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Interaction Matrix Element in a Shell Model
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The matrix elements of two-particle interactions between states of many-particle con6gurations are
expressed as products of one-particle reduced matrix elements and of a single recoupling coeKcient. Applica-
tions are given to the Coulomb interaction of l"l' con6gurations and to all three-electron configurations.

1. INTRODUCTION
' 'N a shell-model treatment of a many-particle system
~ ~ one considers initially states of single particles in a
central field. In this approximation a many-particle
state is constructed by coupling the angular momenta
of the various particles according to a definite prescrip-
tion. In a further approximation one takes into account
the interaction between pairs of particles. To this end
one has to calculate the two-particle interaction
matrix elements between initial many-particle states.
Since these initial states are properly symmetrized
linear combinations of unsymmetrized states, the
matrix elements will be linear combinations of terms
constructed from the unsymmetrized states. Ke shall
deal with these unsymmetrized matrix elements in
Secs. 2 and 5, and with symmetrized ones in Secs. 3
and 4.

The interaction is conveniently expanded into
multipole components. Each of these components is
generally the product of a factor depending on radial
variables and of another ("angular" ) factor depending
on directional and/or spin variables. We are concerned
here only with the angular factor. For example, the
electrostatic interaction between two particles, s and t,
is expanded into a sum of terms consisting of a radial
factor times a spherical function,

Pq(cos8, ~) =P, [4w/(2&+ 1))(—1)~—&

X F~,a(ti. ~.) I'~.-a(e~s ~), (1)

of the angle e, g between the directions, (H, y,) and
(H~yg), of the two particles with respect to the center of
the system. In general, the angular factor of each
2"-pole component of the interaction may be repre-
sented as the scalar product

particle states with angular momenta j,', j. (or j&', j&).
This requirement led to the development of the Racah
algebra. Racah's basic formula, ' which gives the matrix
element of (2) between two-partide states, was inter-
preted later (FR Chap. 15) in terms of a recoupling of
one-particle eigenstates. ' The matrix element of (2)
between states of three or more coupled particles can
be reduced to the original Racah formula by a sequence
of recouplings. This sequence may be somewhat
circuitous, particularly for the exchange portion of an
interaction (see, e.g., FR Chap. 16).

In the course of a routine application of this method
of multiple recoupling it was noticed that its result
could be condensed into a single recoupling coefFicient.
It was then found that the matrix element of (2)
between two many-particle states can be expressed
directly as the product of one-particle matrix elements
and of a single recoupling coefficient. This coefIicient
arises as the overlap integral —i.e., as the product in
Hilbert spac" of two wave functions of the same
particles with diferent angular momentum coupling
schemes.

The basic new result is given by Eq. (10) in Sec. 2,
and applies equally to direct interaction and to exchange
matrix elements. This result permits an approach to
atomic calculations alternative to that developed by
Racah. It is applied in Sec. 3 to obtain the Coulomb
interaction energy matrix between symmetrized states
of equivalent electrons plus one electron in other
subshells. This result relates closely to a formula
recently obtained by Judd' through the usual approach.
Section 4 gives the interaction matrix elements between
all possible three-electron states. Section 5 extends
Eq. (10) to the matrix elements of nonscalar products
of tensorial sets of operators.

Q[&l.gf&)=g ( 1)~egt&l util (2) 2. DERIVATION OF THE MAIN FORMULA

of two sets of tensorial operators' which operate,
respectively, on direction (or spin) coordinates s and t.

To calculate the matrix elements of (2) one wants to
express them in terms of the matrix elements of the
one-particle operators 8'~' (or X&~&) between one-

' See, e.g. , U. Fano and G. Racah, Irreducible Tensorial Sets
(Academic Press Inc. , New York, 1959},which will be referred
to as "FR."

An analytical artifice will be used which replaces
each single-particle tensorial operator with a scalar

~ G. Racah, Phys. Rev. 62, 438 (1942).
3Recoupling is an orthogonal transformation between two

products of the same angular momentum eigenstates constructed
according to alternative coupling schemes. It is a geometric
operation which applies not only to angular momentum eigen-
states, but also to other irreducible tensorial sets.

4 B. R. Judd, Phys. Rev. 125, 613 (1962).
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operator. This operator acts on the variables of one
particle and simultaneously combines its angular mo-
mentum with the angular momentum of an additional
mock particle. To this end we introduce a variable z of
a mock particle and wave functions N(kq), or ul"l„of
this variable pertaining to eigenstates with angular
momentum and magnetic quantum numbers k and q.
The orthogonality property of these wave functions,

da u*(kq')N(kq) =bq q, (3)

may be expressed symbolically as

(3')

This property serves to break up the scalar product
of operators in (2) into a product of two separate
scalars, each of which involves only 9 t~' or Z&"':

(—1)~0+ I» +1&l =P iP f&l ih ~ ( I) (&—a)g 8]

=[+ .Q &ll, ul»;1[+ ( 1)&-jul&1 glL1 j (4)

that is, in vector notation,

P l» .g 1» = [gw 1»ul» j~[ul&l .Q l&l j (3)

The notations of FR Chaps. 5 and 6 have been used
here. Integration over a is implied in (4) and (5), in
accordance with (3'). The transformation of 1" g&~'

in (5) is analogous to the familiar transformation of a
product of vectors, A I into a sum of products with
unit vectors u; directed along the coordinate axes,
A 8=P, A u,u; 8. (The product u'"'u"' corresponds
to the diadic u;u; and the integration over f(: to the
summation over i.)

