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The method developed in the preceding paper for computing properties of metals from first principles is

applied to zinc. The OP% form factors which determine many electronic properties and the characteristic
function, of wave number which determines many atomic properties are computed and applied to sample
properties. Those properties treated are the Fermi surface, electronic specific heat and cyclotron resonance,
the resistivity due to vacancies, the resistivity of the liquid, the electron-phonon interaction, the crystal
structure and c/a ratio, the energy change on melting, the structure and energy of formation of vacancies,
the elastic constants, the "stabilization" of ordered structures in alloys, phonon structure and dispersion,
and the Kohn effect. Where comparison of calculated electronic properties with experiment was possible
the agreement was good. Agreement with experiment was more limited for the atomic properties, though
the discrepancies appeared to be consistent with the uncertainty in the interpolations used in obtaining
the energy-wave-number characteristic. Such a discrepancy was finding the fcc structure lower in energy
than the hcp structure; this also gave rise to instability against the formation of certain phonons. Other-
wise the agreement for the atomic properties was semiquantitative. It is suggested that irregularities found
by Brockhouse, Rao, and Woods in the phonon spectrum of lead are not images of the Fermi surface, but
images of the energy-wave-number characteristic. Such fluctuations depend upon the detailed structure
of the atom and are found to be much larger than those associated with the Kohn effect; in zinc they occur
at wave numbers near, but not exactly at, 2k+. The appearance of these irregularities suggests the possibility
of computing the energy-wave-number characteristic, and therefore a wide range of properties, from such
measurements of the phonon spectrum along symmetry directions.

The possibility of obtaining the essential results of the theory with simpler approximations is considered,
as well as the possibility of improving on the method.

I. INTRODUCTION

N the preceding communication' (which we will call
~ ~ I) a method was formulated for the calculation from
erst principles of a variety of electronic and atomic
properties of metals. This formulation entailed three
approximations: (1) the self-consistent 6eld approxima-
tion, (2) the assumption that the core states are the
same as in the free atom, and (3) a perturbation solu-

tion, carried to second order, of the Hamiltonian matrix
based upon orthogonalized plane waves. Ke now

proceed to apply this method to a speci6c metal in order
to see what features of the approach are important in
physical problems and to provide an experimental
check on the validity of the method.

Ke select zinc for the reasons outlined in our earlier
analysis' of the band structure and Fermi surface of zinc
(which we will call 0). This calculation is, in fact, a
direct extension of 0.

The computations beyond those carried out in the
treatment 0 were performed by hand. This entailed
more interpolation of computed results and grosser
numerical approximations than one would wish. Con-
sequently, they do not provide as accurate an experi-
mental check as would be possible with a machine
calculation.

We will 6rst outline the computation which was per-
formed, noting in particular the numerical approxima-
tions which were involved. Ke present the computed
OP% form factors which determine the interesting
matrix elements of the pseudopotential, the energy-
wave-number characteristic which determines the de-

' W. A. Harrison, preceding paper I Phys. Rev. 129, 2503 (1963)j.
~ W. A. Harrison, Phys. Rev. 126, 497 {1962).
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pendence of the band-structure energy, on the reciprocal
lattice, and the equivalent effective ion-ion interaction.
%e then proceed to computations of a number of in-
teresting properties and compare these with experiment
where possible.

II. COMPUTATION OF MATRIX ELEMENTS

We found in I that it was possible to write the total
energy and the scattering rates in terms of matrix ele-
ments between plane waves of a pseudopotential, 8'.
Further, it was found that these matrix elements could
be separated into two factors,

(i+ «I W(@ ii)=S(q)(i+«i~(u) Ii ). (2.i)

The structure factor, 5(q), is given by

S(q) = (1/X)P, exp( —iq x,), (2.2)

the sum being over the ion positions r,.; this factor
depends only upon the ion positions, not upon the ion
potential. The remaining factor, which we called the
OPW form factor, depends only upon the ionic potential
and the average ion density. This OP% form factor is
to be computed self-consistently, but the 6rst step re-
quires the determination of matrix elements of an
l-dependent ionic potential, vop', which does not contain
the 6eld due to the conduction electrons and which is
cut off at a sphere of volume equal to the atomic cell
volume. The remainder of the potential, v, which in-
cludes the self-consistent field of the conduction elec-
trons as well as the tails of the Coulomb 6eld of the
ion beyond the equivalent sphere, is then included
separately.

12
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1. Matrix Elements from the Truncated
Ion Potential

k'/kg =0

Tmr. E I. B&(k',k&) in Ry.

