A simple
approximate formula is derived that predicts the efFect of exchange on I to E capture ratios; this formula
predicts a 22% increase over the usual theoretical value for the I to E ratio of Ar". The Ar3'prediction is jn
excellent agreement with recent experiments and with a more complicated calculation by Odiot and Daudel.
Exchange efFects change total electron emission and electron capture rates by at most a few percent.

I. INTRODUCTION
' '" OW does the change in nuclear charge by one
~ ~ - ~ unit from initial to 6nal atomic states aGect beta
decayII How much does the imperfect overlap of initial
and final atomic states inhibit beta-decay rates) Does
the possibility of exchange between bound and decay
electrons signi6cantly affect electron emission and
electron capture probabilities' This paper is an attempt
to answer the above questions.

Benoist-Gueutal' 6rst emphasized that a correct
specihcation of the initial and final states of a radio-
active system must include a description of the atomic
electrons. The overlap between initial and final atomic
states is not equal to one since the initial and 6nal
states are eigenstates of zero-order Hamiltonians with
diferent nuclear charges. Thus, one expects the theo-
retical decay rate to be decreased if atomic states are
included in the description of the radioactive system.
If this decrease were large, one would have to know

* Supported in. part by the Joint Program of the Oftice of Naval
Research and the U. S. Atomic Energy Commission, and in part
by the National Aeronautics and Space Administration.' P. Benoist-Gueutal, Ann. Phys. (Paris) 8, 593 (1953).

the magnitude of the decrease in order to calculate
nuclear matrix elements from experimentally deter-
mined parameters.

Benoist-Gueutal' estimated the eGect of imperfect
atomic overlap on the total electron capture rate of
Be' by calculating the electron capture probability for
various final atomic states. She concluded that the
decrease in the total decay rate was between 0 and
30%; her calculation was limited by the lack of accu-
rately known wave functions for an excited lithium
atom. For heavier atoms, good atomic wave functions
are even more dificult to obtain than for lithium.
Moreover, the problem of evaluating the decay prob-
ability to all final states of a heavy atom is prohibitively
complicated.

We calculate the eGect of the change in nuclear
charge by expanding the energy conserving delta
function as a power series in the excitation energy
of the 6nal atom and then use closure to sum the
beta-decay transition probability over all possible final
atomic states. Explicit results are presented for allowed
electron and positron emission and for allowed electron
capture.
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The allowed electron and positron spectrum shapes
that are obtained by taking account of imperfect atomic
overlap, but not exchange, can be simulated by includ-
ing the average excitation energy of the final atom in
the energy balance. The calculated change in the
allowed spectrum shape due to imperfect overlap is
small, in agreement with the expectation of some
previous investigators. "

The fractional change in the total decay rate due to
imperfect atomic overlap is, for electron and positron
emission as well as electron capture, of the order of
minus the average excitation energy of the final atom
divided by the energy release of the process. That is,

X'/X' E, /E— (1)

"here "'/)p is the fractional change in the total decay
rate, E,„ is the average excitation energy of the final
atom, and E, is approximately equal to the difference
of nuclear masses plus (for electron capture) or minus
(for electron or positron emission) one electron mass.

This change in the total decay rate is less than 10%
for all known radioactive decays and is less than a few
tenths of one percent for most decays. It is completely
negligible for Be'. We conclude that it is not necessary
to consider the imperfect overlap of atomic states in
determining experimental nuclear matrix elements.

In electron emission, an exchange contribution to the
decay probability results from the requirement that
the 6nal-state vector be antisymrnetric under the inter-
change of the coordinates of any of the bound atomic
electrons with the coordinates of the continuum
electron. This exchange contribution would be zero if
the initial bound electron states were orthogonal to
the 6nal continuum electron states. The eGect of anti-
symmetrization is to multiply the allowed shape factor
by a quantity that is of the order of 1—2Z-' for energies
less than one-half the binding energy of a E electron
in the initial atom. This exchange correction is negligible
for larger values of the energy of the continuum electron.

With respect to total decay rates, the overlap eGect
dominates for small Z and the exchange efkct is more
important for large Z.

Recent precision experiments4 have shown that the
AP' L-to-IC capture ratio is about 22% larger than the
value expected on the basis of the usual theory, "
which does not include the whole atom in the description
of initial and 6nal atomic states. Following a suggestion
by Benoist-oueutal, "Odiot and Daudep used wave
functions for the whole atom to calculate the Ar ' I- to

' H. M. Schwarz, Phys. Rev. 86, 195 (1952); see also R. Serber
and H. S. Snyder, ibid. 87, 153 (1952).' P. Benoist-Gueutal, Compt. Rend. 230, 624 {1950);S. Odiot
and R. Daudel, J. Phys. Radium 17, 60 (1956).

4 See, for example, A. G. Santos-Ocampo, and D. C. Conway,
Phys. Rev. 120, 2196 (1960); C. Manduchi and G. Zannoni,
Nuovo Cimento 22, 462 (1961); P. %'. Dougan, H. %. D.
Ledingham, and R. 9/. P. Drever, Phil. Mag. 7, 475 (1962).' H. Brysk and M. E. Rose, Rev. Mod. Phys. 30, 1169 (1960).

6 R. Bouchez and P. Depommier, Rept. Progr. Phys. 23, 395
(1960}.

A. capture ratio. The prediction of Odiot and Daudel
is in excellent agreement with the recent precision
experiments, provided that correlations due to the use
of Hylleraas-like atomic wave functions do not play an
important role in the decay process. ' '

We derive an approximate simple formula for the
exchange correction to L to E ratios. This approximate
formula yields results for Ar" in agreement with
experiment and with the more complicated calculation
of Odiot and Daudel. All additional correlations are
shown to be unimportant.

The eGect of exchange on the total capture lifetimes
of Be' and Ar" is negligible and is at most a few percent
in all other cases. Exchange sects are more important
for L to I ratios than for total capture lifetimes
because L capture is usually only a small part of the
total capture probability and because the increase in
the I--capture rate due to exchange is approximately
cancelled by the decrease in the K-capture rate. For
values of Z greater than 20 or 30, the e6ect of exchange
on total electron capture probabilities is larger than the
effect of imperfect overlap.