Call p(X,j,m, ) the angular momentum eigenfunctions
of a particle s on which P'~', operates. (The index X,
represents all the single-particle quantum numbers
other than j, and m, .) Application of P'», from the
right on f*(X,j,m, ) yields

p*(),j.m, )6&"1,

= (2j.+1)-'"p..-,.-,-(),.j.llsl»ll), "j.")
X (2,"kJ,m.

l
J',"m,"kq)P*(),"q',"m."), (6)

where the reduced matrix element (X,j,llS(~'llew,
"j,")

has been introduced in accordance with (FR 14.4) and
other current references. (The values of the reduced
matrix elements of the spherical harmonics and of other
usual tensorial operators are given by well-known
formulas. ) It follows that the application of the whole

operator 9&"ut"* is represented by

p*(X.j.m.)S1'lul" l"

= (2j,+1) '"Ei,".,-()t*j.lls'"'ll) *"j")
&&lI'»(() ."q',",k)j.m.), (7)

where the wave function P pertains to a joint state of
the particles s and f( coupled with resul. tant angular
momentum j,.

Consider now a typical unsymmetrized e-particle
wave function with total angular momentum quantum
numbers JM. Ke may represent it in the form

q(X&j&, , )jI„, &)jN&, ,X j; JM)
&"'" ""...-,...-,...~(4jimi)

&&p(),j,m,)" p(),J',m,)" y() .J.m.), (8)

where the coeffjl.cients C are products of signer coefB-
cients which depend on the prescribed coupling of
angular momenta. The dots that precede J represent
the n —2 j numbers required, in addition to J, to
specify the coupling of the n one-particle angular
momenta (see FR Chap. 8). These j numbers are not
listed explicitly here because our treatment does not
relate to any speci6c coupling. Because of Eq. (7), ap-
plication of the operator Pt~lut'&' to the complex con-
jugate of 0', from the right, is represented by

V(X&j&, ,X.j„,X,j&, ,X j„; JM) &»u&'1"

= (2j,+1) 'l' P (X,j,llSl~lllX. "j,")4*(X~jq, , (X,"j,",k)j„,X,j,,
~ .

,X„j„; JM) (9).
The result of the operation is thereby expanded in a series of eigenfunctions of n+1 particles —the initial n plus
the mock particl- in which the mock particle is coupled to particle s and their resultant is coupled to the other
ones exactly as particle s had been before the operation.

Formulas analogous to (6), (7), and (9) are obtained in the process of operating on a wave function (8) with
u&"& g&~& from the left. ' VVe have

u' Xl»y(X, 'j, 'm, ')= Q e((k",),"j,")J,'m, ')(),"J',"llT" ll), 'j, ')(2j,'y1)-" (7')

ul'l Zl'le(), 'j, ', ,).'j.', .
,)„'j,', ,) „'j„'; ."J'M')

4'(x&'J&', ,x,'j.', , (k,x&"j&")j,', ,x„'j„'; J'M')(X("j,"ll T'"'llew, 'j, ')(2j,'+1) "2 (9')

One should, however, conveniently utilize an expression of tensorial operator matrix elements somewhat diAerent from
|,'FR 14.4), namely,

( 1)~'(4"j&"m—&" ('Zl"l „l4'j,'»~&') = (2j&'+1) '"(4"S&"[[T&»[P,'j&')(j&"~»&"kq,'j,"kji'mr')
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!Vo!ice that k enters the coupling scheme on the left
of j," in (7') and (9'), but on the righ/ of j," in (7)
and (9).

The desired matrix element is now obtained by
multiplying (9) and (9'), with (9) on the left, and
integrating over all the m+1 variables, 1, , s,

~, t, -. e. The integral over the product of the
left-hand side of (9) and (9') is the matrix element of

due to (5). On the right-hand side we
find, besides numerical coefficients and reduced matrix
elements, integrals over products of two wave functions.
Each of these integrals vanishes unless it involves a
pair of wave functions constructed with products of the
same one-particle wave functions. This condition
requires that: (a) (X,"j.")= (X,'j,') and (X&"j&")

= (X~j,), so that a single term from each of the sum-
mations in (9) and (9) gives a nonvanishing contri-
bution, and (b) (X„.' j„')= (X,j;) for its, 3, so that the
whole expression vanishes unless the matrix element on
the left-hand side is diagonal in the one-particle
quantum numbers other than those of s and t. More-
over, the whole expression also vanishes unless (JM)
= (J'M'). The residual nonvanishing integral on the
right-hand side is the overlap integral mentioned in
Sec. 1, which is known as a recoupling coefBcient, is
independent of the quantum numbers ) and could be
expressed as a sum over the products of Vhgner coefB-
cients included in the coefficients C of (8). The results
of the integration over the product of (9) and (9') is,
therefore,

(7 iji,X.j.. .7 ~j ~, ; JM
I
8'" I[')

