
Dt'. CONCLUSIONS

One aim of this study was to match the spectra of
~OCa" and 22Ti"; to some extent this has been successful.
The known levels in these nuclei and the corresponding
predictions from this work are listed in Table IV.

Foie udded in proof. The low excited states of Ti"
have been experimentally observed by R. A. Ristinen,
A. A. Bartlett, and J. J. Kraushaar (to be published).
They find the levels with the following energy, spin, and
energy ratio (Er/E2): (a) 0 keV, 0+, 0; (b) 983.3 keV,
2+, 1; (c) 2295.0 keV, 4+, 2.33; (d) 2430 keV, (1,2+),
2.48; (e) 3223.9 keV, 4+, 3.28; (f) 3239.9 keV, (5+),
3.30; (g) 3340 keV, 6+, 3.40; (h) 3620, '?, 3.78. This can
be compared with the theoretical predictions for D= 1.0,
X=0.4 where the following spins and energy ratios
(Eq/E2) are computed: (a) 0+, 0; (b) 2+, 1; (c) 4+, 2.30;
(d) 2+, 2.48; (e) 0+, 3.00; (f) 2+, 3.05; (g) 6+, 3.40;
(h) 4+, 3.58; (i) 1+, 3.76. I wish to thank the authors
for permission to use their results before publication.

(It is also of interest that these results fit many of the
levels in Ca", Cr"-, and Fe". These are also listed in
Table IV.)

As can be seen, the second excited state of spin 0 in
Ca4' cannot be matched with any choice of the param-
eters. An obvious solution to this problem is suggested

by the work of Thankappan and Pandya' who have used

this same model with 1dg2 and 2sI~2 orbitals to 6t the
levels in Si'". Their resul, ts have two shell-model 0+

states (ds~j) 0 and (s&~2') 0. This gives a low-lying 0+ state
for a variety of parameters. Similar calculations are
now underway adding 2pg~ orbitals to the present calcu-
lation. Hopefully these results will give a much better
fit to all the levels and perhaps also account for the very
large Eo transition in' Ca" from the 1.84-MeV 0 level

to the ground state.
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Beta-Decay Matrix Elements in Sbt2't'*f

F. M. PIPKIN, ) J. SANDERSON, AND %. KEYHMANN

Jyman Luboratory of I'hysics, Harvard University, Cambridge, Massuchlsetts

(Received 6 November 1962)

An electronic computer has been used to investigate the six nuclear matrix elements which enter into the
2 to 2+ 1.40-MeV beta transition in the decay of Sb~. Data from beta-gamma angular correlation, beta-
circularly polarized gamma angular correlation, nuclear orientation, and nuclear resonance experiments
were used in this analysis. As a further aid, the Feenberg-Ahrens relations between certain of the nuclear
matrix elements were employed to catalog the solutions and to simplify the search problem. In order to
discover how the remaining ambiguity of these solutions could most easily be reduced, for each of the solu-
tions calculations were made of the predicted results of all possible experiments on this beta transition.
These calculations show how sufFicient experimental data can be obtained to determine unambiguously all
six nuclear matrix elements. In an appendix all the theoretical formulas which give the experimental observ-
ables for a 6rst forbidden 2 to 2+ beta transition in terms of the nuclear matrix elements are summarized.

INTRODUCTION

«HERE are, in general, six nuclear matrix elements
which can contribute to a 2 to 2+ erst forbidden

beta transition. The possibility of experimentally de-
termining so many overlap integrals for the same two

)This research was supported by a grant from the National
Science Foundation.

*This work was done in part at the Computation Center at the
Massachusetts Institute of Technology, Cambridge, Massa-
chusetts.

$ A preliminary account of part of this work has been given:
Bull. Am. Phys. Soc. 7, 34 (1962).

$ Alfred P. Sloan Research Fellow, 1961-63.
'For a recent comprehensive review of Grst forbidden beta

decay see H. A. %eidenmuller, Rev. Mod. Phys. M, 574 (1961).

nuclear configuration makes these transitions particu-
larly attractive for studying nuclear structure. Although
a large amount of both experimental and theoretical
work has been reported on transitions of this type, no
one has succeeded in 6nding a unique solution for the six
nuclear matrix elements. ' One of the principal reasons

' Some recent papers not in reference 1 in which attempts have
been made to 6nd the nuclear matrix elements for erst forbidden
transitions are: Sb~—P. Alexander and R. M. SteRen Phys. Rev.
124, 150 {1961);R. M. Steven, ibid. 124, 145 (1961).Eu'~—H.
Dulaney, C. H. Braden, and L. D. lyly, iIed. 125, 1620 (1961).
Eu'~—S.K. Bhattacherjee and S.K. Mitra, ibid. 126, 1154 (1962).
I'~', Rb~, Asv' —D. S. Harmer and M. I.. Perlman, ibid. 122, 218
(1961}.
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that the nuclear matrix elements have not been de-
termined is the manner in which the observables such as
the shape of the beta spectrum, the beta-gamma angular
correlation, and the beta-circularly polarized gamma
angular correlation depend upon the nuclear matrix
elements. If the energy of the electron at the end point
of the spectrum (W'0) is much less than one-half the
Coulomb energy of the electron at the nuclear radius
(otZ/2R), then, unless there is some special cancellation
between the nuclear matrix elements, the observables
depend mainly on two linear combinations of the
nuclear matrix elements, and it appears very dificult to
determine all six of the matrix elements. The approxima-
tion (aZ/2R))WO) for the observables in which only the
first term in an expansion in powers of the nuclear radius
is retained is called the ~& approximation. '4 A consider-
able amount of the literature has been devoted to in-