In Sec. II we discuss a formalism that is useful in
isolating the efIect of the change in nuclear charge from
other small e8ects such as screening and finite nuclear
size. We apply this formalism in Sec. III to the calcu-
lation of the eGect of imperfect overlap on the allowed
positron spectrum shape and on total positron decay
rates. In Sec. IV we study the effect of exchange, as
mell as imperfect atomic overlap, on electron emission
probabilities. We investigate, in Sec. V, the eGect of
exchange and imperfect overlap on total electron
capture lifetimes and on L to E ratios. "

II=Ho+ap, (2)

~ The exchange correction to the L-to-E capture ratio has noir
been calculated for a number of decays; this correction removes
a systematic discrepancy between precision experiments and the
usual electron capture theory. See J. Bahcall, Phys. Rev. Letters
9, 500 (1962).

~ J, R. Reitz, Phys. Rev. 77, 10 (1950). Other useful references
are given in this paper.

A. Migdal, J. Phys. (U.S.S.R.) 4, 449 {1941).' E. L. Feinberg, J. Phys. (U.S.S.R.) 4, 424 (1941).
1o M. E. Rose and D. K. Holmes, Phys. Rev. 83, 190 (1951).

II. ATOMIC HAMILTONIANS AND THE
"GOLDEN RULE"

By choosing suitable unperturbed Hamiltoruans for
initial and final atomic states, we can separate the
effect of the change in nuclear charge from other small
sects such as electron screening, "direct collisions of
emitted electrons with bound electrons, " and finite
nuclear size. '" These suitable Hamiltonians must
include electrostatic interaction among all bound and
continuum electrons that are present; they must also
include a Coulomb potential due to a nucleus of finite
size.

The Hamiltonian for the radioactive system is



OVERLAP AN D EXCHANGE EFFECTS I X P DECAY 2685

The beta-decay interaction is described by Hp. The
total Hamiltonian H operates on state vectors that
specify all relevant nuclear, atomic, and leptonic
variables.

The usual derivations" of "The Golden Rule"" make
use of time-dependent perturbation theory and require
that Ho be the same for initial and 6nal states. Since
the total number of nucleons is unchanged by beta
decay, the nuclear Hamiltonian Hz, when written in
isotopic spin notation, is the same in initial and final
states. The number of electrons, however, changes in
electron capture or electron emission as does also the
electron-nucleus Coulomb interaction. %e want Ho to
provide for the electrostatic interaction among all
electrons that are present.

This can be done conveniently by writing H& in
second-quantized form. %e have

IIx=Z ha, j(is oj+2o Z Nij, aios oj oioi,.t . 1

where a;t (o,) are operators that create (destroy)
electrons in the single-particle states i (or j). The
matrix elements in Eq. (4) are defined by

with

and

h= I p+P n—X~./r, —

hi, i= (0'i)Ii A')
&

=—
l ( (&)e (2), e (&)w(2)).

(Sa)

(5b)

The quantity h is the single-particle Dirac operator
and is written, for simplicity, with a Coulomb inter-
action due to a point nucleus. The operator X~ is the
proton number operator and is equal to Z in the initial
state and Z~i in the 6nal state; 0. is the fine structure
constant. %e use throughout this paper units in which
A=nz, =c= i. The mutual electrostatic interaction be-
tween electrons is described by I and the second term
of Eq. (4). The electrostatic interaction between, for
example, an emitted electron and any bound electron
is automatically included in (4). In applications, we
shall use wave functions that treat the mutual electro-
static interaction among electrons by a self-consistent
6eld approximation.

Equation (4) is valid for any complete set of one-
particle basis functions s);(x); we shall find diiferent
sets are appropriate for electron capture and for electron

"See, for example, H. S. Snyder, Phys. Rev. 83, 1154 {1951),
or L. I.Schift, Quantum Mechenics {McGram-Hill Book Company,
Inc. , New York, 1949).

E. Fermi, ENcleer Physics {University of Chicago Press,
Chicago, 1950},rev. ed. , p. 142. Fermi uses "Golden Rule No. 2"
to refer to the transition probability formula.

where the unperturbed Hamiltonian Ho includes
nuclear, atomic, and neutrino parts:

&0=—&~+&~+&..

emission. We shall also see (Sec. V) that the second-
quantized version of H~ is most convenient for the
computation of exchange terms in electron capture.

Positron decay can be treated by adding to H&,
given by Eq. (4), a term containing the Dirac positron
Hamiltonian plus a term describing the electrostatic
interaction of the positron with all electrons that are
present. The positron terms are identical with the
corresponding electron terms except for a change in
sign of the electrostatic contributions and the replace-
ment of electron creation and annihilation operators
by positron creation and annihilation operators.

The neutrino field is easily written in second-
quantized form" and will not be discussed here.

The atomic Hamiltonian given in Eq. (4) can be
used for both initial and 6nal states. It will be con-
venient to refer to the version of Hg for which S„ is
equal to the initial nuclear charge as the initial atomic
Hamiltonian and to refer to the version for which X„
is equal to the 6nal nuclear charge as the final atomic
Hamiltonian.

The usual derivations of the "Golden Rule" are valid
if the total Hamiltonian is chosen as described above.
The partial decay rate from an initial state i to a final
state f is then given by

)i = 2~
I (f I &e

I &) I'&(~' —E!). (7)

The initial and 6nal atomic states are included in
Ii,), I f) and the initial and final atomic energies are
included in E;, Ef. In order to find total decay prob-
abilities, X of Eq. (7) must be summed over all possible
6nal atomic states and averaged over initial atomic
states.

III. POSITRON EMISSION

A. General Results

Let the initial state of a positron-emitting atom be
represented by

and the 6nal state by

I
f)=IA';e+; v;k'), (9)

where IG) is the state vector of the initial atom in its
ground state and

I
A') is the state vector for the final

atom in any one of its possible states. Final states in
which some of the originally bound electrons are
shaken ofP' "are included in the set fA'). The initial
and 6nal nuclear variables are represented by k and k'
and the positron and neutrino variables are represented
bv e+ and r.

"The second-quantized notation introduced in this section is
explained and justided by S. S. Schweber, Ae Ietrodlchon to
Quantum Pkld Theory {Row, Peterson and Company, Evanston,
Illinois, 1961),Chap. 6, p. 121.

'4 See, for example, J. S. Levinger, Phys. Rev. 90, 11 {1953),
and A. Winther, Kgl. Danske Videnskab. Selskab, Mat. -Fys.
Medd. 27, No. 3 {1952).
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The allowed positron spectrum can be calculated in where
the usual way" using Kqs. (7), (8), and (9). We find I';;p —Efo= W'p —W —q+AE, (18)

GPP co

X(p) = p'dp dp q'M,
4n' p

(10)

M—= g (A', e+Iy, (0) IG)(1+&5)

X &G IW '(0)
I

A' ")b(E'—Er). (12)

In Eq. (12),$,(0) is the electron field operator evaluated
at the nucleus; iP. destroys electrons and creates posi-
trons. The summation in Eq. (12) is over all final
states, A', of Z electrons in the presence of a nucleus
of charge Z—1 and over the spin projection 0' of the
emitted positron.