I
Xiji, ,X,'j', ,X~'j~', ; J'M')

= L(2j,+1)(2j,'+ 1)3-'"(X.j,l!S&» Ill.'j.') (X j II
T'&» Ill, 'j,')

&&(j~",(j.'&)j*,",j~, "l jr", j',",( Ij~)ji', )' '~JJ'4M (10)

The transformation codEcient on the right-hand side
of (10) pertains to the recoupling of (n+1)-fold eigen-
state products of degree J.The coupling schemes, which
are left unspecified on the left and on the right of this
coefficient, are understood to be the same as on the
corresponding sides of the matrix element on the left-
hand side of (10) and to be represented by the same j
numbers, with the following key subsritetions. The
quantum number jt', which represents the angular
momentum of the single particle t on the left-hand side
of (10), represents, on the right-hand side, the sum of
angular momenta k' and jt of the pair of particles f~

and t. Similarly, j, represents the sum of the angular
momenta of s and a on the right-hand side. These
substitutions augment the two n-fold products of one-
particle states, which identify the matrix elements on
the left-hand side of (10), to yield the two (n+1)-fold
products which identify the recoupling coefficient on
the right-hand side. The quantum number k, attributed
in our treatment to the mock particle a, stands, of
course, for the degree k of the operators 9&'& and Zt".
The factor ((2j.+1)(2j&'+1)] '" on the right-hand
side of (10) contains the quantum numbers that
represent the resultant angular momenta of the mock
particle and of the particles s and t.

The recoupling coefEcient in (10) is, of course, a
function only of the j numbers involved in it, namely,
(a) the n+2 angular momentum quantum numbers

~ I ~ /jl) ' ' '
p js—1) js) je ) j8+1) ' ') jt—lp jt) jt y jt+1) ' ' ') jn)

(b) the degree k of the operator sets, (c) the two groups
of n 2additio—nal j numbers which specify the (gener-
ally different) couplings on the two sides of the re-
coupling coefficient, (d) the degree J of the products
that are being recoupled. The classification and evalu-
ation of recoupling coe%cients have not yet received a
general treatment. A basic procedure for evaluating

any one of them (FR Chap. 9) consists of factorizing
it into a sum of products of triple-product recoupling
coefFicients which ar" to within a factor ==-xtensively
tabulated under the name of Racah, or 6-j coeffi-
cients. '

The coupling of many particles is often equal on both
sides of the recoupling coefficient in (10), because the
interaction operates between two particles only. There-
by the explicit form of the recoupling coefficient may
reduce greatly, as will be seen in Sec. 3, since a subgroup
of particles with invariant coupling participates in the
recoupling as though it consisted of a single particle.

between L—S coupling antisymmetric states of n
identical particles

(g') =+(l"-'(a~S~L~)l'SL JM)
4 (X")=4'(1" '(ng'Sg'Lg') l"5'L',J'M').

This matrix element is equal to

(13)

-', n(n —1)(%(V)~g„&,„~+(l%.")), (14)

where g„~,„ is the interaction between "particle n"
and "particle n —j.." Following Racah' we write the

' M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Kooten,
Jr. , The 3-j end 6-j Symbols {Technology Press, Cambridge,
Massachusetts, 1959}.' G. Racah, Phys. Rev. 63, 367 (1943},Eq. (26}.

3. EXAMPLE: /" '1' CONFIGURATIONS

As an example of application of formula (10) we
calculate the matrix element

(+(V) iGi@(X"))
of the interaction

G=gg;, (i, j=1, 2, , n)
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antisymmetric n-particle states in terms of antisymmetric n —j particle states as

4(X') = (n)-'" Q(—1)~')/(E~'(agS)Lg)E'QL JM) +(/),")= (n)
—'"P(—1) ))/(/"-'(ag)S))Lg')/)) S'I, ' J'M'), (1&)

where I'; is the parity of the permutation that exchanges i and n, the indexes i, j in /', l" indicate that the ith
and jth particle are in these states and the state /" '(a&S&L&) is that of particles 1, 2, , i 1—, /+1, n. Sub-
stitution of (15) into (14) gives

(4'(X')
f
G

f
4'(X"))= -'(n —1)g (—1) '+ '(/" '(u)S)L))/';SL JM

f g„),„f
/" '(n g'S)'L g')/"; S'L'I'M')

= (n 1)—{(/"—'(a S))L))'E+L, JM fg ),„f/" '(n&'S&'L&')E"Q'L', J'M')

—(/" '(aP)L&)/''~&SL, JM
f g &, „f/" '(a)'S)'L&')E"„S'L',I'M')}+(core terms if /'=/"), (16)

after some relabeling which allows one to cancel the -,'factor. LThe "core terms" will be ignored in what follows;
they are equal to the n —1 particles interaction energy (/" '(a)S)L))

f
G f/" '(n)'S)'L)')) Xb(S)S)')b(LiL)')b(/'/") j

Now we separate out the "last" of the l" ' electrons from the other ones utilizing the fractional parentage
formula (10) of reference 7,