The matrix elements of the pseudopotential based on
the potential v,v' were written in I [see Eq. (4.8)] as

(k+ q ~ w(k)
~
k)—(k+ q ~

v
~
k)

l=o
l=i
l=2

0.3417
0
0

0.3123
0.0580
0.0256

0.1881
0.0810
0.0192

0.0991
0.0691
0.0189

0.0470
0.0433
0.0036

(k/u[k)= (k+q[u[k)+

&&2 (k+qjt&(tlk), (2 3)

with [see Eq. (4.7)]

(k+q~ u~k)=(k+q~v. ,'~k)
—E «I'.'Ik)(k+qit& (2.4)

Here the matrix elements are written in terms of the
potential, v,„', and the normalized core wave functions,

P{, centered on an ion at r=0. Writing the cell volume

Qo, these become

(k+q ~ v
~
k)= fl —{ e

—{k+z) ~ rv
v

e'k ~ rdr

(t~v.„'~k&=00 '" {f{*v.,'e*"dr, (2.5)

In 0 we computed such integrals with k and
~
k+q

~

always equal to the Fermi wave number. The "un-
screened" potential used there was the same as v„'
except for a mufELn-tin cutoG rather than a cutoG at the
equivalent sphere. e,~' is an /-dependent potential;
hence, it was necessary to expand the exponentials in
spherical harmonics and spherical Sessel functions in
the integrations. Only a small number of such integra-
tions were necessary; the matrix elements for generaI
relative orientation of k and k+q were then given as
an analytic function of the angle between them. In I we
found that this was also true if

~
k+ q ~

were given some
fixed value di6erent from k. The analytic form may be
written

(k+ql ~Ik)—(k+ql vlk&

= A ({f)+PtBt(~ k+ q I, k)Et(cos20). (2.6)

The P{(cos20) are Legendre polynomials of

cos20= (k+q). k/~ k+q
~
k;

i.e., 20 is the angle between h and k+q. The term

4xZe' "' sinqr
A(V) =- rdr

Qo

included in the 8&. We include only the terms to 1=2.
For larger / values there would be a contribution from
the self-consistent field, but none from exchange. The
values of the B~ which w'e have computed are given in
Table I.

The calculation gave also "OPW overlaps" in the
form

P, (k+q[t)(t[k)=P{C{((k+q), k)P{(cos20). (2.7)

The computed values of the C~ are given in Table II.
The values in Table I, when interpolated for inter-

mediate values of k', may be inserted into Eq. (2.6) to
give matrix elements for a sizable range of final states
but only for initial states on the Fermi surface. For
computing the self-consistent field and for computing
the total energy we will need matrix elements for all
initial states within the Fermi surface. A set of these
might be calculated as were the values with initial
states on the Fermi surface. We might, on the other
hand, construct an interpolation formula for the
matrix elements computed above and use this formula
for all initial and final states. We have followed the
latter procedure. Such a formula makes possible the
analytic integration over occupied states and permits
a hand calculation. The formula could be improved
by fitting to a larger number of points computed as
above.

We first make the interpolation of the OPW overlaps,

Z{ (k+qlt)(tlk)=E-f. (C)[k (k+q)]", (28)

and then write the interpolation of the OPW form
factors,

(k+q~ w(k)
~
k)

=P„[a„(q)+(tt'k'/2m)b„({f)][k (k+q)]". (2.9)

This is not a general form; but it has a number of
desirable features. (I) It was found possible to fit a
number of computed matrix elements, for fixed q, with
only three terms in the expansion. (2) It behaves
properly under the interchange of initial and final states.
This behavior required the inclusion of the b term in
Eq. (2.9) to give the nonhermiticity of the matrix

TAaLE II. Ci(k', k~).

k'/k' =0

derives from the net ion potential, Ze'/r, within th—e
equivalent sphere of radius r,. The remainder of e,~' is

0.0863
0
0

0.0745
0.0298
0.0338

0.0488
0.0378
0.0460

0.0255
0.0310
0.0396

0.0098
0.0207
0.0260
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elements calculated in I [Eq. (3.9)]. (3) It provides a
continuation into the region where no calculations have

been made. (4) It allows a term-by-term analytic inte-

gration when we sum over occupied states.
In our computation we interpolated Tables I and II

to give the B~ and C~ for k'/kF 0——5, .1.5 and 2.5. For
each value of q this gave us up to five matrix elements

and OP% overlaps, corresponding to diA'erent values

of k' and di6erent relative orientations of k and k'.
These were 6t with three terms in Eqs. (2.8) and (2.9)
for q/kp in half-integral steps from 0 through 3.0. This

gave us, for fixed q, an analytic form for the matrix
elements as a function of k.

2. Matrix Elements from the Unscreened Potential

The pseudopotential matrix elements described above
are based upon the truncated ion potential e„p'. We add
to these the matrix elements associated with the tails

of the truncated ion potential and those associated

with the charge density due to orthogonalization. Both
of these are simple potentials and give, therefore, func-

tions of q only.
The number of (positive) electronic charges localized

bv the orthogonalization in the region of each nucleus
is readily seen to be the average over k &kp of
Z P, (k

~

t)(t
~
k)=Zbo(0) =Z P ~ C~(k,k). From Table II

we obtain the value 0.138Z=0.276. We approximate
this localized charge by a point charge; thus the addition
of the tails of the Coulomb potential and the charge
due to orthogonalization gives the matrix elements of
the unscreened potential in the form of the right-hand
side of Eq. (2.6) with A(q) replaced by 1.138Z4vre'/q'Qo

and the Bg remain the same as in Table I.

