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Helical Instabilities in Solid-State Plasmas

PIVLN BOLTER*

Boeing Scienkgc Research Laboratories, Seattle, 8'ashington

(Received 29 October 1962)

The background of thermal carriers is included in a theory for helical instabilities in electron-hole plasmas.
An important quantity in determining the stability criteria and frequency of the instability is the injection
level. The theory applies to any injection level in n-type, p-type, and intrinsic semiconductors and to insula-
tors. Comparison with Ancker-Johnson s experiment in p-InSb strongly supports the helical instability as the
basic mechanism in the oscillistor. Experiments with di8erent types of material should, according to the
theory, give markedly di8erent results. %hen the temperature dependence of the mobilities is known the
plasma temperature can be determined from the electric 6eld at the onset of instability.

INTRODUCTION

HEN a magnetic field is applied parallel to a cur-
rent in a semiconductor, oscillations develop

when the magnetic Geld is increased above a certain
critical value. Several authors' ' have observed this
efI'ect, called the oscillistor. ' Recent experiments'~ con-
firm the suggestion made by Glicksman' that the oscil-
lations are caused by helical instabilities. This type of
instability was first proposed by Kadomtsev and
Nedospasov' as an explanation of the anomalous dif-
fusion in the positive column. 'o Recently, Johnson and
Jerde" have given this theory a rigorous mathematical
foundation.

In a semiconductor in thermal equilibrium there is
a background of electrons (density no) and holes (den-
sity po). The composition of the thermal plasma de-
pends on where the material is intrinsic (no= p,), p-type
(po»no), or n-type (no»po). In insulators we have
no= Ps=0. By injection or ionization in the bulk, addi-
tional carriers can be introduced in the specimen. Elec-
trons and holes are by these processes created in equal
numbers, thus constituting an injected plasma.

In the paper by Glicksmans only the case of an in-
jected plasma in the absence of a thermal background
plasma was treated. However, the background plasma
may be of great importance in a theory for the helical
instability in a semiconductor plasma, as has been
pointed out by several authors. '""The purpose of
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this paper is to present a theory for helical instabilities
in solid-state plasmas that covers all injection levels in
intrinsic, n-type, and p-type semiconductors, as well as
insulators.

BASIC EQUATIONS

We shall assume that the specimen is an infinitely
long cylinder of radius R, and that the background
carriers are uniformly distributed. The following condi-
tion must therefore be fulfilled:

Vno= Vpo ——0.

The continuity equations for electrons and holes are

an;/at+ V((n, +n;)v.)=vn;,

ap;/Bt+V((ps+ p;)v,)=yp;,

where n; and P, are the densities of injected electrons
and holes, respectively. The velocity of the electrons is
v, and of holes vI, . On the right-hand side we have in-
cluded bulk generation and recombination in terms of
the proportionality constant y, which, then may be
either positive or negative. In the case of injection
without recombination y is zero.

The equations of motion are (mks units)

(no+ n, )v,+D,Vn;+ti, (no+n, )E
+to.(no+n;)v, X$=0, (4)

(po+ p;)vo+DsV p, tio(po+ p,)E—
—too(ps+ p.)voX& =0, (5)

where we have used (1). E is the electric field, 8 the
magnetic field, p,, and p, p, the electron and hole mobilities,
and D, and D„ their diffusion coeScients, respectively.

We will now make the following assumptions: The
injected plasma is quasi-neutral ~n, —p;~ =0 so that
Poisson s equation is given as V'U=O, where U is the
potential. The temperature of electrons and holes are
equal. We then have

De= pj ~, (6)

where V is the temperature in electron volts. The self-
magnetic field caused by the current is negligible com-
pared with the applied axial magnetic Geld 8.
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By putting p;=n; and introducing the potential V, we derive from Eqs. (2) to (5) two equations which

will. form the basis of our investigation.
In cylindrical coordinates (r,8,z) they are