)/' (/ &1S)L)) Q )/)(E" ' (aSL)/S)L &) (E" ' (uSL)ES)L ) j/ Q)S)L$).
n8L

One gets then

(+(/).') fGf% (X"))=(n —1) P (/" 'n S L (I" '()sSL)ES,L,)
nSLa'8'L'

X{(/" '(aSL)E~&S&L&/'QLJM
f
g~L„f/" '(a'8'L')E~&Sx'Lg'E"Q'L'I'M')

—(/" '()sSL)EASEL)E'~)SLJM
f g„),„f

E" '( '8))'L')E yS)'Lg'E"„S'L'J'M') }

X (/"—'(a'S'L')/S)'L)' ff/" 'a)'S)'L)'). (18)

The matrix elements of g„),„that appear in (18) are now calculated for the case

g -), =s/& -),

Integration over the space variables yields for the two matrix elements in the right-hand side of (18), respectively,
the expressions

Q R'(N/, N'/); NE, N"E")b(0)a')b(SS')b(LL')Xb(JJ')b(MM')

X ((SL)/~))S&L&,/'&L) JM
f
5'~'(n 1) 5'" (n—) f

(BL)E„&)S&'L)')E"&'L'&JM)) (20)

Q R~(N /', N/; NE, N"E")b(aa')b(SS')b(LL') Xb(JJ')b(MM')

X ((SL,/„)S)L),/' )SL,JM
f
5'~'(n 1) 5"—& (n) f (SL,/„))S)'L)',E"+'L', JM), (21)

where the notation of FR for the representation (1) of P), (cos8 ), ) as a scalar product has been used, the R"
are Slater integrals (N=principal quantum number) and conservation of total angular momentum has been
taken into account.

Application of (10) to the matrix elements of the tensorial scalar product in (20) gives

((SL E. ))S)L),E'&LJM
f

5&'&(n —1) tg&"&(n)
f
(8L E„,)S,'L, ',/"„S'L'JM)

=L(2/+1)(2/"+1)Q '"(EffC"'ff/)(/'ffC&"tff/")((SL, (/ )k)E)S)L)E„'SLf (SL/ ))8 'L ', (0/ ') ",/'8')L' &.s(22)

Since orbital and spin parts factor out, the recoupling coe%cient in (22) is equal to

(LI,(/„,k)/)L), E„'f LI,/„)jL,', (kE'„)E")'~&((8,s„))S,,s„f (S,s„))S)',s„)'s~b(LL')b(SS'). (23)

The spin factor is equal to b(S),S)') and the orbital part can be expressed as the product of two W functions.
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[See FR Eq. (12.4).j With this the right-hand side of Eq. (22) becomes

exp'/(/+/'+L+L&+L&'+L) j[(2L&+1)(2L&'+1)l'»(/llC[nll/) (E'IIC"'ll/")

(L l L,') L,' k Lg
xwl ~& ~k(s,s, )/(LL )/(55 ).

kk Lg l I l' L p'2

exp[s/(k+/ —P'+2S+5,—$~') j[(2L~+1)(2L~'+ 1)(25~+1)(2S,'+1)J»
Lt l LI$

s S Sg'
x (/'llc&'& ll/) (/llc&'&ll/")Fl /x l

Es S Sil
k P 5(LL')8 (SS'). (2"/)

For the matrix element in (21) (i.e., for the exchange term) application of (10) gives

((SL,/„)SgLg, /„g'SL, JM
~
6:&~& (»s —1).5"'(I)

~
(SL,/„g)5)'Lg', /„"5'L',JM)

= [(2l'+1)(2/"+1)j '"(E'J[C&"&[J/) (/[JC&"&JJE")((SI,E„)5L, (l k)E',SL
[ (SL l )S 'L ', (kl„)E",5'L') & &. (25)

The recouphng coe/ncient in (25) is equal to

((L,/„)Lq, (/~qk)/'~ (I&/~q)Lq'(k/~)/") ((Ss„)Sq,s„z~ (Ssn q)Sq', s„)& &b(LL')b(55'). (26)

The spin factor is now a 3—j recoupling coeKcient that can be written in terms of a 8" function and the orbital
part can be expressed in terms of an X function. The right-hand side of Eq. (25) is equal to

Equations (20) and (21) with (22), (25) and (24), (27) substituted into (18) give, on noticing that

Xp[%$(k+l / +28+S, S, )j ( 1)s&+s&'

,P z)
~
G~@(~rz)) (I 1) g (/~—ia,S,L,[/~-s(aSL)/S, L,)

ka8J

(2g)

X R'(NE, N'/', N/, N"/") exp'/(/+/'+L+L +L '+L)j[(2L +1)(2L '+1)]'12(/[)C&'&[(/)(/'([C&~l)(E")

L l L1' L1' k L1

X~~ Fl ~b(5~5~') + R~(N'/', N/; N/ N"/ )( 1)sos,
EP I. P'j

s 8' Si'
X[(2Ir+1)(2L&'+1)(25,+1)(25,'+1)j I (/'~~C& &~)/)(/~~C& &~[P)g

s 5 Sgj

X(/"-'(a8I)/Si'Li'jj/"-'ai'5&'L, ')h(LL')g(55')b(JJ )g(~~ ) (29)

A special case of this formula (l'=l") has been given lent electron, indicated by ~2) and states with three
by Judd' and the present one was conjectured by inequivalentelectrons, indicatedby ~3).
%ybourne. ' The matrix elements of an operator,

4. THREE-ELECTRON MATRIX ELEMENTS

In this section Eq. (10) is applied to calculate the
Coulomb interaction matrix elements between aB pos-
sible three electron I.—5 antisymmetric states. There
are three basic types of possible three-electron states,
namely, states with three equivalent electrons indi-
cated by

~
1), states with two equivalent one inequiva-

SB. G. Wybourne (private communication). We thank Dr.
Wybourne for communication in advance of publication and for
stimulating discussions.