vestigations as to whether or not particular 2 to 2+ first
forbidden transitions show deviations from the $ ap-
proximation. ' The view has been expressed that if the
beta transition can be adequately described in the $

approximation, then it is almost impossible to determine
all six of the nuclear matrix elements without making
very precise measurements. ' In view of this general
difIIculty, serious attempts to find various of the nuclear
matrix elements have resorted to crutches from the
theories of nuclear structure. ' This is unfortunate as one
would rather use the beta-decay interaction, which is
now quite well understood, to unambiguously investi-
gate nuclear structure.

This paper reports an analysis of the first forbidden
2——+ 2+, 3..40 MeV beta transition in the decay of Sb'"
which shows that a unique solution for all six nuclear
matrices can be found. even in the case of a beta transi-
tion where the spectrum shape and the beta-gamma
angular correlation show no deviation from the j ap-
proximation. This analysis diGers from most previous
analyses of similar transitions in two ways. In the first
place it employs data from nuclear orientation experi-
ments. The power of the nuclear orientation experiments
for reducing the ambiguities involved in the analysis has
not been sufficiently appreciated in the published litera-
ture. In the second place this analysis utilizes the
Ahrens-Feenberg relations' between certain of the
nuclear matrix elements to catalog the solutions and to
simplify the search problem. Not only is the beta-decay
interaction now known, but there is also good evidence
that the conserved current hypothesis for the vector
part of the beta-decay interaction is valid, ' " It has

' T. Kotani and M. Ross, Phys. Rev. 113, 622 (1959).' T. Kotani, Phys. Rev. 114, 795 (1959).' One example is: R. M. SteBen, Phys. Rev. 123, 1787 (1961).' Z. Matumoto, M. Yamada, I.-T. %ang, and M. Morita, Bull.
Kobayashi inst. Phys. Res. 5, 210 (1955) and (to be published).' T. Ahrens and E. Feenberg, Phys. Rev. 86, 64 (1952); D. L.
Pursey, Phil. Mag. 42, 1193 (1951).

'R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
(1958).' R. K. Bardin, C. A. Barnes, %V. A. Fowler, and P. A. Seeger,
Phys. Rev. 127, 583 (1962)~"T. Mayer-Kuckuk and F. C. Michel, Phys. Rev. 127, 545
(1962).

been pointed out by Fujita" that if the conserved cur-
rent hypothesis is true, then a more precise expression,
which does not depend upon the details of the nuclear
force, can be derived for certain of the Ahrens-Feenberg
ratios.

In conjunction with the analysis reported in this
paper, we have also calculated for the various sets of
nuclear matrix elements the predicted results for all the
presently known experiments that can be performed on
this Sb'" beta transition. Results are reported for the
beta-gamma angular correlation, the beta-circularly
polarized gamma correlation, the anisotropy of beta
emission from polarized nuclei, and the longitudinal
polarization of the beta rays. It is pointed out that either
a measurement of the beta-circularly polarized gamma
correlation coeKcient as a function of energy or a
measurement of the anisotropy of beta emission from
polarized nuclei as a function of energy would make it
possible to determine more precisely the nuclear matrix
elements which transform under spatial rotations like a
vector and to see if the conserved current hypothesis for
the vector portion of the beta decay interaction gives the
correct ratio for the nuclear matrix elements. Precise
measurements of the longitudinal polarization of the
beta ray would make it possible to determine more pre-
cisely the matrix elements which transform under
spatial rotations like a pseudoscalar and to investigate
the conserved current hypothesis for the axial vector
interaction.

SUMMARY OF RELEVANT DATA

The decay scheme of 65-h Sb"'- which is given by the
most recent set of Nuclear Data Cards is shown in
Fig. j.."For the analysis reported in this paper we are
interested in the 1.40-MeV beta transition, and we shall
summarize here only the data relevant to this analysis.
The shape factor for the spectrum has been measured
and found to be the same as that for an allowed transi-
tion.""An early measurement by Shaknov" showed
that the beta-gamma angular correlation coefficient was
not zero. Recently, Steven' has remeasured the beta-
gamma angular correlation as a function of the energy
of the beta ray. It is convenient to write the beta-gamma
angular correlation in the form

X(W 0) = 1+eP2 (cose).

The portion of SteBen's results used in this analysis are
summarized in Table I.

Deutsch and Lipnik reported a measurement of the
beta-circularly polarized gamma angular correlation for
this beta transition. "When the beta-circularly polarized

"J.Fujita, Phys. Rev. 126, 202 (1962)."Nuclear ache t"crds (National Research Council, %'ashington,
D. C.), NRC 60W85 through 60W94.