The difference between initial and final energies of
the radioactive system is given by the following
equation:

E, Ef Wo —W ——q+E—(G) —E(A')—
=0 (13)

In Eq. (13), W0 is the difference between initial and
final nuclear masses, W is the total electron energy
including its rest mass, q is the neutrino energy, and
E(G) and E(A') are the initial and final atomic energies.
As used here, E(G) and E(A') represent only atomic
binding energies and do not contain the rest masses of
the bound electrons.

Since only the positron part of iP, contributes to M,
it is easy to show that

M=2F( Z, W) Z~ h(—E'—Er) I
&A'I G) I' (14)

where F(—Z, W) is the familiar Fermi function for
positrons. '~ If the energy conserving delta function in
Eq. (14) were independent of A', we could immediately
use closure to reduce M to the usual expression

M'=2F( Z, W)b(Ep —Ef—o). (15)

Equation (15) leads to the usual allowed positron
spectrum shape" when M' is inserted in Eq. (10).

Thus the effect we are investigating appears in the
formalism as a consequence of energy conservation.
In order to separate out phase-space dependence upon
the atomic energy release, we introduce the difference,

hE= E(G) E(G'), —(16)

of the ground-state energies of initial and final atoms.
The total energy difference can now be written

E,-E,=(E; -E;)+«(G)-E(A')],
'5 E. J. Konopinski, Ann. Rev. Nucl. Sci. 9, 99 (1959).

where Gi is the vector coupling constant, $ is the
usual allowed combination of nuclear matrix elements, "

~-=&1) +C"/C" ( )
and

Z~ 1&A'I G) I'=1.

Ke find for the spectrum shape

l (p)—=l'(P)L1+l'(P)/l'(P)],
where

(21)

Xo(P) —(Gv g/2'')dP P'F& Z W)ifo2 (23

is the usual allowed positron spectrum and

~'(p)/l'(p)
=—(2/qo) E~ I

&A'IG) I'LE(A') —E(G')] (24)

is the fractional correction to the usual spectrum. In
the above equations, qp is the neutrino energy obtained
by setting E;0 Efo equal to zero in—Eq. (18). The
summation over A' represents the average excitation
energy of the final atom ' ' "

Only the first two terms in the Taylor series expan-
sion of the delta function were included in the derivation
of Eqs. (22) to (24). The justification for the omission
of higher order terms will become obvious when the
magnitude of the first-order correction is calculated
for typical cases.

The fractional correction to the total positron decay

"F. Ajzenberg-Selove and T. Lauritsen, Nucl. Phys. 11, 1
(1959)."M. J. Lighthill, Introduction to Fourier Analysis and
Generalised Functions (Cambridge University Press, London,
1958).

'8 R. F. Christy, Nucl. Phys. 22, 301 (1961).

and E(G') —E(A') is the negative of the excitation
energy of the final atom. The maximum positron
kinetic energy, E,„, obtained from equating E p —Ef'
to zero is

E,„=8'p+AE —1.

The quantity E +2mc' is usually called the Q value
for positron decay. "

Using the definitions for the energy differences
adopted in Eqs. (17) and (18), we can write

5(E Ef) =—5(E'—Ef')
+8'(E,'—Er') LE(G') —E(A ')]
+& (E' Ep)LE(G—) E(A )]'/2+''' (20)

where 6'(x) is the derivative of the Dirac delta function
with respect to x. The Taylor series expansion of the
delta function is easily justified along the lines de-
scribed, for example, by Lighthill'7 or by showing that
for specific spectrum shapes Eq. (20) is equivalent to
the binomial expansion of the neutrino energy defined
by Eq. (13).

When the Taylor series expansion of the delta
function is substituted in the definition of M, the sum
over all final atomic states can be carried out by means
of the closure relation
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rate can be calculated by integrating Kq. (22) over all

positron momenta. One 6nds

)I,=Xp[1+X'/Xp j, (25)

where )' is the usual total decay rate and

X'/XP = —(R/E )
X+A [E(&')—E(G')J I

&'4'I G& I', (26)
with

+K
200

I 1 I

dpdq p'qF( Z, W—)5(Efp Efp)—

dpdq p'q'F( ZW—)b(E' Er')—
(27)

50
0 IO 20 50 40 50 60 70 80 90 IOO

Z

FIG. 1. Plot of —O'E{G)jBZ' vs Z.

Since E(A') is greater than or equal to E(G'), the
imperfect overlap of atomic states decreases the decay
probabilities )i(p) and ) from their usual values Xp(p)

and Xo.

B. Evaluation of Fractional Corrections

The summation over A' can be performed in the
usual way' '.
E~ [E(~')—E(G') ll &~'I G& I'

=E(G)—E(G')+ &G I
(Bp' —fop) I G&

=E(G)-E(G')+&GIE '( /r')IG). (28)

In Kqs. (28), Hp(Hp') is the initial (final) atomic
Hamiltonian. Since"'

The quantity R that occurs in Eqs. (26) and (27)
can be calculated in two limiting cases; we 6nd

R/E 7/2 — if &2praZW/p), „«1,
( )—2saZ(2/E „)'~' if saZ(2/E )'IP))1.

C. Interpretation

The results of the previous sub-sections show that

~(p)=7'(p) L1—(1/qo) IB'E(G)/»
I l

—=7P(P) [1—2E. /qp],
(33)

and

For actual positron decays, the two expressions given
above for R do not differ much from each other. This
shows that R is not a sensitive function of energy or
nuclear charge in the region of interest.

(34)7 =no[1—RE.„/E...],
qp= W p W+DE, —

BE(G)/BZ= —&GIB, ( /r, ) IG&, (29)
wherewe find

(35)
[E(~')—E(G')j I

&~'I G) I'

=—p[B'E(G)/BZ'j (3o)
and the average excitation energy of the final atom
is1,2,18

E.„———,'B'E(G)/BZ'. (36)The derivative of the ground-state energy with
respect to Z, BE(G)/BZ, has been given for light atoms
by Allard" in a modi6ed form of the Fermi-Thomas
result and, for heavy atoms, Foldy~ has discussed the
Hartree-Foci' predictions of BE(G)/BZ. When the
results of Allard and Foldy are differentiated with
respect to Z, one 6nds

B'E(G)/BZ'= 49 Z'~' e—V, Z (10
=46 Z"' eV, Z&10.