G=Z g' =Z ~l»',

are then of the six types

(11GI 1) (1
1 GI2) (11GI3)

(21GI» (2IGI3)

(3IGI3).
Of type (1

~
G

~
1) there is only the matrix element

(PaSL
i
G

i
Pa'SL),

(31)
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(PaSLiGi (1 tg)S,gL, t/SL),

(EEL
~
G

~
(Et.)5 L'/~L)

Of type (2~6~2) we have

(IV)

(V)

(t.'(5~.)tgL~ G~ t.' (S.'I..')t, 'SL), (VI)

(1,'(5&,)l.SL
i
G

i
1o',l."(S.L,)SL) .(VII)

but of type (1
~
G

~
2) there are two, according to whether

the equivalent electrons in
~
2) are or are not equivalent

to the electrons in
~
1):

(PaSL i G i
P (S'L')1'SL),

(PaSL
i
G

i t,t'2(S'L')SL).

aviatrix elements of the type (1~G~3) vanish unless
one of the t,tg, in ~3) equals the 1 of ~1). One has
then only the two matrix elements

Of type (2~G~3) there is

(1 '(S L,)/, SLiG~ (t, 'tg')5 Qog, 'SL), (VIII)

and of type (3~G~3)

((Vs)SoEoJ.SL
~
G

~

(4'4') 5, t' L s't, 'SL), (IX)
where l's with the same index letter may be equal but
those with different index di6er.

The following formulas indicate the main steps and
the final explicit form of the matrix elements (I) to
(IX) obtained by application of (10). The complete
set of formulas is given even though (I), (II), and (III)
are special cases (for @=3) of (33a, b, and c) of reference
7, and (VI) is a special case of (29). Antisymmetric
states of type

~
1) are represented in terms of fractional

parentage, those of types
~
2) and ~3) by formulas of

the type (15). Numerical subscripts to quantum num-
bers l indicate the variable of the one-electron wave
function with the given quantum number; thus, e.g. ,
l,&' indicates a wave function of electron 1 with quantum
number / '.

(Pa'SL
~
G

~

/'aSL) = Q (Pa'SL(P(8'L')ESL)(P (8'L')/SL
~
G

~
P (SL)lSL) (P (8L)ESL)PaSL)

8'J'sr.

=3 Q (tma'SLltt'(8'L')ESL)(tgts(8'L')t+L~ g»~ tgts(SL)lsSL)(P(SL)ESL)PaSL)
8L;8L

k=3 P (Pa'SLItt'(8L)/SL)R~(l'~P)(/IIC'"'ll/)' exp[a/(L)]W/ (t'(SL)lSL)PaSL),
kN &tL/

since

(t,t, (8 L )/gL
~ g»~ ti4(SL)/6L)

=Q R'(P, t')(2/+1) '(/~~C"'(~/)'&((4k)/4)L'4~ (4(k/s)/)L4&'~((s&sz)8's3~ (s&sz)Ss&)' '

l=P exp[st(k+L) jR~(P,P)(EIIC'"'llt)'R [h(LL')g(88'),
/ L

and k must be even.

~P~L
~
G~ P(5 L')ESL)=2&2 (»WLItt /2(8L)SL)(t„t, t, (SL) SL

I g» I /, 4(5'L )1'gL)
8L

=2V3'p (P SLaIt'/P(8L)SL)R"(PEE')[(2/+1)(2/'+1)j '"(/)[C&"&][/)(/[JC&"&J)t')
18I.

X C/i((/sk)//3)L) (44)L'(k4)t'P& &(s&(s2sp)S
~

(spasm)S'ss)& &

=2' P (P aSPL, '(tSL) S)LR( ,P)tt( [[ t~C'
[[ t)(E~[ t~C'~[~ ')texpf~r'(t+ L+ L+,'+5)g-

uaL
(t k 1 1

X[(2L'+1)(25+1)(25'+1) (28+1)P12$P'~ W
L t' /' L I I-,' S 8 j

(paSL~G~/1"(5'L')SL)=v3 p (/IaSLIt/P(8I)SL)(/8/g/2(8L)SL~g»~ st, '1g '1(25'L') SL)
8L

l=vj(PaSLP/2(5'L')SL)( 1)~' P R"(P/")(/~~C"'~~t')'W—
k l I.'
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IV.