» M. J. Glaubman, Phys. Rev. 98, 645 (1955)."B.Farrelly, L. Koerts, ¹ Bencer, R. van Lieshout, and C. S.
~u, Phys. Rev. 99, 1440 (1955).

'~ L Shaknov, Phys. Rev. 82, 333(A) (1951).
'6 J.P. Deutsch and R. Lipnik, J.Phys. Radium 21, 806 (1960).
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2 2 Sb I22 Te'22 TABLE I.A summary of part of the results from the beta-gamma
angular correlation measurements of Steft'en. This portion of his
results was used in the analysis reported in this paper.

2+

T

2+

Electron energy
in mc' units

1.96
2.50
3.00
3.50

Anisotropy

0.035&0.003
0.052a0.005
0.066&0.007
0.081&0.004

RADIATION

p,

p,
p~
p+

{EG),

{Ec)2

&I

y2

ENERGY

I.97
I.40

0.74

0.57

0.45

I.45

0.564

0.686
I.26

I. I 4

INTE NSITY

30.0 %

62.9 %

4,0 %

Q0063%

0.7 %

2.3 %

66.4 %

3.4 %

0.7 %

0.73 %

1I ll 0+

LOG &&

8.4
7.6

7.7

EQ+ MD

EQ

angular distribution of the gamma rays (principally y&)
was given by the expression

(2.2&0.2) &&10 '
X(8)= 1— P2(cos8),

T'

where T is the absolute temperature. They v ere unable
to derive a value for 82 because they did not know the
magnetic field at the antimony nucleus when the
antimony atom was present in the iron lattice. They
could, however, derive a relationship between the mag-
netic field, II, at the antimony nucleus and the 8.
attenuation coefFicient. This relationship is

FIG. 1. The nuclear decay scheme for Sb' 8 =$(1.9a0.2) X10'/B$'. (7)

gamma angular correlation is expressed in the form

.V(W,8) =1+co(W,8) (P/W) cos8,

then their result is

{d= —0.034&0.034.

(2)

"G. E. Bradley, F. M. Pipkin, and R. E. Simpson, Phys. Rev.
123, 1824 (1961).

' B. N. Somoilov, V. V. Sklyarevskii, and E. P. Stepanov,
Soviet Phys. —JETP ll, 261 (1960).

For this measurement the average (r/c) for the electrons
was 0.890&0.025 and the angle 0 was such that cosg
=0.960a0.005.

Bradley, Pipkin, and Simpson" reported a dynamic
nuclear orientation experiment for Sb"' in a doped
silicon crystal. If the angular distribution of the gamma
ray (y&) following P& is written in the form

X(8)=1—(10/7)82f2P2(cos8) —(40/3)84f4P4(cos8)) (4)

where f& and f4 are the orientation parameters and 82
and 04 are the attenuation factors which depend upon
the angular momentum carried ofI' by the electron-
neutrino system, then the results of their orientation
experiment can be summarized by the equation

82/84= 1.2&0.2.

They were unable to obtain independent values for
82 and 84 because they did not know the fraction of
the radioactive nuclei in the sample which was being
dynamically oriented.

Somoilov, Sklyarevskii, and Stepanov" oriented Sb'"
when it was present as an impurity atom in an iron foil
by cooling the iron foil to 0.02'K. They found the

Bradley et al. '7 showed from an analysis of the two
different orientation experiments together with the beta
gamma-angular correlation measurement of Shaknov
that the magnetic field at the antimony nucleus in the
iron sample was either 190 or 340 kG. Acting upon this
information, Sloan, "working in this laboratory, used a
super-regenerative oscillator to search for the nuclear
resonances of Sb"' and Sb'" when the antimony was
present as an impurity atom in an iron lattice. He found
the resonances for both isotopes and showed that the
field at the nucleus was

B=193&3kG.

AVhen this result is inserted into Eq. (7), one obtains for
82 the expression

82=0.9&0.1. (9)

For our analysis we have taken the end point of the
beta spectrum to be H~o ——3.74mc' and the partial half-
life for the 1.40-MeV beta transition to be 3.72 &(10' sec.
It has been assumed that the nuclear radius is given by
the expression R= 1.20.4"'(mc/h) X 10 "electron Comp-
ton wavelengths.

SUMMARY OP THE THEORY

In a notation similar to that employed by Kotani" -"'

the six nuclear matrix elements which can contribute to

"E. Sloan, Harvard University thesis, 1962 (unpublished).
Some uncertainty in interpretation would arise if the 6eld at the
antimony nuclei in the domain walls (nuclei supposedly seen by
nuclear resonance) is not the same as that at the antimony nuclei
in the main part of the sample."It should be noted here that Ross and Kotani, whose notation
we are following, used electron wave functions such that J'ie has
the opposite sign from that of Ahrens and Feenberg.
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this beta transition are ments. Two of these relations are"

Ko —Cg c (10)

st'= Cg A~$ e r= — iy5. (19)

su=Cg i(s&(r)

sf= Cp 'Ec, X= 1

(12)
According to Ahrens and Feenberg, for electron decay,

lV;—lVf —2.5nsc' A
A.g =A.y = 2,4+

'HSC z
+nuclear potential term. (20)

s= Cg 8.;;, X= 2.