3. Matrix Elements from the Screened Potential

In I we found the screening potential, in terms of the
matrix elements of the uncreened pseudopotential, m',

to be given by'

p SC—

4xe'

q2Q k&ky

(lt+q(w(k)' lt) (k—q~w(k)'(k)*'+
Tk Tk+q Tk Tk-q

4me'
1— +

q~Q k&k+ Tk —Tk+q Tk —Tk q

(2.10)

Ke note that if the matrix elements were independent of
k they could be taken outside of the summation in the
numerator and the result written in terms of the Har-
tree dielectric function: r,-= (k+ q ~

w(k) 0
~
lt)(1—e,)/e, .

This, however, is not the case and we must substitute
the analytic form for the uncreened matrix elements in
the summation. The summation is converted to an

kil-q

CD
CP

CL

integral and performed term by term for each value of

q (again taking q in half-integral steps from 0 to 3).
The angular integration was performed first; then the
integral from k=0 to k p.

This v,- is added to the unscreened form factors to
obtain the final self-consistent OP% form factors. The
matrix elements which enter all of our calculations are
proportional to these form factors.

We have plotted a series of computed form factors as
a function of q for three relative orientations of k and q
in Fig. 1. The curves are drawn through computed
points at the half-integral values of q/k p. values above
q=3kp are obtained by noting that the screening field
is negligible in this region, and carrying Eq. (2.6) as
far as possible with the B~ values given in Table I.

Several features of the curves are worth noting. The
q=0 limit is given by

lim (it+ q ~
w(k)

~
lt) = —P+0.1381(1—k'/kp') jEp.

q~o

-.5—

FIG. 1. The OP% form factors for zinc at the observed density
and for k equaling the Fermi wave number, kg. The three curves for
different orientations of k and q would be the same if the pseudo-
potential could be written as a simple potential. Matrix elements
of the pseudopotential are obtained by multiplying these form
factors by a structure factor depending only on the positions of
the ions.

' As in I, the supination over k implies a summation also over
SPln.

The curves plotted are for k=kp, so the limiting form
factor is simply the free-electron value ——',Ep. Thus we
would obtain the usual limit to the interaction between
electrons and long wavelength longitudinal phonons,
but would obtain corrections to the Bohm-Staver4
calculation of the speed of sound.

We note the rapid decrease in the magnitude of the
form factors near q= 2k p as the repulsive terms in the

4 D. Sohm and T. Staver, Phys. Rev. 84, 836 (1950}.
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pseudopotential become important. This is responsible
for the nearly-free-electron-like character of the Fermi
surface.

Ke note the spread between the three curves,
especially near q= 2k p, indicating the importance of the
l-dependent potential and the corresponding breakdown
of any wave-number-independent pseudopotential
approximation.

Ke note the apparently rapid decrease in the form
factors at large q which is necessary if the OP% method
is to converge rapidly.

The particular set of OP% form factors connecting
two states which both lie on the Fermi surface is of
particular interest and is plotted in Fig. 2. This is the
set which enters first-order scattering and which deter-
mines the Fermi surface. Again values were computed
only at half-integral q/kr. The experimental values
listed are from fitting the experimental surface in the
paper O.

E„=P,s*(q)s(q)E(q), (3.1)

CA .2
LLt
CCI

C)

v 4

-5—

Fio. 2. The OP%' form factors for zinc at the observed density
and for k and ~k+q~ equaling the Fermi wave number, k~. These
form factors determine all matrix elements which enter Grst-order
scattering and are predominant in determining the Fermi surface.
The three experimental points are from the "experimental band
structure" of zinc determined earlier {see reference 2).

III. EVALUATION OF THE ENERGY

In I we divided the total energy of the crystal into
three terms: (1) the free-electron energy, which is inde-
pendent of the arrangement of the ions and therefore
need not be evaluated for the problems we discuss;
(2) the electrostatic energy, which is equal to the Cou-
lomb energy of a set of point positive charges at the ion
positions and with charge equal to &*=Z(1—0.13g')»2
=1.981 for zinc imbedded in a compensating uniform
negative background; and (3) the band structure energy
given by

TABLE III. E(q) in Ry per electron.

q /kg

0
0.5
1
1.5
1.75
2.0
2.25
2.5
3

E{q)

—1.08—0.0368
+0.00198
+0.00158—0.00048—0.00322—0.000697—0.000238

per electron with E(q), the energy-wave-number charac-
teristic, given by

E(q)= P —(k+q~u(k)'~k) Q, (k)t)(t~k+q)
SZ &&Ir,F

)(k+q~w(k)(k)~' Qoq'
+ p SC 2

T$ Tp+ q 4SZ8

—(k~t)(t~k) 4,"4,e"'d ) (3.2)

This calculated interaction is tabulated in Table IV and
plotted in Fig. 4. The rather striking minimum occurs
at approximately the nearest-neighbor distance in zinc.