(31)

Equation (31) is not ~alid for hydrogen, but should be
accurate to 10 or 20%%u~ for other atoms.

Figure 1 was obtained from Kq. (31) by joining
smoothly the two branches of B'E(G)/BZ vs Z—at Z
equal to ten. This figure shows that B'E(G)/BZ is a-
monotonically increasing function of Z that rises
slowly from about 50 eV for the lightest atoms to about
300 eV for the heaviest atoms.

"R. P. Feynman, Phys. Rev. 56, 340 (1939).
'0 L. Foldy, Phys. Rev. 83, 39I (1951)."G. A11ard, J.Phys. Radium 9, 225 (1948}.

The spectrum given by Eq. (33) is the same as
would be obtained if one ignored atomic overlap and
replaced, in the usual theory, hE by hE+E . The
first-order effect of the imperfect overlap of atomic
states is thus a shift of the positron spectrum, by an
amount equal to the average excitation energy of the
final atomic states.

One may be tempted to ignore imperfect overlap and
regard the spectrum shift by E, as due only to the
decrease in available energy for the emitted positron
when the excitation of the final atom is taken into
account. This interpretation is not consistent, however,
since the probability for a transition to an excited state
of the 6nal atom is zero if the imperfect overlap of
atomic states is not considered. Moreover, the de6nition
for (Ep Erp) that is given in Kq. (—18) is the one that
is actually used in tabulations.

If the conventional definition of E; —Ey that was
given in Eq. (18) were changed by adding E,„ to AE,
then the 6rst-order correction to X(p) would be zero
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and the lowest-order correction would be proportional
to the second derivative of the energy-conserving delta
function. In this case,

) '(p)/~'(p)—=(1/5a")L~'&(G)/~Z'j, (3Z)
Parent
isotope

Daughter
isotope

—XI/) P

(%)

TAsLE I. Overlap eGect for some moderate
energy positron decays.

which is completely negligible.

D. Apylicattons

Zn
Qr77
gn114
l' al35
PaNO

Cus5
Se77
Cd114
Ba1$5
Th$$

0.325
0.342
0.400

0.300~0.150
0.400

0.1
0.1
0.1

0.2~0.1
0.1

The discussion in the previous subsection shows that
the main eGect of atomic overlap on the positron
spectrum is a shift of the end-point energy by at most
a few hundred electron volts. This shift is less than the
experimental error in almost all current experiments
and hence can be ignored.

Some approximate results for total positron lifetimes
are shown in Table I.The results are approximate since
neither of the extremes described by Eq. (32) applies
to the cases considered and, thus, R was not determined
accurately. Table I and Eq. (34) show that the overlap
efI'ect on total lifetimes is less than a few tenths of one
percent for most positron decays. This shift in the
positron lifetime is within current experimental ac-
curacy but is far too small to be signi6cant in the
determination of experimental nuclear matrix elements.
In particular, the important 0'4 matrix element is
a6'ected by less than one-tenth of one percent.

The overlap effect would be important only for very
low-energy decays, lower energy decays than those
listed in Table I. However, very low-energy positron
decays are much less likely than electron capture
because of the additional teP of energy available in the
electron-capture process. We see in Sec. V that the
overlap eAect is negligible in electron capture if positron
emission is energetically possible. Thus the change in
the total disintegration rate of a given nucleus is
negligible for very low-energy positron decays.

However, it is conceptually possible to test the
correctness of the formulas developed in this paper by
measuring accurately the tiny positron to electron
capture ratio for some very low-energy positron emit-
ters. The required experimental accuracy in the ratio
would be of the order of 1 or 2% and, hence, this
experiment is dB5cult.

rv. Er.ECrROm EMISSrom

A. General Discussion

The calculation of the e8ect of the change in nuclear
charge on electron-emission rates is similar to the
previously described calculation for positron emission,
except that the antisymmetrization of the 6nal-state
vector between bound and continuum electrons must
be taken into account.

The final atomic Hamiltonian generates a complete
set of state vectors that we shall denote by IA', e„.).
We limit ourselves to 6nal states that contain at least
one continuum electron, since the probability for the

creation of a bound electron by the beta-decay process
is usually too small to be of importance in terrestrial
experiments. ~—~ The treatment given below can easily
be extended to include the possibility of bound-state
beta decay if radioactive systems are ever found for
which this process is important.

The electron spectrum, allowing for a change in
nuclear charge, is given by

Gv2 (
X(p) = — dp p' dq q'M,

4x'
where now

M-=Z (~', .I~.t(0) IG)(1+")

(3g)

M= Mc c+Me c+Mo e—+Me (41)

where Mg g is the same as the positron M except for
the obvious substitutions mentioned previously. The
new terms are

Me e=—2 (~'; e. ice"(0) IG)(1+&~)
A', n'

x «I p. (o) I
~")~(L'*—J-'i) (42)

~ R, Daudel, M. Jean, and M. Lecoin, J. Phys. Radium 8, 238
(1947); Compt. Rend. 225, 290 (1948); R. Daudel, P. Benoist,
R. Jacques, and M. Jean, i'. 224, 1427 (1947).

"See also the description by Benoist-Gueutal in reference 1 of
the work of M. Jean.

~ J. Bahcall, Phys. Rev. 124, 495 (1961).

X (GI f.(0) I
A'; e.)e(E; Er). (39)—

Equations (38) and (39) are identical with the cor-
responding positron Eqs. (10) and (12) except for the
replacement in M, of e+ by e, and P, by P,t.

The e8ect of the antisyrrunetrization of the 6nal-state
vector between bound and continuum electrons can be
exhibited explicitly by writing f, as a sum of bound
plus continuum parts. Let~

fe+fo+po—sitron operators

=En os q~y+P. a. q. +positron operators, (40)

where qy, q. form a complete set of one-elect. ron
bound and continuum wave functions referring to some
approximate form of the 6nal atomic Hamiltonian. The
positron part of f, does not contribute to electron
emission probabilities. Thus,
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and

M = g &A', e, IP '(0)IG&(1+y)

x &G I k (o) I
A "»(E'—Ef) (43)

Since the final atomic Hamiltonian is not the same

as the initial atomic Hamiltonian, the final continuum

electron states are not orthogonal to the initial bound

electron states. It is this fact, plus the antisymmetry
of the wave functions, that permits Mp t. , Mq g, and

Mg g to be nonvanishing, The lack of orthogonality
between final continuum electron states and initial
bound electron states also permits the shaking o6 ofs' "
bound electrons into the continuum after the beta decay
has occurred.