(l'aSL
I GIVb(SsbL. b)/SL) = (2X&)"'Q (E'aSL p'(SL)ESL)(/i/s(SL)/PL I g12I /o1/b2(ssbLob)ESL)

8X

=6"'P (E'~Lit/'(~L)ESL)Z R"(l',E.lb) I:(2/+ 1)(2/b+ 1)] '"(/IIC'"'lll ) (/IIC"'ll/b)
8J /Is

X &((E.bk)//b)L/b I (/«(k4)/b)L. b/b &
' '((s~sb) Ssb

I (sbsb)s. bsb)

(E. k l
=6 ( 1) (1 asLp (SobL,b)/SL)Q Rb(P, E !b)(/IIC "'Ill,) (/IIC'b'Il/b)FI

EE Lob lb

(l'aSL
I
G

I
ll.(S'L')EbsL) =6'" Q (PaSL II/O (SI)SL)(4(lb/b) SLSL

I gbb I
(/1/ b)5'L'4bSL)

M

=6'" Q (PasLt//b(SL)SL)Rb(/b E./b)l (2/+1)(2lb+1)] '"(lllC&b&lll. )(lllC~b'II4)
&8J.

X C/b((/. sk)//b)LI (/b/. s)L'(k4)/b)& &($~(sbsb)SI (sbsb)5'sb)' '

=6' & P (PwLPE'(SL)sI)R"(E' E.lb)(/llc'"'Ill. )(/llc"'ll/b) exPI wi(I+/+-,'+L+5)]
&8',

VI.

l. k l y l l L'q —,
' —', S'

xl (2L+1)(2s+ i)(2Ly1)(28+1)y w lg lg
l L Ebl 4 L E i —,

' S 8

(Eo'(5& )/+L I Gl lo"(5,'L, ')l, 'SL)

=Q R'(E,',E~")h(E,E,')I (2/, +1)(2/~'+1)] "(
EII

C& &bll 'E)'&(( 'E& )kE,E)b,Ll, lb(E, 'g(k/, b)E,')L, 'E, bg&~&

X((»»)5»l (»»)5 'sb)'"+2 2 R"(E l l 'l ')~(E / ')I. (2/ +1)(2/ '+1)] '"(E.IIC'"lll ')(E IIC"'lll. ')

X $((E.'sk)E./.b)L./„l (E.'b/. 'b)L. '(k/, b)l. 'P' '((sssb)s. sgl (sbsb)sg sj)' '+2 Q R"(l./„l, 'l. ')0(l.l.')I (2E,+1)

X (21, +1)] 'i'(E, IIC&'ill/. )(E.IIC&"ill/, )((l.,l.b)L.(l.',k)l,
l (E.b/. ',)L.'(k/. b)E, ')& &((sbsb)s.s,

l ($,$,)5.'s, )&»

EE.
' k l. q=P R"(E.',E.'b)a(E, E,')(E.IIC&"&Ill.')'(—1)'el, )~(L.L')~(5&')+2 2 Rb(E.E.,E.E')~(E.E')

l, l, L,' L,' k L,
x (E.llc&'&ll/. ')(E.llc&b&IIE.')(—1)'~'I:(2L.+»(2L.'+»]'"&I &I, &(s~.')

Ek I. l. Er, L E,

+2 P R(b.E„E,E' E')b( EE,')(E.llc&"'ll/. ')(E.llc'"lll. ')(—1) +s '

1 1

XI (25,+1)(2L,+1)(2S,'+1)(2L,'+1)]' 'X 1o k l.
E-', s s.

(E.b(S.L.)E.SL
I Gl E. ,E:b(S.L.)SL)

=2 p R"(E.',E.'E,)8(E.E,')I (2/, +1)(2/,+1)]—'a(E.IIC&'balll. ')(E.IIC&'tll/, )

X &((E,',k)E,/„)L,E„IE,',((k/„)E,E„)L,& ((s,s,)s,sbls, (s,s,)5,)t &

+2 Q R"(l.l.,l.")k (lolo') I (2/o+1) (2l,'+1)]-'~'(E II C &

"&
IIE,') (E,IIC &'& Ill, ')

X &(E~ (1.~'bk)E, )L,E, l/, b(E,.~'b(kl, )E,')bL, &~ '((sbs~)s, sblsb(s~sb)5, )& '
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= 2 Q R'(l.',l.'1.)b (l,l,') (l.[[C&a&[[1,') (l.[[C &a& [[l,) (—1)"+~.+~&s

lo' l. L,~ l, ' k 1. -,'-', S.
X [(2So+1)(2S.+1)(2L +1)(2L.+1)]"'W [W [W[

L. /. P E-,' S S.)
+2 Q Ra(/. /. ,/.")b(/ /. ') (/. [[C'"'[[/.') (/. IIC'"'l[4') (—1)"'~

(/a /, La) 1.' k la ) 2 2 Sa)
X[(2S.+1)(2S.+1)(2L-+1)(2L +1)]'"Wl IW, IW, I

~

5/, L L,) /. L, /. 'I —', S S.