In the final sum over core states we again treat the
ions as small, and set J'f&*)f))e'&'dr= 1. We may then
readily show that the contribution of the final sum over
t to E(q) is t),"b2(q)q'kr'/5 which turns out to be
negligible compared to the other contributions to E(q),
as suggested in I, and it is dropped.

The other contributions may be computed directly
from the parameters computed above. The sum over
k&k p is converted to an integral as in the computation
of the screening field, but the evaluation is much more
laborious. For the term in which the form factor appears
squared we end up with well over one hundred terms by
the time all integrations are performed. This gives us
values of E(q) for half-integral values of q/kr through
3.0. We also obtained values for q/kr=1. 75 and 2.25
by interpolating the tt„(q) and b„(q). The values ob-
tained are listed in Table III and are plotted in Fig. 3.

We will use this E(q) function directly in all of the
computations of band-structure energy to be made here.
As indicated in I, we may transform this curve and add
the Coulomb interaction to obtain an effective two-body
interaction between ions. We wrote x= q/kr, and found
the effective interaction 'U(r) given by

3Z2
'U(r) = x sink rrxE(krx)dx+Z* e'/r. (3.3)

kyar g
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et= +.04—

+.02—
cr
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-.02—

-.04—
taJ

.06—

Ikp
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lo—

0
crs

~ lo—

hcp

fcc

bcc

Fro. 3. The energy-wave-number characteristic for zinc at the
observed density. The band-structure energy is obtained by sum-
ming the product of the characteristic and the square of the mag-
nitude of the structure factor over reciprocal lattice vectors,
Ls,= Ze~S(q)~sE(q}. lS(q)~s times the number of reciprocal
lattice vectors with magnitude equal to q/2m is plotted below for
hcp {at the observed c/a), fcc, and bcc structures.

Ke then 6nd the change in electrostatic energy with a
rearrangement at constant volume, and the correspond-
ing change in structure factors b(S*S), as

4n-

8E„=—,'8*set—lim Q, '
Q sf ~oo

0

g
—e~/4'

8(S*S) per ion. (3.4)
g2

IV. ELECTRONIC PROPERTIES

1. Fermi Surface

This form is found to converge suitably for the problems
we treat, though frequently it is necessary to evaluate
certain in6nite sums in closed form before taking the
limit. This then allows us to treat the problems com-
pletely in terms of the change in structure factors.

The computation of the form factors, the energy-
wave-number characteristic, and the effective ion-ion
interaction given above represents the bulk of the effort
in the calculation of a range of electronic and atomic
properties. We will now proceed to calculate several
such properties.

The oscillatory character arises from the general shape
of the E(q) curve rather than from singularities in E(q)
at q=2kp. We might also note that the Born-Mayer
potential is monotonic rather than oscillatory as we 6nd.

The use of 'U(r) avoids the necessity of separate
electrostatic energy computations. For all of the prob-
lems we treat we 6nd it more convenient to use the
formulation with E(q) and to compute the change in
electrostatic energy upon rearrangement separately.
This calculation may be done following Fuchs, ' who

gave the electrostatic energy per ion as

The geometry of the Fermi surface enters directly in
a number of topological properties, such as the de Haas-
van Alphen effect, magnetoacoustic oscillations, and the
anomalous skin effect. It has been recognized" for some
time that a reasonably good account of the Fermi sur-
face of many polyvalent metals could be given in terms
of a nearly-free-electron or one-OP% approximation.
This is a zero-order approximation in the expansion we

.IO—

.05—
hcp

(We have rewritten his form in our notation. ) G(x)
= (2/+sr) J;,„e *dx. rl is a parameter which is selected
to obtain good convergence in both sums. We find it
most convenient to take the limit as q goes to in6nity.

7 .Oo 0 15

T~LE IV. ~(r) in Ry.

r in a.u.

3.6
3.74
4.67
5.60
6.54
7.47
8.40
9.34

11.20
13.07

+0.068—0.0100—0.0964—0.0387—0.0126
+0.0064
+0.0170
+0.0089—0.0062
+0.0011

.05—

-lo—

FIG. 4. The eGective ion-ion interaction for zinc at the observed
density. The number of neighbors, as a function of distance, is
shown above for the hcp structure with the observed c/a ratio.

' K. Fuchs, Proc. Roy. Soc. (London) A151, 585 (1935).
' A. V. Gold, Phil. Trans. Roy. Soc. (London) A251, 85 (1958).' W. A. Harrison, Phys. Rev. 118, 1190 {1960).
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are using. The agreement can be considerably improved
by using OP% form factors as computed above and
going to a "few-OPVV approximation" as we have done
in O. It would appear that the remaining discrepancy
arises primarily from errors in the OP% form factors
rather than from the limitation in the number of OP%'s
used, although in cases where the band gaps are quite
small the inclusion of more OP%'s may invert the order-
ing of levels. This was found to be the case by L. M.
Falicov and G. Weiss (private communication) in
magnesium near the point E.