The change in the electron spectrum from its usual

shape can be separated into two parts, one part due to
the change in M~ ~ from its usual value and another

part due to the nonvanishing of M~ ~, Mq ~, and

Me o. In subsection (8), we summarize changes in

decay probabilities due only to Mz ~, in subsection

(C) we investigate changes in decay probabilities due

to other parts of M. The results are combined and

applied in subsection (D).

B. Direct Emission

If only Mz z contributes to M, then the calculation
of the electron spectrum is identical with the previously
described calculation of the positron spectrum and the
fractional correction to the usual allowed spectrum is

again given by Eq. (33). The fractional correction,
analogous to Eq. (34), to the total electron decay rate is

—Mg

and, in the same approximation,

(46c)

M — —=»(E"—E/) I a "(o)I'I &"I ») I'. (47)

The overlap integral (e, I1s) enters Eqs. (46) with a
minus sign due to the antisymmetry of the wave
functions. The way the minus sign arises can be seen
most easily by representing IG) and IG') by simple
Slater determinants.

The is electrons provide the largest contribution to
M~ q and M~ g because

I a„,(0) I'—vr '(aZ/n)', (48)

where n is the principal quantum number. We have
neglected in Eqs. (46) and (47) the imperfect overlap
of analogous atomic states, i.e., we have set &G I

G') and
&1s I1s ) equal to one. This approximation is justified,
as we shall see later, since M~ g and Mg ~ are small
themselves. We have also neglected relativistic eGects
since (e, I

1s) is negligible for continuum electron
energies much in excess of the binding energy of a
E electron.

The above expressions for Mg g and Mg ~ should
be compared with the usual approximate expression
or Mc-c,

and Mg ~. These terms are easiest to interpret phys-
ically if we consider only the largest contributions,

Mo-~ —~(E'—EP) &'I ») I &G I
G'& I'&»'I ls& '

XQ.. qs, . (0)(1+y,)ao(0) (46a)

2—8 (EP E—ro) (e, I
1s)yg, t (0) q o(0) (46b)

V/X~ (R'/2E ) (O'E/8Z') (44a)

—= —(R'/E )E, , (44b)

M~2o(E;0 —Er')
I po(0) I'

= 28(E,'—Er')F (Z,W)/V.
(49)

where R' is the only new quantity appearing in Eqs.
(44). The ratio R' differs from the positron ratio R
[Eq. (27)) only in that F( Z, W) is—replaced every-
where by F(+Z, W).

Ke can evaluate R' for the same limiting cases that
were discussed in connection with R; we find:

R'/E = 7/2 if (2scxZW/p&, ((1, (45a)

=3 if s.nZ(2/E )""))1. (45b)

Equations (45) show that R'/E, „changes slowly with

energy and nuclear charge. If the condition for the
validity of Eq. (45a) is satisfied, then the ratio X'/X' is
the same for both electron and positron decays; this
must be true since the Coulomb distortion of the
continuum wave functions is negligible if (45a) obtains.

C. Exchange Emission

7. A pproxirnate Expressions

Ke now investigate terms involving the bound-state
part of the electron field operator, i.e., M~ q, M~ ~,

Z. Interpretation

In the usual expression for Mg g that is given by
Eq. (49), 2I ao(0) I' is a measure of the probability
that a continuum electron e. is created, at the nucleus,
in the presence of the final atom. Similarly, 2

I a q, (0) I',
which appears in M», is a measure of the probability
that a bound 1s' electron is created in the final atomic
state. The term I(e, I

ls)I' in Mo—e represents the
probability that the initially present is electron is
flipped into the final continuum state e„ thus making
room for the creation of the is' electron by the beta-
decay process.

Hence, Mg g represents the probability that an
electron is created in the final is bound orbit while the
initially present 1s electron is Qipped, by the sudden
change of nuclear charge, into the continuum. The
process represented by M» is an exchange eGect
since Mo o (and Mo o) would be zero if anti-
symmetrization between the bound and continuum
electrons in

I
A'; e.) were not taken into account. It is

for this reason that we call Mg ~ and M~ t. exchange
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terms~ and call Mq q, which represents the creation of
a continuum electron, a direct term.

The quantities M& ~ and M~ & arise from the inter-
ference between the amplitude for the direct creation
of a continuum electron and the amplitude for the
creation of a bound electron with a continuum electron
being shaken oft.

GS

2.'M,-e
Rijjt

0,7

I I I I I l I I I I I I I I I I I I I

3. Calculations

It is convenient to write

Mgc M' Miis M' )+
i

(50a)
j M' Mc-c M' Mc c&

O3

OR

O,l-
Cj

0
I I I I I I I I
6 IO j2 l4

X

I I I

I6 IS S)

=Mc c(1+2(Ma c/M0)+—MB a/M'), (50b)
Fro. 2. Exchange contribution vs x.

Me /eM o (M ec/Mo)',

Neglecting the diBerence between Z and 8+1 in the
where M' is given by Eq. (49). From Kqs. (46), (47),
and (49), we see that

(51)
Me c/M~ 8Z 'x—'(1+x') ' exp[—(2x cot 'x) j. (55)

and, therefore,

M=Mc c(lyM, ,/M ) . (52)

It is useful to note that x is the square root of the ratio
of the E-electron binding energy in the initial atom to
the kinetic energy of the hnal continuum electron, i.e.,

The ratio x—= (Elr/E)'". (56)

M /M'= —(8,~1$)R,(0)(4 P/V) '" (53)

x=AZp ) (54c)

can be calculated approximately by assuming a Coulomb
distorted plane wave for the wave function of j., and a
nonrelativistic bound Coulomb function for the radial
function R&,. The integrals can be calculated exactly
using a method developed by Sommerfeld and Schur"
in connection with the problem of E-shell photo-
ionization. We find, with ~e,) normalized per unit
energy:

(e.
~
»)= (4~)-'"(g i~Ri, )

= [8F(Z+1, W)1'"x"'(maZ') —'(1+x')—'
Xexp[ —(2y cot—'x)j, (54b)

where

The ratio —ZMe c/2M' is plotted in Fig. 2. This
ratio is approximately one for continuum electron
energies less than one-half the binding energy of a E
electron in the initial atom and decreases very rapidly
for larger values of the energy of the continuum
electron.