Here we have introduced the parameters z, r, I, y, and x
in such a fashion as to express five of the nuclear matrix
elements in terms of the unique one, s. Two combina-
tions of the nuclear matrix elements which occur fre-
quently and which dominate the expressions for the
various observables are

V='r+)w

I =y—((I+@), X=1. (17)

"AI. Morita and R. S. Morita, Phys. Rev. 109) 2048 (1958).

Here l=nZ/2R, E is the nuclear radius in units of the
electron compton wavelength, n is the fine structure
constant, and Z is the charge on the daughter nucleus.

For our analysis we need expressions for the various
observables such as the angular correlation in terms of
these nuclear matrix elements. In the Appendix to his
paper Kotani' summarizes for erst forbidden transitions
the general formulas for the angular correlation, the
shape factor of the spectrum, the longitudinal polariza-
tion of the beta rays, the beta-circularly polarized
gamma angular correlation, the longitudinally polar-
ized beta-gamma correlation, and the transversely
polarized beta-gamma correlation. Kotani's formulas are
advantageous because they are conveniently written for
writing a computer program. In the Appendix to this
paper we have summarized the explicit formulas for a 2—
to 2+ first forbidden transition and have also given the
expressions for the 82 and 84 coeKcients and for the
angular distribution of the electrons from polarized
nuclei. %here possible all of the formulas have been
checked against the corresponding ones of Morita and
Morita. "An error in Eq. (A5) of Kotani's paper has
been corrected.

From general considerations concerning commutation
relations, Ahrens and Feenberg' derived theoretical ex-
pressions for the ratios of certain nuclear matrix ele-

2.O&X,&5.3, (22)

and they assert that RaE con6rms the conserved cur-
rent theory. Ullman" reinvestigated the RaE problem
using newer data for the electron longitudinal polariza-
tion, and he found that a larger value of h.y was required
to 6t all the data. On this basis he concluded that it was
optimistic to say that the data for RaE con6rm the
conserved current theory. This only points out the
desirability of more unambiguous determinations of the
nuclear matrix elements. In our analysis we have used
the Ahrens-Feenberg relations as a guide in determining
what is the interesting range of variation of the nuclear
matrix elements.

~ R. M. Spector and R. J. Blin-Stoyle, Phys. Letters 1, 118
{1962)."J.D. Ullman, Phys. Letters 1, 339 (1962).

Here tl; is the total energy of the parent nucleus, TV~

the total energy of the daughter nucleus, A the atomic
number of the daughter nucleus, and Z the charge on
the daughter nucleus. Feenberg and Ahrens estimated
the value of the nuclear potential term to be —1.4.

Recently, Fujita" pointed out that if the conserved
current hypothesis is valid for the vector part of the
beta-decay interaction, then the Siegert theorem for
radiative transitions of nuclei can be generalized to beta
decay and an expression for Ay which does not depend
upon the details of the nuclear force can be derived.
Fujita obtained the expression

(W;—lVf —2.5mc'y
Av=L24+I I(2~/~z)~ (»)

nsc' )
Fujita pointed out that this expression is the same as
that of Ahrens and Feenberg when one sets the nuclear
potential term equal to zero and uses the old value for
the nuclear radius (R=(a/2)A'"]. If the conserved
current theory and Fujita's conjecture are correct, then
one of the nuclear matrix elements can be expressed in
terms of another one and the problem is reduced from
six to Ave unknown matrix elements.

Fujita showed that this relationship was consistent
with the 6rst forbidden transition in RaE (Bi"')."
Spector and Blin-Stoyle22 have reported calculations
which indicate that for RaE
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FIG. 2. A contour map of the 1'5'
and uF planes showing the region of
good solutions. The various contours
are the lines of constant y' for the best
solution at each point. The labels on
the contour map give the value of the
y'. For the calculations summarized in
these figures, the search increment on
V and I' was 0.5 and that on u, 0.1.

—20& V&0,
—10& F&10,
—5&m&5.

(23)

An interval of 0.5 was used for each of the three
parameters. Calculations were also made with a I
interval of 0.1 to make sure that no solutions were being

MODE OF ANALYSIS AND RESULTS

An IBM 7090 computer was employed to find the set
of nuclear matrix elements which best fit the data. For
fitting the beta-gamma angular correlation, the beta-
circularly polarized gamma angular correlation, the
B2/B4 ratio, and the B2 value, it is only necessary to
deal with the parameters m, u, x, V, and V. Once a
solution for these parameters has been found the value
of z and hence the value of each of the nuclear matrix
elements can be calculated from the expression for the
half-life of the beta transition. Values for the parameters
A~- and A~ in the range 1.5&Ag, A~&5 were selected
and the parameters V, F, and sc were taken as inde-
pendent variables. The computer was instructed to
compute the predicted values of the experimentally
measured quantities for values of V, F', and u in the
region

x'=Z(x;)'-. (25)