The agreement with the observed Fermi surface
which we found in 0 provides the 6rst check on our
calculation.

2. Density of States and dE/dk

The computation of the density of states, which is
proportional to the change in volume of a constant
energy surface with energy (evaluated at the Fermi
surface), is straightforward. For this calculation form
factors other than those of Fig. 2 enter. The deviations
from the free-electron value are obtained by computing
the corrections to the energy at the Fermi surface Lthe
third and anal terms of Eq. (3.10) in I which are of the
form of the erst and second terms in Eq. (3.2) here]
and taking the derivative with respect to k. We then
average dE/dk over the Fermi surface and compute the
density of states. By exact treatment of a two-by-two
secular determinant we may show again that taking
principal values in the integrals is appropriate. In
analogy with the computation of the energy we obtain
an equation of the form of Eq. (3.1) with E(q) replaced
by a function of wave number representing the change
in density of states. This function is to be multiplied by
S*S and summed over wave number space to obtain
the density of states.

In zinc the major contribution comes from the twelve
lattice wave numbers of the type (1,0,1) for which
q/2k~=0. 952. The main effect occurs near the inter-
section of the corresponding zone face and the Fermi
surface and we may obtain a good estimate by using a
constant form factor corresponding to q= —2(0.952)k
and lkl =kp, this value is 0.06 Ry. The correction to
the density of states due to these twelve planes corre-
sponds to a thermal mass of 0.92m. Corrections due to
the other lattice wave numbers are very much smaller.
Lattice wave numbers for g(2k' tend to reduce the
mass; those for q&2k p raise it.

The observed' density of states mass is 0.93m. The
agreement we 6nd must be regarded as entirely fortui-
tous. We would expect to 6nd similar theoretical values
slightly less than m for other polyvalent metals, but
only zinc has an observed mass in this region; aluminum,
cadmium, and indium have masses near 2.5'; mercury
and lead are near 2m. Only gallium (0.6m) and zinc have

8 A recent measurement has been made by T. M. Srinivasen,
Proc. Indian Acad. Sci. A49, 61 (1960).

values less than ns. Ke expect to 6nd sizable corrections
to the density of states from electron correlations' and
from the self-energy of electrons due to the electron-
phonon interaction. '0 Neither of these corrections have
been included in our analysis; they presumably are
responsible for the high masses in other metals; but
they appear to make little net contribution to the mass
ln zinc.

Unfortunately, we probably cannot conclude that the
observed cyclotron masses in zinc should agree closely
with the computed values. An examination of the experi-
mental cyclotron masses of lead by Anderson" suggests
that the dE/dk corrections are strongly anisotropic.
Thus, it may be that some cyclotron masses are raised
and some lowered by electron-electron and electron-
phonon effects, though the average remains unchanged.

The question arises whether such corrections appear
in computations of the resistivity through a modified
density of scattered states and through a modified
particle velocity. Langer" has studied this question in
detail with regards to electron-electron interactions. He
points out" that the problem is more simply viewed in
terms of a scattering cross section or mean free path and
that these tend not to be affected by electron-electron
interactions. Thus, any apparent dependence upon the
density of states cancels in the resistivity and our
Hartree treatment should be appropriate.

3. Scattering by Defects

We found in I that scattering, to 6rst order in the
pseudopotential, could be written as free-electron
scattering

&k+.,
= (2~/&) I &k+ql &(k) lk) I

'~(T'~+.—T.),
where I'~, , f, is the probability per unit time of scatter-
ing from a state k to a state k+q; the matrix elements
may be separated into a form factor and a structure
factor according to Eq. (2.1).In computing a scattering
time for resistivity we multiply the scattering proba-
bility by 2 —cos20+, where 20& is again the angle between
initial and 6nal states, and sum over 6nal states. The
resistivity is then written in terms of this scattering
time,

p= C+
I ~(q) I

'I &k+ql ~(k) lk) I
'x'dx (4 1)

where x= q/k and k+q as well as k lies on the Fermi
surface. V is the number of atoms present and

C= 3zmQ 08/ek' Ep

has the value 2800 pQ cm per Ry' for zinc.
' See, for example, J. G. Fletcher and D. C. Larson, Phys. Rev.

ill, 455 {1958).
' J. J. Quinn, in The Fermi Surface, edited by W. A. Harrison

and M. B. Webb Qohn Wiley R Sons, Inc. , New York, 1960),
p. 58."J.R. Anderson I'unpublished).

~ J.S.Langer, Phys. Rev. 120, 724 (1960) and 124, 1003 (1961).
'3 J. S. Langer (private communication).
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l.8

l.6—

l.2—

I OI

.6,

l.0 2.0
f

3.0

FIG. 5. The square of the structure factor in liquid zinc times
the number of atoms present as a function of wave number, ob-
tained from the data of Gamertsfelder (see reference 16).