(lo'(SoL,)l,SL
[
6

[
lo'lb'(S e'L,b') l,'SL)

=@2 P R"(l.',l.'la')b(l, l,')[(2l.+1)(2la'+1)] '"(/. [[C&e&[[/.')(/. [[C&b&[[/a')

X g((/a &k)/a/ap)La/as[(/a'&(k/a2)/a )Lab'labe ((sash)Sa$3[ (s~sq)Saa'se)' '

+%2 Q R"(l /„/e'l. ')b(/, /, ')[(2l,+1)(2/.'+1)] "'(1o[[C~ '[[lb')(/, [[C~b'[[/, ')

X C(/ae(/e'sk)/a)La/ai[(/ae/a'$)Lae'(k/ai)/a'& '((sbse)Sasi[( sees)S a'b&s)' '

+~& 2 R"(/. /. ,/. '/e')b(/. /. ')[(2/.+1)(2/. '+1)] '"(/. IIC &"II/a') (/. [[C"'[[/.')

X (( /a2/ba) L(a/eg )k /[ (/ab/e'g)Laa'(k/ae)/a')' ' ((sbsb)Sas& [ ($3$$)Sab SQ)'

t /. ' k l.=~2 R"(/', /. '/b')b(/ / ') (/ IIC"'ill ') (/ IIC"'ll/e')( —1)'Wl [b(L.L.;)b(S~.a )

+&2 Q R'(/, /. ,/a'/. ')B(lo/, ') (l,[[C&"1[[lb') (l, [[C&a~ [[1,') (—1)"+s.+~I.b'

1'/, lb' L a' (L a' k L,)
X[(2L.+1)(2L.b'+1)]'"WI W[, [b(».a')

kk Lo 1o el. L 1.'I
y~2 P Ra(/. /. ,/. '/a')b(/. /. ') (1 IIC"'ll/a') (1.[IC"'ll/ ') (—1)'+"

IX,

X [(2L.+1)(2L,b'+1) (2So+1)(2Sob'+1)]'"X la' k l. W[
S S,a')

(lalb (SabLab)/. SL
[
G

[

4'4' (Saa'Lab )/'SL)
= ( )/a/( b2SaeL)a/b. bSL [gib[/a'xla'2(Sae L.e')/a'bSL) —(/ai/ee(S. aLaa)/aeSL[gu[l. b/a g(S.a'L b)/aa'bSL)

+ (/az/ae(SaaL e)/abSL [ gee[/a'c/e b(Sab'Lab')/a'bSL) (/a'/a2(SaaLae)/'eSL I g»1/a '/e b(Saa L'a )/a'$SL)

+(/„/e2(S bL e)/ aeSLa[gaeg[/a'b/e 2(Sae Lab)l bS'L) (/ai/b2(SabLae)/ —3SL[g31[la bib 2(Sab Lob )/a'gSL)

= Q Ra(/Jb / /b )b(/. / )[(».+1)(»e'+1)] "'(/. IIC"'ll/ ') (/al[C"'ll/a')

X g((/a', k)/al»)Laa/, b [
(/a'~(k/ee)/e')Lae'/ae&' '((sisz)Saase [ (s~sb)Saa'sb)' '

-Z R (/. /, /. /. )b(/. /. )[(2/.+1)(2/. +1)]-'"(/.[[«"'[I/ )(/ [[«'~[[/.')

X &((/a', k) lalb, )Lab/ab
[ ((k4q) l, /e'q)Laa'/a'b P ((SqSq)SaaSb

I
(Sqsq)Saa'Sb)

+Q R"(/a/„4'/, ')8(/, /, ')[(2/a+1)(2/, '+1)] '"(/b[[c& &[[/e')(/, [[c& '[[l,')

X f(/al(/b 2k)/a)Lab/as[ (/ag/a 2)Laa (klab)la p (($$$$)Saasb[ (sqsq)Sab'sb)& &

—2 R"(/./„/, 1, )b(/. /. )[(2/.yi)(2/;+1)]-i (/, IIC~ ~ll/e)(/al[C~ ~ll/. )
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X((taltbb)Lab(lb bk)lei (taltb b)Lab (k42)te ) (($1$2)sabsbi ($1$3)sab $2)

+P ~'(t.t.,t.'t. ')~(44') [(2t.+1)(»-'+ 1)]-'"(l.lie ~b'lit ') (l.lie b'ilt. ')

g(la, tb, )Lab(te'bk)le I ((kta&) la'lbb)Lab'te 3&' '((s~sb)sabsb I (Sj$2)sab Sb)' '

—2 ~b(44, 4'l. ')t'(44') [(».+1)(2l.'+1)]-'"(4ll«"ill. ') (t.il«" ill. ')

X((lazlb2)Lab(la'bk)lel (ta'bib'b)Lab (klan)le')' '((s&s&)sabsbl (sbsb)sab Sg)' '

(t. l.' k
=Z &b(t.t,t.'4')t'(l. l.')(t.il«" II4') (4ll«" lit ') (—1)'+"+"~l, lt (L.bL.b')t'(S.d'.b')

Ib lb I b

(lo lb' k

+p z'(t. tb, tb't. ')t'(l. t.')(t.lie&' lllb')(lbllc "ill.')(—1)"~'I, lt'(L.bL.b')t'(5.4.b')

+z zb(tq„t, t. )t'(l.l. )(4llc~»lit, ) (t.llc~ ~lit. ) (-1)'+'~t '+'+' '+'