Bnl 1Bn,— 1B BU& 1 B BU
(.b—1)V ——~ I+

r Br Br) r' B8' r Br Br/ r' 88 B8tj

-1Bn, BU 1Bn, BU pI, B'n; pg B( BU
+ (1—«b')zt& — —— + (b 1)V—— ———

~
oz =0, (7)

r B8 Br r Br B8 Bz zttt Bk E Bz

Kb+1 Bn, Pe'-1. B Bn;) 1 B'n P
' 1 B BU 1 O'U

—2 V———r I+— —(ptt —ntt) ——r +
r Br Br) r~ B8' p, rBr Br r' B8

Pe 1 Be, BU 1 Bn; BU B'n; B BU «b+1
+ zzoj3(b—+1) — —— —(«+ 1)V +—oz = yn, , (g)

ge r B8 Br r Br B8 BS BS BS pe

where b= zz, /zzo is the mobility ratio, and the quantities
p, ' and p, ~,

' are defined by

Pe = Pa=
1.+p, ,'8' 1+p,'8'

where A(r) is given as

p,+no+ 2n, o(r),
A(r) =

p,+«bno+ («b+1)n;, o(r)
(14)

Further, we have defined

/ IK= Pe Pk/Ph Pep

o&= po+«bno+(«b+1)n;,

oz po+ ——bno+ (b+ 1)n;,

oz no «p——o+ (1——a)n;.

(10)

Since A is a function of n;, o, Eq. (13) is nonlinear,
and not separable into r and s dependencies. Since, in
the two limiting cases n, ,o«po+ «bno and n;o))po+ ,«bno,

A will be a slowly varying function of n, ,p, we shall
linearize Eq. (13) by taking A as a constant. We shall
for the time being denote this value A by X without
further specification as to how it should be determined.

Equation (13) can then be readily solved by separa-
tion, the solution being

BUp K~—1 B2zi, p

=V
cg, p Bf'

(12)

where n;, p and Up are the steady-state density and
potential, respectively, and 6y, p the value of e~ with
Sj Ss, p»

Equation (12) is the condition for zero current in
the r direction, and gives the radial variation of the
steady-state potential in terms of n;, p.

Inserting (12) into (g) yields

1 B BSs pit p pe——rA(r) ~+ n; o+—(«b+1)—'
r Br Br I zt, 'V

B 'Ss, p Bs&,p
X («+1) —(«—1)E,o ——0, (13)

Bs

THE STEADY STATE

In the steady state B/Bt =0.We shall assume cylindri-
cal symmetry (i.e., B/88=0), and further that both
the electric field E,p and the steady-state current jp,
are constant in the s direction and zero in the r and 8
directions.

The condition for constant current in the s direction
gives when used in Eq. (7)

n;o= &;O, o(Nor, )&o(z),

where Ã;, o is the value of n;oat r=, 0 and Jo(por) the
zero-order Bessel function. Zo(z) is the z-dependent part
of the solution which, however, need not be specified in
this investigation. t8o is given by

zz»

Po'=
/ V+

zt, 'VX k «b+1

where C is a separation constant. If the density is zero
at the wall IBo——2.4048/R where 2.4048 is the erst zero
of Jp.

It is apparent that taking A to be a constant is equiva-
lent to assuming that the radial dependence of the
steady-state density is a zero-order Bessel function.

In the next section, where quantities involving A
will be transformed by finite Hankel transforms, the
r-dependent value of A, ho, given by (14) with
n; tt .V;,ofo(Por) will be used. ——

PERTURBATION THEORY

The steady-state solution may be perturbed by writ-

ing the density e; and the potential U as

+f(r z)zi(o»+mtt+»tt)
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f/z +g (r)~t (/zz+zz8+rut) (18)

where f and g are small quantities compared to rt;, p and
Up, k the wave number along the s axis, m the wave
number in the azimuthal direction, and co the frequency
of the perturbation.

The s dependence for f is chosen to be the same as
for I;,p, i.e., f(r,s)= f2(r)Zp(s), which gives the same
loss rate in the s direction for f as for 22;,o.

g = (1/otp) [,h+ (ttb 1—) Vfj, (19)

these equations take the form

By inserting (17) and (18) into (7) and (8) and by
neglecting products of f and g, we obtain two first-order
equations in f and g. Neglecting terms containing
BZo/Bz, t4 and elmininating g by introducing the function
h defined by

/to ( ~2, 0 1 8 Bk fS Nt e20—V! 1—b+(ttb —1) k +2i(1+b)kE. o f= ——r ——h——— k'h
/2/z— 61,0 r Br Br r' pa ~1,0