The form factor appearing in Eq. (4.1) is just that
plotted in Fig. 2. We need simply determine S(q) for the
defect in question and perform the integral to obtain the
resistivity.

The simplest defect is a vacancy (or interstitial)
under the assumption that no distortion of the neighbor-
hood occurs. We will examine this assumption when we
consider the structure of defects in a later section. For
a single undistorted vacancy, a structure factor of
magnitude 1/E is introduced at every point in wave-
number space satisfying periodic boundary conditions
in the volume. (We will need to consider these structure
factors with more care when we compute the energy
of formation of a vacancy. ) Thus we obtain the resis-
tivity per vacancy by replacing S(q) by 1/E in Eq.
(4.1) and integrating. It is convenient and reasonably
accurate to approximate the form factor of Fig. 2 by—0.463+0.269m. We obtain for the resistivity 0.65
pQ cm per at.%.

A similar treatment of scattering by vacancy clusters
dislocations, stacking faults, or any other defect can be
made once one speciies the ion positions. The calcula-
tions could be carried to higher order to include the
eEects of the band structure, but the corrections are
small in cases where the 6rst-order scattering is non-
vanishing. Freeman' has treated the stacking fault in
this manner and found that for certain ranges of the
angle of incidence no scattering appears in erst order,
and has carried the analysis to second order.

14 S. Freeman, Jr. (to be published)."J.M. Ziman, Phil. Mag. 6, 1013 (1961).

4. Resistivity of the Liquid

We may proceed with the resistivity of the liquid as
we did for static defects. Such an approach is the same
as that used by ZimanI5 for the resistivity of the liquid,
but the form factors used are more realistic and the

somewhat arbitrary separation of structure and plasma
terms is unnecessary. We obtain the structure factors
from x-ray diffraction experiments, as did Ziman. From
the data of Gamertsfelder" we determine E~S(q) ~',
which we plot against q/kr (taking kr for the liquid) in
Fig. 5. We use this with the approximate form factor
given above and perform the integration (4.1) numeri-
cally. We obtain 39 pQ cm. The experimental value
given by Bradley et a/. "is 37 pQ cm.

The agreement is even closer than we would expect
in view of the small discrepancies we found in compari-
son of the computed form factors and the observed
Fermi surface band gaps. It is rather striking that use
of the proper form factor has removed all of the dis-
crepancy found by Bradley et a/. " It might also be
remarked that in most other respects our treatment of
liquids is equivalent to that of Ziman and Bradley et al.

br, =go ao(t) exp(iQ r,), (4 2)

where the aq are regarded as small. Since there are two
atoms per cell in zinc we must let Q run over the double
zone in order to allow general displacements. We sub-
stitute r, +br, in the structure factor and expand to
second order in ao (only erst order is of interest here,
but the second order will be needed when we discuss
phonon dispersion).

S(q) =S'(q) —Eo ~q aoS'(q —Q)
—2E, ,, q a,q a, So(q—Q —Q'), (4.3)

where S'(q) are the structure factors before the intro-
duction of displacement, i.e., delta junctions at the
lattice wave numbers, qo (2' times the reciprocal lattice
vectors).

Thus, a nonvanishing structure factor, with magni-
tude —i(«0+Q) aoS'(«0) is introduced at each wave
vector qo+Q (for every q0 and every Q).

Let us consider the scattering from a state k to a state
k+ q. Further, let q lie in the double zone (normal scat-
tering). The corresponding matrix element is given by

—fq (S'(0)a.+S'(—«o)a~..&&k+qi~(&) Ik), (44)

where qo is the one lattice wave number for which q+ «0
lies in the double zone. The presence of two coefficients,
a, corresponds to the fact that there may be scattering
by acoustical or optical modes in zinc. We note that the
appropriate form factor for these two states is the same

"C.Gamertsfelder, J. Chem. Phys. 9, 450 (1941).
'7 C. C. Bradley, T. E. Faber, E. G. %'ilson, and J. M. Ziman,

Phil. Mag. 7, 865 (1962).

5. Electron-Phonon Interaction

Our analysis has contemplated a static arrangement
of the ions. However, we may introduce phonons simply
by letting the ion positions change with time; our analy-
sis then corresponds to a Born-Oppenheimer approxi-
mation. We expand the ion displacements in the form,



ELECTRON IC STRL CTL RE AX 0 P ROP ERTI ES OF M ETALS. I I 2519

for acoustical and optical modes, and for longitudinal
and transverse polarizations; it is the form factor plotted
in Fig. 2. If q lies outside the double zone (Umklapp)
there are two lattice wave numbers for which q+qo lies
within the double zone and in the corresponding matrix
element both terms appear as the second above with

q0 taking these two values in the two terms.
To determine the scattering by a given phonon, we

must determine the structure of the phonon (the relative
values of the components of the ao's which enter) and
this will be taken up in a later section. For a Debye
model of acoustical modes we keep only ao's for Q in
the single hexagonal zone and we obtain immediately
three familiar results: pure transverse phonons do not
contribute to normal scattering; the matrix element
associated with longitudinal scattering are proportional
to the corresponding dilatation; the proportionality
factor approaches minus two-thirds of the Fermi energy
in the long-wavelength limit. It is also interesting to
note that in zinc, because the form factor goes through
zero, there is no scattering through an angle of about
40', only larger or smaller angles.