(k Lab Lab') k Lab Lab'l
X[(2L.b+ 1)(2L.b'+1)]'"~I I~ ~&(s.bs.b')

kL l.' l, I l lb' lb

+Q Rb(tbt„l. 'lb')B(toto ) (t Ilc"'lllb')(tbllc"'lit ')(—»"+"
lb Lab

f2 2 Sab)
X [(2L,b+1)(2L,b'+1) (25 b+1)(25,b'+1)]'ISWI IX lb'

s S., i .I.,b' L,
' L

yz z (l,l.,l, t. )t (gb ) (t,lie~ ~lit, )(t.llc~ ~lit. )(—1) + —+

tk L,b L,b') k Lob L b'

X[(2I.,+1)(2r., +1)]& WI IW t(5.6.b)
t, ' l, J lb to' t,

+2 &"(t.t.,t.'t')t'(4tb') (t.llc"'Ilt. ') (t.li«" II4') (—1)'+"+"+'"

l I..b

S.
X[(2L,b+1) (2L.b'+1) (25,b+1) (25.,'+1)Jl'X l, k le W

5 S,b').L b' /, ' L

5. EXTENSION OF EQUATION (10)

The matrix elements of nonscalar products of tensoriai sets of operators, such as the product ['b" Xg~b»]~b~

considered in FR Chap. 15, are given by a formula analogous to (10).An operator of this product set is

[8 b' XZ~b' ]~b~ =+aiba E~b'~ Z~b'~q, (kggk&02lk~k2kV). (32)

We may factor out this operator by introducing wave functions of two mock particles, u&b"„(z&) and u&b&~„(&&),

with angular momenta kq and k2, as well as wave functions u&b'b' b~a(bq, bq) of the same particles coupled in a state
with angular momentum k. The Wigner coefficient in (32) can now be represented, in the notation of (4), by
@~~1~' g&~»' g. ~~1~2 "~ from which follows

[e [hlXQNal]Nl —[+81 Nil („)][+lb» Pa)'(„)] f»ba, b] („) (33)

where integration over b~ and b2 is implied as in (3') and (5). Both operators p&"'&u&"~' and g&b»n~ba&' msy be
appiied to the complex conjugate of (8), using (9) twice to yield the analog of (9)

%*(X j&, . ,X,j„,X&j&,
. , JM)S'b'u""Z~"»u~b"'

=(2j+» '"(2j~+1) '"~b '-.,-~,-(~*~.lls'"'ll&. "j")(&~j~llT'"'ll&~"j~")
XIe*(X&j&, , (X,"j,",k&)j„,(X,"j,",kb) j,, ; JM) (34).
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The wave function u~~'~' ~~, from (33) may be multiplied with a wave function (8) and expanded into coupled
wave functions

u&~'"' "',4(X'i'j 'i, ~ .,) ,i'J, ', ,l gi'Jg', . , J'M')
=Qz m" %((Xz'jz', ,1,'j.', ,X&'j i', )J', (kik2)k; J"M")(J'kJ"M"

~

J'M'kg) (.35)

Multiplication of (34) and (35) in analogy with the multiplication of (9) and (9), with integration over the
variables and consideration of the orthonormality condition, yields the matrix element

(l~&Ji, . ,)~,y„. ,)~iJi, , JM
I
[8["'XX'"'j[",

I &iJi, . ,h, 'J, ', ,)~i'Ji', , J'M')
= E(2 i.+1)(2j+1)?'t20 .j.ll~""Ill *'j')(&ijill ~'""ll) i'ii')

X(ji, ",(j'ki)i, ",(i i'k2)ii, ".1(ji,",j', ii', ")J'(kik~)k)'"(J'kJMI J'M'k~).

The reduced matrix element of the operator product is then, according to the definition (FR 14.4),

,fiji~" ' JAIL""X&'"*']'"'fl& ji, i,~'j*', .,& jii', ; J')
= L(2J+1)/(2 j*+1)(2ji+1)]'"(~.j.lf5'"'ll" 'j') (&ijill~'"'ll&i'ji')

X&j»" U'ki) j ",(ii'k2)ii, " l(ii, "j ', "ii'," )J'(kik2)k)"'. (37)

Problems also occur where 9t~'& and gt~» operate on the same variable s rather than on two diGerent variables
s and t. Results analogous to (10) and (37) are then obtained, the main difference being than an intermediate
state of the particle s occurs, whose quantum numbers X,", j,"do not coincide with either X„j,or X,', j,'. There-
fore, a summation over X,", j,"appears in the following formulas:

(X ji&, ,X,j., ; JM~C"' Z"&~X&ji, ,&,'j, ', ; J'M')
= H2j.+1)(2 i'+ 1)] '"2 .-,.-O.j.ll~'"'ll&."j")(li."j"II ~'"'Ill~. 'J')

X (j» ' (j"k)j I ji,(kj")j' )"'b&&'4M',

("iji ' ' '»i. ' ' ' ' JIIC~""X&["'ij("'fl&iji,
=E(2J+1)!(2j.+1)(2 j*"+1)7"Z~ - -9"i*ll5'""ll~."j*")(~*"j"II ~'"'ll&.'j')

X(ji" r(j'k2)j"ki3i " l(ji, "j' " )J'(kik2)k)'"

(38)

(39)
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