1 8 r Bnp 1 Bns, o—(/th+1) —— h itrt—(ttb2 1)/2—oB h, (20)
r Br 61,0 ~1,pr

-18 Bf 1 ti- 8 ttf 2222 f
2 V ——r —f —+—(ttb —1)(Po—22o)—

r Br Br r Br r/riot, o r ot, o

Pe Kb+ 1 ge—V—1+/t —(tabb —1) k'f+ ($ ito)+ (—1—tt)—kE.o fI /2Pe— 61,0- Pe Pe

18 8 k ~ k p& ~30 1&n;,0 h
(p, 22o) 2 — '

k'h —i2rt(b+1)tttoB—,(21)
r gr Br 6yp — r &I 0 Pe &10 r Br 61 0

where $ is given by

$=/tz'VXPo'. (22)

Equations (20) and (21) are of the same type as those
solved by Johnson and Jerde, and the same method of
6nite Hankel transforms can be used. Since a good ap-
proximation to the general solution is obtained by keep-
ing only the first terms in the series for f and h, the
solutions are carried out in that approximation.

A dispersion relation is derived from which the condi-
tion for stability is found by requiring Im(oo))0. At
the onset of instability we also have the condition that
the derivative of Im(tp) with respect to the wave num-
ber k must equal zero. With these conditions satisfied,
we are able to express the wavelength, the electric 6eld,
and the frequency of the oscillations at the onset of
instability in terms of the magnetic held. ln writing
down these results, we introduce the following dimen-
sionless quantities:

y=„,„~, Z=(fly)~2(kz)', S=E.Z/V,
0= tdR2//2, V, (23)

where 0 is a numerical constant, determined by the first
zero of J (Ptr).

'4 This is justified when the condition

!
1 BZ0' b+1, m E~

, Zp Bz b(a+1) ' kr V
II,,'B——

is satis6ed. This is a rather weak condition and is easily satis6ed
when density of the injected plasma decreases slowly in the axial
direction, as is believed to be the case in oscillistor experiments
(reference 8).

The equation determining Z is

3AGZ'+ (5A+BG)Z'+ (3B CG)Z'—
—(3GD C)Z D= 0. —(24)—

The dimensionless electric field can be found from

A Z'+ BZ'+ CZ+ D= r/2E (1+GZ) trZ' '
/p, (25)

where the coeScients 3 to G are given by

A = (1+v')W2Wp,

B= (1+v)(Wt+E(1+vy)Wt+(1+v)

X(1+(Wp —1)Wp) jWp) Wp,

C = (2222v (1—v) W22+ L (1+v)(1—(1—2Wp) Wo)

+ (1+vy) W,]Wt) W, ,
(26)D= [Wto+2222vW221WoW2,

1+v
vl/2 (1+y)1/2

b —1

X L(b+1) (1+y)W&+ (b 1)W4jW, ,
—

(b+1)(1+y)W2+ (b 1)W4-
G=-

(b+1)(1+y)Wt+ (b —1)Wt

where

(27)
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8'~ to Ws are integrals defined as

0!g
W, =1—(Kb+1)—

PP o

r BJp 8JJ dr,
1+(Kb+1)2)J0 Br 4)r

gi+ 2QJp
Wo ——(Kb+1)42 r J 'dr,

0 1+(Kb+1)2/Jo

W4 ——(Kb+ 1)nl/2 J 'dr,
1+(Kb+1)2/Jo

/2 n4+(b+1)nJ0
Wo ——(Kb+1)n r J 'dr,

0 1+(Kb+1)2/Jo

where

&V;,p

91
Po+ Kbrlo

Po+'n0 po no

7 Q2

po+ Kbno p,+Kbn,

~pp —np pp+bnp
'93= )

Po+ Kbn0 Po+ Kbno

and 6nal/y

ng ~ J ' BJp
W2 ——(Kb+1) df)

842 o 1+(Kb+1)r/Jo 8&

(28)

(29)

1.Y
—~ 0. In this limit we get Z= const, and the wave-

length X= 1/k is, therefore, constant. The electric
field is given as a function of y by

6=Ko(4))y-"-', (32)

0=I.l(2/)y-'". (34)

From (28) we see that W4 has the opposite sign for
n-type and p-tyqie material. Thus, the frequencies have
opposite signs, which means that the rotation of the
helix is opposite in the two materials, as has been found
experimentally by Okamoto et ul. ' Numerical calcula-
tions show that the frequency for p-type material is
of the same sign as for intrinsic materials and insulators.

For intrinsic material and insulators 5'4 ——0, and. the
first term in (33) is zero. Thus, the frequency for these
materials varies with y as

where Ko(4)) is independent of y, but is a function of the
injection level p.