In order to see the structure of the regions of good
solutions, a plot on the VF' plane of the minimum y'- for
each VF point was made. A similar plot was made on
the uF plane. Figure 2 shows a VF plane and a NI'-
plane plot for the case A~ ——h.~.=2.5. These plots are
typical in that the UF plot shows one region of good
solutions and the uF plot shows a region of correlated

missed because the search mesh was too coarse. Those
V, F, I points which gave B2&0.8 were immediately
rejected. For the other six measurements (4 beta-
gamma angular correlation measurements, 1 beta-
circularly polarized gamma correlation measurement,
and 1 value for B&/B4) the quantity

p redicted value —measured value '
(x;)'= (24)

experimental error

was calculated, Those points with X & 10 for any one of
the six measured quantities were rejected. All of the
other solutions were recorded together with the values
for the total y'

TABLE II. A summary of the solutions found for the various Az, Ap pairs. The x~ listed is the total p' for that particular solution. If
the increment in any one of the independent search parameters, V, Y, or I, required to increase the y by a factor of 4 from the minimum
value is taken as a measure of the error, then for all solutions the errors are less than &1, &1, and &0.5 on V, Y, and e, respectively.
In each case only one minimum for x was found.

1.5
1.5
1.5
1.5
2.5
3.0
5.0
5.0

Modified

1.5
2.5
3.0
5.0
2.5
3.0
1.5
5.0

B;;

—8.0—8.0—8.5—8.5—7.0—7.5—7.0—8.0
—7.0

—1.00—2.00-1.00
0.00-2.50-1.00

-0.50
0.00

—0.60

1.270
1.270
1.349
1.349
0.370
0.298
0.139
0,159
0.000

0.000—1.000—0.500
3.50—1.50—0.50
0.00
4.00
0.00

—0.159—0.772—0.290
0.875—1.130—0.290—0.079
1.00
0.00

1.287
0.768
1.227
0.961
0.762
1.086
1.455
1.016
2.17
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TAsr. v III. A summary of the nuclear matrix elements found for the various solutions. 'I'he errors in the
matrix elements can be estimated from the information in Table II.

1.5
1.5
1.5
1.5
2.5
3.0
5.0
5.0
Modified

1.5
2.5
3.0
5.0
2.5
3,0
1.5
5.0
8'7

1
8;;

R

~9.90X10 2

~9.63X10 '
&9.32X10 '
~8.58X 10-2
~9.45X10 '
a9,18X10-2
~9.68X 10-2
~7.71X1M
~9.46X10 '

~1.87X10 2

W8.84X 10-~
%3.22X10 '
~8.93X10 2

~1.27X10-1
~3.17X10 ~

%9.10X10 '
~9.18X10 ~

0.00

~5.37X10 '
~4-21X10 '
%1.83X10 '
%8.47X10 '
%6.04X10 '
~1.81X10 ~

~2.62X10 '
+8.70X 10-~

~1.04X10 '

1
iexr

R

0.0
~9.63X 10~
%4.66X10 '
+3.00X10 '
W1.42X10-1
~4.59X1M

0.0
&3.08X10 '

0.0

ZY5

%3.61X10 2

~3.51X10-2
~3.61X10 '
~3.32X10 '
~1.68X10 '
%1.58X10 '
~1.30X 10-'
~1.18X10 '
~1.02X10 '

1
EF 'r

R

%1.25X10 '
&1.22X10 '
~~.26X 10-1
&1.16X10 '
~3.50X10 2

~2.74X 10 '
a1.35X10-'
a1.23X10-~

0.0

solutions. Table II summarizes the best sets of parame-
ters found for the various A~, Ay pairs. Also listed in
Table II is the solution obtained in the modified 8;;
approximation. For the modified 8;; approximation it
ls assumed that

V&0, V&0, s/0,
u=x =@=0.

This is one of the approximations commonly used in the
literature. ' ' In order to estimate the error in the
solutions, the increment in each of the V, P and I,
parameters required to increase the p' by a factor of 4
from the minimum value was found for each set of
solutions. It was found that in all cases the required
value lay within the range

Va1, Ya 1, and n+05,
where V, Y, u is the solution wit. h the minimum y'.
Table II also shows that for all the A~, Ay pairs there is
only one general region of good solutions.

For each of the solutions in Table II, calculations
v ere made of the values of the six nuclear matrix
elements. These results are summarized in Table III. A
calculation was also made of the 8;, matrix element of
the unique first forbidden, 1.97-MeV beta transition to
the ground state of the Te"-' daughter. This matrix
element is

of the beta spectrum, the beta-gamma angular correla-
tion, the beta-circularly polarized gamma correlation,
the longitudinal polarization of the beta rays, the
longitudinally polarized beta-gamma angular correla-
tion, the transversely polarized beta-gamma angular
correlation, the angular distributions of the electrons
from polarized nuclei, and the 82 and 84 parameters.
Table IV summarizes the 8~ and 84 parameters and the
longitudinal polarization of the beta rays at the end
point of the spectrum for various of the solutions listed
in Table II. Figure 3 shows the beta gamma angular
correlation predicted for these same solutions. The
numbers beside the various curves are explained in
Table IV. Figure 4 shows the predicted longitudinal
polarization of the beta rays for this same set of solu-
tions. Figure 5 shows the beta-circularly polarized