The allowed statistical spectrum is thus multiplied
by a factor that is approximately"

1—(2/Z) fj(Eir/2 E), —(57)

which is due to exchange decays. The factor (57)
results in a change, LD, of the total decay rate that is
given by

—Aj~/X~ (2/Z) [1—(1—Err/2E )']
if E~/2E & 1, (58a)

—2/Z if E~/2E & 1. (58b)
y=n(Z+1)p —'.

The factor of (4n) '~' in Eq. (54a) is due to the fact
that ~1s) projects out only the s-wave part of ~e, ).
Formulas (54) are in agreement with the result of
Levinger" if one neglects the difference between x and y.
It is necessary to multiply the right-hand side of Eqs.
(54a) and (54b) by (8ir'/Vp)'" in order to convert the
normalization to one particle per unit volume. Equa-
tions (53) and (54) are written in a form that assumes
Ri, (0) and wc(0) are real and positive; the ratio
MQ —c/M is independent of the initial relative phase of
Ryg and pc.

"A. Sommerfeld and G. Schur, Ann. Physik 4, 409 (1930).

For a lixed value of E, —bled/jio increases with Z
for light nuclei because E~ is of the order of j.OZ' eV.
The E-binding energy can exceed two E for heavy
nuclei and, in this case, —LLX/ji' decreases with Z.

It is important to note that the low-energy electron
emission probability is decreased, due to exchange, by
an amount that is much greater than the mell-known
probability that an electron will be shaken o8, after the
decay process occurs, with a significant amount of
energy '4

~6 This factor underestimates the correction somewhat since
it neglects the efkct of exchange between e, and other s electrons.
The function 8(g) is equal to zero for x negative and is equal to
one for g positive.



OVERLAP AN D EXCHANGE EFFECTS IN P DECAY 2691

~'(p)/~'(p)=—-2E.*/~.,

hX(p)/V(p) ——2Z 'e(Ex/2 —E).

(60)

(61)

The overlap effect given by Eq. (60) is important near
the high-energy end of the electron spectrum and the
exchange eBect given by Eq. (61) is important for
energies less than one-half the binding energy of the E'
electron in the initial atom.

The existence of the exchange process could be
investigated by looking for deviations from the usual
allowed shape in the low-energy part of an allowed
electron spectrum. In order that an experimentally
accessible part of the spectrum be affected, an isotope
of rather high Z would have to be studied; an accuracy
of the order of l%%uq would then be required in order
to detect the predicted deviation from the usual allowed
shape. '~ Ideally, one would want to study an isotope
whose allowed low-energy electron decay is un-
contaminated by internal conversion electrons or com-
peting branches. Unfortunately, such ideal isotopes
are rare and, moreover, there are well-known experi-
mental difhculties in making accurate measurements
on the low-energy part of the beta spectrum.

The percentage change in the total decay rate, X'/X',
due to the overlap efFect is tabulated in Table II for
some low-energy electron decays. These approximate
values have been calculated by making use of Eq. (60)
and Fig. 1. The results show that the overlap efFect
can change allowed beta-decay lifetimes by as much
as 2%, although a more typical value is less than a few
tenths of one percent.

Approximate values for the efFect of exchange on
these total decay rates are also listed in Table II; the

TAmz II. Overlap and exchange eGects for some
low-energy electron decays.

Parent
nucleus

C14
Si32
Ni6'
Ru'0'
Yb177
OS191
Pu241

Daughter
nucleus

N14
P32
Cu63
Rh'06
Lu177
Ir191
Am~'

Q
(MeV)

0.1567
0.100~0.50

0.0669
0.039
0.160
0.143
0.021

—XI/) 0

(%)
0.1

0.2~0.1
0.4
0.9
0.2
0.3
2

—bXjhp

0.0
0.3+0.2

0.5
2
1
1
2

'7 The deviations that have been investigated by Langer and
his coworkers are unrelated to the effect being discussed here,
since the Langer deviations occur for both electron and positron
emission and at higher energies than we are considering. See,
for example, J. H. Hamilton, L. M. Langer, and D. R. Smith,
Phys. Rev. 123, 189 (1961).

D. Applications

The theoretical electron spectrum, including both
overlap and exchange effects, is

l (p)—=~"(p)L1+l '(p)/~'(p)+»(p)/~'(p) j (59)

the net result of including both exchange and overlap
efFects is to decrease the total theoretical transition
probability by a small amount.

V. ELECTRON CAPTURE

A. General Considerations

The probability per unit of time that an atom will
capture any of its electrons and leave the daughter
atom in the final state

~

A') is given by

), (A ') =Gr'](2~)—'q'(A')Mt (A ') (1+75)M(A '), (63)

where
M(A') = &A'~y. (0) ~G&, (64)

and
q(A') = Wo+1+ (E(G)—E(A') —1). (65)

The state vector
~

A') refers to the final system of Z —1
electrons associated with a nucleus of charge Z—1; the
energies E(G) and E(A') iedede in this section the
masses of the electrons.

In order to evaluate M(A'), we write f, as a sum of
bound plus continuum parts. Then

M(A')—= &A'ly (0)IG&+&A'I4, (0)IG&

=E~ &A'l&~ IG)~~ (o)
~Z.. &A'I o..

I G) q, (0). (66b)

The functions y~, y, form a complete set of
one-electron wave functions for the initial atomic
Hamiltonian.

The expression (66b) for M(A') can be evaluated
easily only if

~
G) is represented by Slater determinants

of one-electron states, the same one-electron states
that are described by pg, q, . If this assumption is not
made, all terms of Eq. (66b) will contribute and one
has to calculate an inhnite series.

If ~G) can be represented as a single Slater deter-
minant of one-electron states, then

M (A ') =P y P (A
'

~
ay

~
G) yy (0). (67)

Additional bound states must be included in the

28 D. Layzer and J. Bahcall, Ann. Phys. (N. Y.},17, 177 (1962}.

exchange effects were calculated by means of Kqs. (58).
In deriving Eqs. (58), a nonrelativistic wave function
was used for the bound is electron and this usually
leads to errors of the order of aPZ'"; the values of
AX/X' for high Z are, therefore, very crude. A number
of low-energy electron decays that are known to have
maximum electron energies less than two E~ are not
included in Table II because it was not established that
they were allowed decays.