The frequency 0 can be written in the form

Q —L (2/) y
—1/2+L 2 (4))yl /2 (33)

where Ll W4L0(2——t), and Lo, Ll, and L2 are independent
of Y.

Two cases may be distinguished: For n and p-ty-pe
material lV440, thus for suKciently small values of y

n=2(RLrlJ (Pir)/4)rj„ /4} '. (30) 0= L2(2/)y'/2, (35)

XVhen the mobility ratio b and the values of X;,p) np,
and po are known, the coefficients (26) can be calculated
for a given value of y. A solution for the corresponding
value of Z can then be found numerically from (24).
Knowing Z we can then calculate 8, thus obtaining a
stability curve relating the values of 8 and y at the
onset of instability.

The frequencies of the oscillations are given by

V
—1/2@7 —1

Re(Q) = (1+/)1V2Z2
m (b+1)(1+y)

+L(1+vy) Wl+ (1+4) (1+Wo))LVKZ

b+1
+~p~i~3-m

b—1
pi/2(1+y)2/2W Zl/2~/ (3])

ASYMPTOTIC SOLUTIONS

Equations (24), (25), and (31) are investigated in
the limiting case of small and large magnetic 6elds,
i.e., y. In these limits the quantities p to p4 de6ned by
(29) are constants. Thus, Wl to Wo defined by (28) are
only functions of g.

Thus, the frequency can be calculated when Z and h
are determined.

It can be shown that the m=0 mode is stable. The
helical-type instability which corresponds to m=1 is
considered in the remaining part of this paper.

where, for intrinsic materials L2(2/) is a function of r/,

while for insulators L,2 is a constant.
XVe now have the interesting result that for n- and

p-type material, the absolute value of the frequency
will approach inhnity as the magnetic 6eld becomes
small. This is in agreement with the results obtained by
Misawa" for near intrinsic material. The frequency for
intrinsic materials and insulators, however, in the same
limit of magnetic 6eld approaches zero.

2. y —+ ~. In this limit we also get Z=const. From
the definition (23) of Z, it then follows that the wave-
length X increases as y' ' for large y.

The electric field may be written

8=K„(2/)y—', (36)

and the frequency for all types of material is given by

Q=L„(r/)y '" (37)

CALCULATION OF TEMPERATURE AND FREQUENCY

The passage of current through a semiconductor
may cause heating of the plasma above the bath tem-
perature. The temperature dependence of the mobilities
mav be expressed as"

/4, =/40, (V0/V)U', /44 /404(V0/V)'", ——(38)

» R. A. Smith, Semiconductors (Cambridge University Press,
New York, 1959), p. 160.
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lQ

1Q

1Q,

yrgg
~ l. .. . . . ss...

1Q+ lO~ 10 I 10 ~

t ~ ~ I

1Q y lQ~

where Vp is the bath temperature, p.p, and pp~ the rnobili-

ties at the temperature Vp, and V& Vp.

Then
y=yoVol V, (39)

Fro. 1. Dimensions wavelength X/8 at onset of instability as a
function of dimensionless magnetic 6eld y for the injection levels
q=0.01 and 0.64.

~=qo,l.,t V,y "(E, E+')'J»

For intrinsic material and insulators we get

(44)

This expression for the plasma temperature as a
function of the electric field, is based upon the assump-
tion that the helical instability is the origin of the oscil-
lations in the oscillistor. The validity of the expressions
is limited to situations where the temperature-depend-
ent mobilities are given by (38).

%hen the injection ratio has been experimentally
determined together with the electric and magnetic
fields at the onset of oscillations, the temperature can
be calculated from (43). It should be noted that the
temperature determined this way is independent of the
specific properties of the material.

For p- and n-type material we obtain the frequency
corrected for plasma temperature

where
yo= go,//0&' (40)

co=pp, L2Vpy ~~~8. ~

Further hp is defined as

&a=E,ORl Vo

%'hen the values of E,p and 8 are determined experi-
mentally, Bp and yp can be calculated.

To 6nd the values of b and y corrections must be made
for the difference between plasma temperature V and
sample temperature Vo. From the third equation (23)
and (39) V can be eliminated, giving

Ep, L&, and I.2 can be calculated numerically by taking
a value y=y&&&1 in the asymptotic region, and for this

(42)

In the regions where the asymptotic results of the last
section apply, the corrected values of 8 and y may easily
be determined, and hence the temperature and fre-
quency calculated,

Ke do this for the case y ~ 0, which is the one of
greatest experimental interest.