0.055

0.0M —&~

(
1

B;, = (2.45~0.03)X 10 '.
R p,

(27)
0.025—

Table III indicates that the va1ue for the 8;; matrix
element does not depend very sensitively upon the
values of A 4 and Ay used. This is quite interesting as the
ratio

0.020— Beta - Gamma Angular Correlation
92l+ 6 Aq~ Pe(case)

8- — 8"

is quite useful in determining which nuclear model best
describes these beta transitions. '

In order to discover which experiments could most
easily further reduce the ambiguity of the solutions,
the predicted results for all presently possible measure-
ments were calculated for each of the solutions in
Table II. Calculations were made for the shape factor

l 1

2
Energy of Beta Ray

t

wo 4

Fro. 3. A summary of the beta-gamma angular correlation for
the various solutions listed in Table IV. The Roman numerals
serve to identify the various solutions. Also shown on this graph
are the results from the beta-gamma angular correlation experi-
ments of Steven which were used in determining the solutions.
The e used in this figure is not the same as the e employed in the
text.
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1.0— TABLE IV. A summary of the B~ and B4 parameters and the
longitudinal polarization of the p rays at the end points of the beta
spectrum for some of the solutions listed in Table II. The solution
number serves to identify the curves in Figs. 3 through 7.

0.95—

0.90—

2.5 2.5
1.5 5.0
5.0 1.5
5.0 5.0
1.5 1.5
5Iodified B.„

Solution
number

I
II
III
IV
V
VI

B

0.929
0.906
0.985
0.903
0.978
0.984

B4

0.800
0.715
0.986
0.700
0.965
0.980

Longi-
tudinal

polarization
for g =5'o

—0.929
—0.939
—0.960—0.961
—0.924
—0.964

0.85—

0.80 1 1

2 3
Energy of Beta Ray in rnc~ Units

1

"o 4

FIG. 4. The values of the longitudinal polarization of the
beta rays as a function of energy for each of the solutions listed in
Table IV.

gamma angular correlation as a function of energy for
8=180'; Fig. 6 shows the beta-circularly polarized
gamma angular correlation as a function of angle for a
fixed electron energy; Fig. 7 shows the anisotropy of the
beta rays from polarized nuclei as a function of energy.
A study of Tab1e IV and Figs. 4 through 7 shows that
one set of experiments wouM increase the precision with
which Ay and the X= 1 matrix elements are known and
another set would determine the ) =0 matrix elements
and A~. A measurement of the beta-circularly polarized
gamma correlation coefFicient as a function of the energy

of the beta ray or a measurement of the anisotropy of
beta emission from polarized nuc1ei as a function of
energy would determine the ) = 1 matrix elements and
AI. The simplest experiment which gives a measure of
the X=o matrix elements is a precise (t. to 2%) meas-
urement of the longitudinal polarization of the beta
rays.

The computer program was written in Fortran and
the entire computation including debugging took ap-
proximately 4 h on a 7090. V'e will furnish copies of our
computer program to any interested parties.

CONCLUSIONS

This analysis indicates that even for a beta transition
such as Sb"' where the spectrum has an allowed shape
and the angular correlation shows no deviation from the
$ approximation, one can still determine all six of the
nuclear matrix elements. The most useful experiments
for this purpose are the nuclear orientation experiments,
the beta-circularly polarized gamma correlation experi-

ct2

0.2

0.1—

0—

0—

-0.1—

V

K'

FIG. 5. The beta-
circularly polarized
gamma angular cor-
relation as a function
of electron energy for
a fixed angle of 180'
for each of the solu-
tions listed in Table
IV.

-01

Beta - Circulorly Polarized Gamma
Angular Correlation for W = &.0
N(e, W) * 1+ cu(W, cos e)

jo�cose

-0.2—
Beta- Circularly Polarized Gomma
Angular Correlation for 8 =180'

&(e,w) =1+ou(w, cose) ~ cos e

00
I

45o
I

90'
e

I

1354 18C

2
N

Wo

FIG. 6. The beta-circularly polarized gamma angular correlation
as a function of angle for a fixed electron energy of tV=3.0m'' for
each of the solutions listed in Table IV.
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0.1—

Fio. 7, The anisot-
ropy of the beta rays
from polarized nuclei
as a function of the
electron energy for
each of the solutions
listed in Table IV.

"0.1—

"0.2—

"0.4—

-0.5— E

I

Mlo

ments, and the measurements of the longitudinal polari-
zation of the beta rays. This analysis indicates that the
use of the Ahrens-Feenberg relations can simplify the
analysis. It is important to investigate the validity of
these relationships and their connection with the con-
served current theories of the beta interaction. This
analysis also indicates that the 8;; approximation gives
a good value for the 8;; matrix element and that the
character of the Sb"' decay is most probably due to a
cancellation eEect rather than a selection rule. It is
instructive to note that for a decay such as Sb'~ where
the nuclear orientation experiments show that V»V,
one can obtain a good idea of the behavior as a function
of energy of the circular polarization correlation and the
anisotropy from oriented nuclei by retaining those
terms which depend on V2, V Y, xV, and IV.