V. ATOMIC PROPERTIES

1. Crystal Structure and c/a Ratio

We choose to compute the band-structure energies of
the diferent crystal structures separately from the
electrostatic energy since the latter has been computed
and appears in the literature. "The difference in electro-
static energy between hexagonal close-packed (ideal
c/a), face-centered cubic and body-centered cubic struc-
tures is of the order of 10 4 Ry per electron and negli-
gible. We wish, however, to compute the variation in the
hcp energy with variation of c/a and the contribution
of the electrostatic energy there is sizable. We use the
computation by Huntington, " which in our units is
0.064 (c/a —1.633)' Ry per electron. The band-structure
energy is computed by evaluating the sum S~SE(q) over
lattice wave numbers for the three structures and with
varying c/a for hcp. (In all cases the density is taken
equal to that observed for zinc. ) Contributions for q
greater than 3.5k' were obtained by approximating
E(q) by 0.15 exp( —2.15q/kr) and the structure factors
by a continuum as follows: we note that the sum of S*S
over any sufhciently large volume of wave-number
space, J'd'q, is that volume divided by the Brillouin
zone volume, Qaz. Thus we sum S~SE(q) over a set of
neighboring lattice wave-number points and also evalu-
ate the sum of S*Sfor the same set. Ke then determine
a radius, q„such that krq, '/30az=1+P S S. The
one corresponds to the q=0 lattice wave number. The
contribution of the more distant lattice wave numbers

' W. J. Carr, Jr., Phys. Rev. j.22, 1437 (1961).
'9 H. B.Huntington, in SolM State Physics, edited by F. Seitz and

D. Turnbull (Academic Press Inc. , New York, 1958), Vol. 7, p.
213.
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Fro. 6. The computed band-structure energies of hcp, fcc, and
bcc zinc (all at a density equal to the observed density). The hcp
energy is given as a function of c/u and includes the change in
electrostatic energy with departure of c/a from the ideal value.
The electrostatic energy for the three structures (with c/a ideal
for hcp) is (see reference 18) approximately the same, —0.312Z*'
= —1.271 Ry per electron.

is then written as

d'qE(q)/Qa z =3 x'E(k pm)dx

We found that if g S*Swere taken greater than about
30, the total energy did not depend appreciably upon
the choice of P S*S though the magnitude of the con-
tinuum contribution was not negligible.

We add to the band-structure energy the electrostatic
energy given above to obtain the results shown in
Fig. 6. Ke note first that we find the fcc structure with
lower energy than the hcp, contrary to what is observed.
We note second that the minimum energy of the hcp
structure occurs at approximately the observed ratio.
Our failure on the first point represents an error of at
least 0.004 Ry per electron, or 0.054 eV per electron.
Inspection of E(q) and the structure factors of Fig. 3
makes it clear that variations of this size can be made
by reasonable modifications of our interpolations. We
conclude that our calculation of E(q) was not sufficiently
close-grained to allow a quantitative test of the method.
We note, however, that the energy differences obtained
are of a reasonable order of magnitude (these energies
correspond to temperatures of a few hundreds of deg),
and it seems likely that with a slightly more complete
calculation, we may be able to compute the most stable
structure reliably.

This uncertainty of the interpolation applies also to
the determination of the c/a ratio. With a different
interpolation we might shift the computed stable c/a
ratio significantly. Thus the agreement with the ob-
served ratio must be regarded as fortuitous. Several
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points are worth noting, however. The electrostatic
energy rises quadratically with departure from the ideal
c/u ratio; it is just the band-structure energy which
causes departures. The band-structure energy also re-
duces the curvature appreciably, a fact which will be
discussed in connection with the elastic constants.

Another interesting point may be noted from Fig. 3
where the hcp structure factors are shown, as well as
the E(q) curve. The hexagonal face of the double
Brillouin zone corresponds to the smallest lattice wave-
number (q=1.63k&) and lies in a region for which

dE(q)/dq is negative. Thus as the c/u ratio increases and
the corresponding q drops, the energy contribution rises.
The c/a ratio is higher than ideal in spite of the hex-
agonal face. Ke 6nd, in fact, that the zone faces which
intersect the Fermi surface for all three structures are
repelled rather than attracted. This feature of the band-
structure energy depends upon the details of the po-
tentials and is not necessarily a general result.

2. Energy Change on Melting

We may compute the band-structure energy of the
liquid directly, again using the experimental structure
factors of Fig. 5. The sum over wave-number space is
replaced by an integral which for a divalent metal may
be written in the form,

P~ S*SE(q)=3 XS~SE(q)(q/k p)'d(q/k p).