From Eqs. (23), (32), and (42) we calculate the tem-
perature of the plasma

)o l
'lQ~ 10~ 11 )QI

FIG. 3. Dimensionless frequency 0 at the onset of instability
as a function of dimensionless magnetic 6eld y for different
injection levels.

V= QDVo(E, gR//Eo)']'". (43) value y, calculate the corresponding values /8= h, and
Q=Q& as functions of injection level p. Then

(~)y 1/2 I 0 (~)y 1/2 L Q (~)y I/2 (46)

COMPARISON WITH EXPERIMENT

10

%~LOT

2

STAal ~~~82
&O-4 )g &

Fro. 2. Dimensionless electric Beld 8 at onset of instability
as a function of dimensionless magnetic 6eld y for diBerent in-
jection levels g.

To the author's knowledge only one experiment has
been published containing sufficient data to check this
theory. In the experiments reported by Anciter-John-
son, ' ' the electric and magnetic fields and the oscil-
lation frequency at the onset of instability were meas-
ured in p-InSb.

The sample had a cross section 0.78X0.71 mrn. As
the value for R we have taken R=3.7)(10 ' cm. The
sample temperature was 77'K (Vo= 6.6X20-' eV).
The electron mobility and the mobility ratio were
y0, =2X10~ cm2/V-sec and b=30, respectively. The
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10

mo'

1O'~

woo'

1O'

llew

LO1
I I I I I I

0.05 0.1
10

os

Fro. 4. Dimensionless electric 6eld 8& and frequency 0& corre-
sponding to y& = 10 ' as function of injection level g.

' Numerical calculations for a number of different materials
are given by P. Bolter, Lrbok Univ. Bergen. Mat. -waturv. Serie
1963 (in press).

injection level has been estimated by using the current-
voltage characteristic in the absence of applied magnetic
field. %hen I~ is the total current and I& the Ohmic
current,

g= (Ir—Io)/(0+1)Io.

Equations (24), (25), and (31) have been solved for
a number of different injection levels in p-type material
with mobility ratio b= 30.'»

There is very little variation in the wavelength for
di6erent injection levels, and in Fig. 1 only the curves
corresponding to q=0.01 and 0.64 are drawn. As ex-
pected the lowest injection levels give the most stable
situation (Fig. 2). As the injection level increases to
high values, the separation between the curves ap-
proaches zero. The dimensionless frequency in Fig. 3
shows a very strong dependence on injection level. For
small values of y the decrease in frequency is of the order

10' when g varies between 0.01 and 0.64. In Fig. 4
we have plotted 8= bi and Q=Qi corresponding to
y=yi=10 ' as functions of injection level g.

The experiment'~ was done using values yo& SX10 '.

Judging from the curves for 8 and 0 (Fig. 2 and 3) the
asymptotic formulas corresponding to y —+ 0 are valid
in this region.

In the Grst three columns of Table I are listed the

TABLE I. Experimental and theoretical quantities related
to onset of instability.

(G)

620
490
435
285
170

Experimental~
~.0 f

(V/cm) (Mc/sec)

40 27.5
65 27.0
82 25.0

103 25.0
152 22.5

0.03
0.08
0.14
0.24
0.56

Theoretical

V (ev)

1.5X10
2.8X2M
3.8X1M
3.9X10
4.1X10

f
(Mc/sec)

30.1
24.6
20.1
17.0
13.1
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experimentally measured values of the magnetic 6eld
8, the electric 6eld E,o and the frequency f. The fourth
column gives the estimated values of the injection level
q. The two last columns give the values of the tempera-
ture V and the frequency f calculated by using Eqs.
(43) and (44), respectively.

The temperature rises to a value corresponding to
the optical phonon energy ( 2.5)&10-' eV) at an elec-
tric 6eld 55 V/cm. Higher electric 6elds produce
saturation at a value 4X10—' eV.

The agreement between measured and calculated
frequencies is good at low electric lelds. The calculated
frequencies, however, decrease more rapidly than the
measured values. It has been observed that the self-
magnetic 6eld, which has been neglected in the theory,
is sufficient to cause pinching of the plasma for E&10'
V/cm.

Although the only experimental results available
currently for check on the theory relate to p-InSb, the
agreement for this case strongly indicates the helical
instability as the basic mechanism in the oscillistor.
However, the theory predicts markedly diBerent results
in other types of material, hence, further experimental
checks on the theory are of interest.