APPENDIX

In this Appendix we summarize the explicit formulas
for a 2 ~ 2+ first forbidden beta transition which is fol-
lowed by a 2+ —+ 0+ electric quadrupole gamma ray. In
addition to those formulas which appear in the paper of
Kotani, ' we give here the expressions for the anisotropy
of electrons and the anisotropy of the gamma rays when
the nuclei are oriented. "%henever possible we have
checked these formulas against those of Morita and
Morita. "The Morita and Morita formulas can be ob-
tained from those of Kotani by setting Xi through 5, &

equal to one. The primary reason for listing the formula. s

'4 General expressions for these quantities are given in references
1, 17, and 21.

ACKNOWLEDGMENTS

Ke are particularly indebted to the MIT Computa-
tion Center for providing us with the 7090 time and
facilities with which to perform this calculation.

ll. Summary of the Notatiort:

z

F (Z, IV)
I'(x+. iy)
m

momentum of the electron in mc' units;
total energy of the electron in mc' units
L&= (p'+ I)'"]
total energy of the electron at the end point
of the beta spectrum;
radius of the daughter nucleus in electron
compton wavelengths;
charge on the daughter nucleus;
fine structure constant;
Fermi function;
gamma function of a, complex argument;
mass of the electron;
circular polarization of gamma ray (+1 for
right, —1 for left)

B It sl of s.pec1 al 'fu11ct'1'011$:

y =uZW/p,

F(Z,B')= 2(1+pe) (2pR)'&» '~

(A1)

Ir(y.+'y) I

X (expiry) (A2)
Ir(2»+I) I2

8p= arg(I'(yg+iy))+-', vr(yp —h),

~ = 4(3+F2—y~)L(2+2vi)/(2+v2)]",

v =Lh' —( Z)']'",

(A3)

(A4)

(AS)

2+7'
(2pg)&(72—vl—&)

2(1+vi)

X (12~(1+2yi)/~(1+2y2))'

(+ )'
(A6)

r (xi+&'y)
X.=3 (X$)'"Leos(8$—81)

+y sin(82 —8g)/(yg+2yg)], (A7)

X4
——.4 (Xg)'"Leos(8~ —8()

+L(aZ)'/y(y, +2y, )] sin (8,—8,)], (Ag)

(~i)""L( +v~+vi)/(. +v2 —yi)1

Xcos(82—8i), (A9)

Xs
——'-, L(y,+y,+3)/(I+y, ) (1+yg+yg)]lj. e. (A10)

here is to provide in one place a complete list of the
explicit expressions for this particular decay scheme.
Since the advent of the IBM 7090 computer it is simpler
to compute all the various functions such as the Fermi
function rather than to use the published tables. The
formulas listed here are in such a form as to make
progra. mming straightforward. Only one error was found
in Kotani's formulas. His Eq. (AS) should be replaced
by our Eq. (A16).
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C. The beta-decay iszteraction Bamiltonian density, Xp.'

6
Xe———G ()p„y„(Cv—6'.)'r p))p, g.

.)
K2

H. The )8-y angular correlatio)z: The angular correla-
tion between the beta. ray ancl a gamma ray whose
circular polarization is 7 can be written in the form

v here
X (tl;y. (1+"rz)t r)+H, (A11) E(8) 1+rA, P, (cos8)+A, P, (cos8)

CÃ=1,

C,) ———1.19~0.04,

G=2.97X10 " (atomic units).

D. The number of electrons emitted per second as a
function of energy, tV(IV):

&i'(&»)d&V= ( )( )

where

+rA, )
—

P z (cos8) (A23)
ll'

(A24)

(A25)

(A26)

A ) = (Rdk+gk W+hkH"-)/C(IV),

A = (Rpk+eklV)/C(11),

Ad ——lk/C(IV),

and the various auxiliary functions are

XszP(Z, W)C(IF)PIV(IVp —Hb)'-dIV, (A12)

where C(IV) is the shape factor for the beta, spectrum
(see I' below).

Rdk = —(pt)" '[2f'p-t )+zpxzo]

+ (-,'-) [1 zz —(H', /6)-'(2x+u)'- —(u/2)'-]

+ (1/36) (-,')"'[(2x+u) IVp' —'- (4x+ 3u) ]
+ (1,'240) (511'p-' —3X)), (A27)

gk= p (p) i (2x+zz)j p
—(1/18)

X [(5u—2x) V—3H'pu(x ——,'u) ]
——,

' (-,')"'[XdV+ pIVp(x+2u) ]—H' p(24, (A28)

hk = —';u(x —u)+ (+14/30) (x+2u)
y (1/48) (1+P-X,), (A29)

I'.'. The half life of -the beta transition, r), z.