Table II shows that the exchange e6ect on to/ul

lifetimes is usually greater than the overlap efFect.
Since the total transition probability is

X'L1+X'/Xo+ AX/Xo j (62)
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summation over b' if IG) is represented as a sum of
several Slater determinants.

The binding energy of a E electron is of the order of
100 keV for the heaviest atoms and, hence, cannot be
ignored even in zero order calculations. We define,
therefore,

where
q(A') —=q(is')+Lkq(A'), (68a)

q(1s') =Wo+E(G) —E(G') —«(1s'), (68b)

hq(A') —=E(G') —E(A')+«(1s'). (68c)

In Eqs. (68), «(is ) is the (positive) binding energy
of an electron in the E shell of the final atom. The
binding energy of an electron in the fina atom appears
in Eqs. (68) because the hole left by electron capture
is in the final atom. In almost all cases, the capture of
a 1s electron is the most probable mode of decay and
thus Eqs. (68) are useful definitions for the purpose of
calculating X'/Xo by a closure approximation. The
energy diRerence —hq(A ') is the quantity most
analogous to the atomic excitation energy that appeared
in our discussion of electron and positron emission.

If one uses a single-particle representation of IG),
the total electron capture rate can be written

&=Gr'k(2 ) ' Z q'(A')p '(0)(1+7)p (0)
bi, bP, A'

X&GIa«,'IA'&&A'Ia«, IG& (69)
Let

V(b ) =Wp+E(G) E(G ) «(b ) (70)

where «(b') is the binding energy of an electron in the
single-particle state b' of the 6nal atom. Then

X—VL1+9/Xo+ hX/V j (71a)

hX—=q(is')Gr'/or ' Q' a p,t(0) pop, (0)hq(A')
bi, bg, A'

X(GI ap'I A') &A'I a«*I G& (73)

The quantity P' is the zero-order total electron-capture
rate when the binding energy of an electron in the final
atom is used in defining q(b').

In deriving Eqs. (70) to (72), we have used the
approximation

0'(»') -f"(b')—=20(»')L«(b') —«(»') j (74)

In subsection 8, we calculate the fractional eGect,
X'/Xo, of imperfect atomic overlap on total capture
rates and in subsection C we calculate the fractional
eRect, hX/M, of exchange terms. The results for total
capture rates are summarized in subsection D. The

) o=—GP~(2~)- Z, ~ (b') Ip, (O) I, (71b)

~'=Gr'k~ 'q(»') Z p I p o(0) I'L—«(»')+ «(b')

+2'~q(A') &Gla«'IA'&&A'Ia«IG&j, (72)
and

exchange correction to the usual I. to E capture ratio
is calculated in subsection E; the calculated exchange
correction is in excellent agreement with the experj-
mental values for the Ar'~ I to E ratio.

and
Ebo+go' (b'bl 1/rip

I
b'b)= —«(b)+1, (77)

—«(b)+ (1/r) p, o=—«(b'). (78)

Equation (78) follows from the Feynman identity given
in Eq. (29).

From Eqs. (76) to (78), one finds

(Gl aptaofIo aptHo'a«I G)—=1 «(b')+BE(G—)/BZ. (79)

With the help of Eqs. (71), (72), (75), and (79), one
can then show that

9/Xo—
I q (1s')g-'«l'E(G)/«IZ' (80)

Equation (80) gives the eRect on total electron capture
rates of imperfect atomic overlap and is very similar to
Eqs. (34) and (44) which give the overlap eRect on
total positron and electron rates.

C. Exchange Capture

The quantity 6'A arises from exchange eEects. The
exchange origin of hX can be established by examining
the approximate contribution to hP of the term in
which, for example, bi represents the 1s-electron state
and b2 represents the 2s state. In this case,

X(is,2s) ~ pop, '(0) pop, (0)(2s'I is). (81)

The term X(is,2s) represents the interference between
the amplitude for the production of a hole in the E'

~ J. C. Slater, Phys. Rev. 34, 1293 (1929).

B. Atomic Overlap

The second term in the expression for X', Eq. (72),
can be simplified by applying closure; we 6nd

~v(A') &G
I
a 'I A'&(A'I a.

l G)
=E(G') —E(G)+«(is')

+(Gl ab a~o ap B—p'apl G), (75)

where HD, IIO are the atomic Hamiltonians for initial
and final states, respectively. The most convenient
method for evaluating the expectation value that
appears in Eq. (75) is to use the second quantized
representation of the atomic Hamiltonians given in
Eqs. (4) to (6). After some calculation, one finds

(Gl aa~aoffo —a«~Ho'apl G)
= Eoo+«IE(G)/«7Z+ (1/r)b, p

+Zp (b'bli/r»lb'b&, (76)

where Eb" is the Dirac energy of the one-electron state
lb) and lbb') is the antisymmetric two-electron state
formed from lb) and lb').

Equation (76) can be greatly simplified by noting
that"
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shell by the destruction of a 1s electron in the initial
atom Dactor y~,t(0)j and the amplitude for the same
process occurring by the destruction of a 2s electron
Dactor ys, (0)] with a» electron being Ripped into
the 2s' shell by the change of nuclear charge (factor
(2s'I »)). A similar term X(2s,») represents the inter-
ference between the amplitude for the production of a
2s' hole by the destruction of a 2s electron and the
amplitude for the same result occurring by the destruc-
tion of a 1s electron with the 2s electron jumping into
the 1s' level.

One can show, by the same procedure that was used
to derive Eqs. (75) and (76), that

The bracketed terms in Eq. (83) can be evaluated
approximately by making use of screened hydrogenic
wave functions. One 6nds that the term involving r~2 '
is negligible but that

(1/r) q„~,—6Z eV.

By making the additional approximation,

we Gnd
~2 (0)/~~*(0)=3 '

Sl q(»')]—'E eV. (86)

D. Ayylications

The total electron capture rate is

x gaol 1+x /x'+»/vj (87)

Overlap and exchange effects are of the opposite sign
and, hence, they partially cancel each other in the total
capture rate. A comparison of Eqs. (80), (86), and
Fig. 1 shows that the overlap effect predominates for
small Z and the exchange effect is more important for
large Z. They are roughly equal for Z of the order of 20.
The net effect on total lifetimes does not exceed a few
percent for electron captures with q(»') greater than
or of the order of 50 keV.

The atomic wave functions used in calculating
(1/r) 2, , ~, are not accurate enough to provide more than
an order of magnitude estimate of hX and hence no
detailed results are presented for the net effect of over-
lap and exchange on total capture rates. Accurate
calculations could be performed by numerically inte-

b1, b2

)&I (1/r)~, , q, +Pq (b'bmli /r~ 2lb'b~)j. (82)

If we retain only the largest term in AX and in V, we
find

» 4 Eg, (0)

lt' q(»') Rg (0)

1 1
X — + b. I5'2s —b'1s . 83

28, 18 r12

grating Hartree-Fock wave functions, but such elabo-
rate calculations do not seem justiaed on the basis of
the order of magnitude estimates provided by Eqs. (80)
and (86).

Equations (80) and (86) are accurate enough,
however, to show that overlap and exchange effects on
the total lifetime of Be' are less than a tenth of one
percent, since q(1s') is several hundred keV for both
Be~ decay branches. This result is consistent with a
recent analysis of the experimental Gamow- Teller
matrix elements for Be~ capture. " Benoist-Gueutal'
estimated by another method that Be~ capture would
be inhibited by an amount less than or equal to 34%
due to atomic overlap. Equations (80) and (86) also
show that overlap and exchange effects have a negligible
infl.uence on the total electron capture rate of Ar'~ for
which q(»') is 814 keV.

E. L to XRattos

I. Genera/ Disclssion

The E-capture transition probability is given by
Eq. (68) when the summation over A' is limited to
states that have at least one hole in their E shells. The
L& transition probability is obtained by summing Eq.
(68) over states A' that have Riled K shells but no
more than one 2s electron. Final atomic states that are
missing both a E and an Lz electron give rise to very
small transition probabilities; they can also be
discriminated against experimentally.

A particular set of states dominates the E-capture
summation. These states, which we represent by
IA'(»')), contain only one is' electron but otherwise
have the same inner electron con6guration as that of
the initial atom. The outer electrons can be in any of
the available one-electron states, including continuum
states. The states IA'(2s')) dominate the I.r capture
summation; these states contain only one 2s' electron
but otherwise their inner electron conlguration is the
same as that of the initial atom. We neglect, for sim-
plicity, L» and higher captures; such captures are rare
in the eases in which we are most interested.

We want to derive a simple expression for the L to K
capture ratio including exchange. In order to do this,
we make use of the following approximate formula:

&Glu„'I A'(2s'))(A'(2s') I~„IG)
{A'(2e') I

——(2sl1s')(1s'I 1s)
I
(»'I »)(2s'I 2s) I"-. (88)

The overlap integral (2sl1s') enters Eq. (88) with a
minus sign due to the antisymmetry of the total wave
functions.

In deriving Eq. (88), we have made use of the
completeness of the outer electron states (A'(2s')).
A relation similar to Eq. (88) in which the position of

~ J. N. Bahcall, Phys. Rev. 128, 1297 {1962).
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Z. 1. to E A pptications"

Simple numerical integrations of the nonrelativistic
Hartree-Fock wave functions" for the Ar and Cl atoms
yield

(92a)(is'
~

2s) = -0.0292,

(2s'~ is)= +0.0252. (92b)

The same set of Hartree-Fock wave functions yield the
value:

(93)Ri, (0)/Rg, (0)=3.522.
Also

q'(2s')/q'(is') = 1.007. (94)

Substituting the above numbers in Eq. (90), we find

for the predicted I.i to E ratio

Xi,i/Xx= (0.0813)(1.219),
=0.099.

We have used nonrelativistic Hartree-Fock wave
functions to evaluate Ri, (0)/R2, (0), since nonrelativistic
Hartree-Fock functions were used to evaluate the
overlap integral (is'~2s). However, relativistic e6ects
for the overlap integral should be of the order" of n'D
and, hence, only amount to 1 or 2% of this already
small quantity. If one uses the relativistic value" for
Ri, (0)/R2, (0) and the nonrelativistic overlap integral,
one finds

Xr,i/Xx —0.100. (96)

"D. R. Hartree, Proc. Roy. Soc. (London) A156, 45 (1933);
D. R. Hartree and %. Hartree, ibid. A166, 450 (1938).I M. E. Rose and J. L. Jackson, Phys. Rev. 76, 1540 (1949).

every is and 2s are interchanged relative to (88) can
also be proved. We also note that

(is'
i
is)/(2s'

i
2s)—1. (89)

Using the approximations given in Eqs. (88) and

(89), we find from Eq. (68) that

Xrr thl z)' 1—L2Ri, (0)/R2, (0)j(is'( 2s)
, (90)

X i X 3 1—L2R, (0)/R, (0)](2s'i is)

where the usual capture ratio is given by5'

( /& )'=L '(2 ')/ '(1 ')jLR.'(0)/R '(o)j (91)

ln writing Eq. (91), we have made use of the usual
convention that all R„,(0) and R„, (0) are real. The
exact expression obtained from Eq. (73) is, of course,
independent of all phase conventions.

This theoretical value is probably accurate to better
than 2%, since Eqs. (88) and (89) are well satisfied
for argon.

The above results are in excellent agreement with
the recent precision measurements of the I.- to

recapture

ratio of Ar'~; the precision measurements yield the
value4 0.200~0.003.

If we add the exchange corrections to I. and E
capture that are given by Eqs. (90) and (92), we find
an exchange correction to the total capture rate of
about 0.004' . The contribution of states other than
~A'(is' )) and ~A'(2s')) cancels this small residual
exchange effect and makes the net exchange effect
proportional to q )see Eq. (73)j. Since the magnitude
of the correction due to states other than ~A'(is'))
and ~A'(2s')) is smail, we were justified in ignoring
these states in our discussion of the I. to E ratio. An
explicit calculation using the appropriate Hartree-Fock
wave functions shows that Eq. (89) is accurate to a
few tenths of one percent for the Ar'~ decay.

Since the sum over all final states except ~A'(is'))
and

~

A'(2s')) only yields a term of the order of a few
tenths of one percent of the main term, any additional
correlations due to the use of Hylleraas wave functions' '
must be small for Ar'~ electron capture.

The exchange correction to the usual capture ratio
decreases with Z, because (is'~2s) and Ri, (0)/R2, (0)
decrease in rn. agnitude with Z. This result also appears
to be in agreement with experiment. ~ Detailed calcu-
lations are underway to determine accurately the effect
of exchange for a number of isotopes whose I= to E
capture ratios have been measured precisely.

Odiot and DaudeP first calculated, by using wave
functions referring to the whole atom, the correction
due to electron correlations for the Ar'~ J. to E ratio.
They predicted an I.to E ratio of 0.20, which has since
been experimentally verified.
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