Rp

F The shap.e factor for the beta spectru)n, C(11'):

C(IV) =k+kall'+ (kb/11')+kcH'

P(Z, H')C(II )plV(W, —IV)zdIF (A13) Rzk= ~ z[ (1/»—)'"f p

+-,z(2x —zz)f, +.,-'(1/14))&-'&. ,], (A30)

ek = —(1/72) (2x+ i u) (2x u)—
—(1/12) (1/14)'&'(5u 2x) ——(1/112)X), (A31)

(A14)
lk = —-', (2/7)'i'(2x —u) —(2/35) X,. (A32)

H "0'
k= I p"-+ — + f'zz+ (2x+zz)'

3 18

It is convenient to speak of the angular correlation
coefhcient, e, where

e= (Pz/IV)Az, (A33)

1 A )P) (cos8)+p"A zPp(cos8)
(d = (A34)

cos8 1+pPz (cos8)1')——I'+ (u —x) IVp/3,

t"
p
= V+zz (IVp/3),

ak= ——,'u V—(Wp/9)[(4x'+5u-')+-'-]

bk p[ =zoz" p+—(u+*)t )]
ck = '; (4x'+ 5u')+ (1+7)i)/12.

(A16)

(A17) I The longitudi. nally polarieed P-p correlation, Pi'.
(A18)

P ~)' ——
(A19) IV

(A20) k+ [—(bk/ W)+ dk]+ [(Rpk/I V)+nk]P. (cos8)
iX

C(IV)[1+pPz(cos8)]G. The longitzzdinal polarieation of the electrons, Pi,
(A35)

» — —P»i)»)+dd)Ig 1+
IV C(IV)

(A21)
where

(A36)Rpk = (I),4IVz —XzP') Rzk,

zzk= p (1 2/1)
i'-')'zz+(1/18) (2x—u) (x—u)

where b is given by (A19) and

1 — tf",-—X, and the P circularly polarized gamma coeAicient, ~,——(2.q'-+ 7u') +, (A15) where
18 12

dk = (2/9) [—zz&'-+ (u
" x')]. -—(A22) +,'- (1/14)"-'(x—u). (A37)
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J. The transversely poLarised p-y correlation, Pr. The
t ransverse 9 polarization in or perpendicular to the
plane of the P and y rays is expressed as follows:

3 P
— E6k+nktV

P&11= ——sln8 cos8 (A38)
2 IV C(IV)[1+pPp(cosg)]

9 p
Pr&= (nZ) — —sing cosg

8
R8k+nktV

j .= (1/72)(2x+7u)(2x —u)
——,', (1/14)"'-(5u —2x)+ ()((/112),

|'p"=-', (2/7)"-'(2x —u) —2) (/21.

(A51)

(A52)

(A53)

(A54)

I- The. angular distribution of the electric quadrupole
gamma rays foLLowing the beta ray sohen the nuclei are
oriented:

s~ here

X (A39)
C(W) [1+pP p (cos8)] 1V (8)=1—(10/7)Bpf pPp(cosg)

L(.'p ——() p j)(p)i(.'„
R,= ()„/x,)R,

(A40)
where

(A41)

—(40/3) 84f4P4(cosg), (A55)

A. . The angular distribution of fhe electrons from
oriented nnctei:

A (8)IV) = 1+ (P f(P((—cos8)+ (s~f&Pp(—cosg)
TV tV

1 — 31 72-
f4 2——(—m,)'a„,——2 (m,)'a,+—,

AIR ((gp+(gl /2 3P2/14)/ ((gp+ pl+(82) &

2~4= (Pp 2'(/3—+2P p/7)j(P p+P&+P p),

(A56)

(A57)

(A58)

+ (pPf&P;((—cos8), (A42) t3P =
tV

Qp2

np(&+ F—(Z, H') pH~(II'p —H')'dIV
tV

(A59)

where the orientation parameters are

rn; &ni&m;)

fp ———,'[P„,. (m;)-'a, —2],

(A43)

(A44)

fp
——-['((Q,.,(m„)' „a,,—(17/5)Q, . m;a„,.]. (A45)

The a,. are the relative populations of the nuclear
sublevels normalized so that

leap A]o
(& +=(('+—+ ((")

1 tV

XF(Z, IV)

pl

V�(Wp
—W)'dH',

(A60)

(A61)

(A62)

P„,. a„,.=1
The other parameters are

(IVp)'-
(A46) n(p ——L'(P+ (2x+u)' —1/18(2x'+7u')

18

n(( ———~4u V——', IVp(4x'-+5u-'),
A47

n(p ———,'(u+x)L (,

n(p ——
p& (4x'-+ 5u'),

Rrp

(«(&+n p(IV+ n p pIV')

|' "=2 (I +L IV+L',H")/C(II'),

(» (p)"—[2—L pL i+-p~]
p[t (' (I—Vp/6)'(—2x+u)' (u /2)-']—+ (1/36)

X (-', )""-[(2x+u) IV(,' —(4x+ 3u)]
—(1/240) (5 IV,"--3) ), (A48)

(A63)

(A64)

(A65)

(A66)

&»= (p) (k)'"(»+u)L p

+ (1/18) [(5u 2x) I' —3» ou(x—,'u')]-—
V+ H o('+2 )]+IV, 24, (A

L (p ', u(x u)——+-(-+14—/30) (x+2u) n2j = —
6 tf'0,

—(1/48)(1+pP~(), (A50) n» ——(1+) ()j».

XF(Z, IV) p IV(IV(&
—H~)'-dIV, (A67)

(A68)

(A69)

(A70)