This integral was performed using the curves of Figs. 3
and 5. The rather surprising result is —0.13 Ry per
electron. %e see from Fig. 6 that this is signi6cantly
lower than the band-structure energy of any of the
crystal structures computed. It is not the effects of band
structure which favor the formation of a periodic struc-
ture, but the electrostatic energy.

We may attempt a computation of the change in
electrostatic energy, again using the structure factors
from Fig. 5. We use Kq. (3.4) noting that the energy
of an ideal gas, for which S*S=I/fq for all q, is zero.
%e obtain

E,.=(Z~'e'k p/w) (XS~S-—1)d(q/k p).

This is readily evaluated to obtain —0.65 Ry per elec-
tron, some 0.6 Ry per electron higher than that for the
crystal structures. This is much too high a value and
indicates that the experimental structure factors are not
nearly accurate enough to allow a determination of the
electrostatic energy. The heat of fusion of zinc is 0.003
Ry per electron. In order to compute the electrostatic
energy to suf5cient accuracy we would need the area
between the curves XS~S and 1 in Fig. 5 to one part in
a thousand; the curve is clearly not that well known.

3. Structure and Energy of
Formation of Defects

It seems easier, at least conceptually, to compute the
structure of defects using 'U(r) rather than E(q). The
'U(r) curve which we have computed would seem not
sufFiciently well determined to warrant a detailed treat-
ment of the structure of any defect. However, we may
note some interesting features by considering a vacancy.
It can be seen from Fig. 4 that d'U(r)/dr is positive and
rather large for the twelve nearest neighbors. Thus, if
we remove a single atom from the lattice, the un-
balanced force on the nearest neighbors is outward, and
they suGer a 6rst-order outward displacement. The
6rst-order displacement of the next-nearest neighbors is
also outward, but smaller. These displacements bring
the nearest and next-nearest neighbors closer together
and increase the attraction between them; thus the
second-order displacements also tend to bring these
closer together. Without carrying out the detailed mini-
mization of the energy we obtain a picture of the va-
cancy structure: the vacancy is slightly larger than it
would be without displacements, but the ion density im-
mediately surrounding the vacancy is higher than nor-
mal. It is not clear what the long-range displacements
are. We should also remark that this conclusion is
rather sensitive to the position of the sharp minimum in
Fig, 4 and is, therefore, open to question.

%e may also estimate the energy of formation of a
vacancy. We do this for an unddormed vacancy and
thus tend to overestimate the energy slightly. %e must
take care in the energy calculation to keep the total
number of ions 6xed and to keep the volume fixed. Thus,
we compare the energy of X ions in the perfect lattice
corresponding to the lattice wave numbers qo with E ions
in a lattice with wave numbers qo'and a vacancy. The qo'
are increased according to qo = L1+1/(3)V) jqo in order
to keep the volume 6xed. The structure factors in the
lattice with a vacancy associated with qo' are equal to
those in the perfect crystal for the corresponding qo.
In addition, structure factors with magnitude 1/X
are introduced at every other q satisfying periodic
boundary conditions in the volume.

We first compute the difterence in band-structure
energy. The contribution to the total band-structure
energy Lnote that E(q) gives the energy per electronj
from the continuum of structure factors 1/X is found
to be 3ZJ'E(q)x'dx, with x= q/kz. This we may evalu-
ate from our E(q) curve to obtain —1.52 Ry. The change
in band-structure energy due to the shift of the lattice
wave numbers is (Z/3)P«S*SqoBE(qp)/Bqo. This is
found to be about —0.04 Ry. The change in electrostatic
energy is computed in a similar way using Eq. (3.4).
We obtain —(2/3) the electrostatic cohesive energy
per ion. With our effective charge this leads to 1.N Ry.
The total energy of formation, then, is found to be
0.13 Ry or 1.8 eV.

This would appear to be an overestimate; the activa-
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tion energy for self-diffusion, which includes the energy
of formation and the energy of motion, is about one
electron volt. "However, we are in this case computing
the difference between large quantities (the band-struc-
ture energy and the electrostatic energy diBer by less
than a tenth of either) so the error in the band-structure
energy is less than 10%, which is gratifying. We further
note that the main contribution to the change in band-
structure energy comes from the region of small q, so a
little more care in this region may easily improve the
agreement.

4. Elastic Constants

There are three independent, volume-conserving
shear strains in hexagonal metals. "One of these corre-
sponds to a change in the c/a ratio at constant volume
and the corresponding elastic constant can be obtained
directly from Fig. 6. We 6t the energy values at
c/a=1. 5, 1.8, and 2.0 with a parabola and obtain the
elastic constant from the quadratic term. We obtain
cgj+cgg+2c33 4c$3 30X10" dyn/cm'. The experi-
mental value given by Huntington" is ii.7. We note
that the value from the electrostatic energy al.one is 45,
so our error in the band structure contribution is a
factor of two. This discrepancy is not at all surprising
in view of the uncertainty in the parabolic approxima-
tion to our interpolated curves. We may also note that
the neglect of core-core interactions is much more serious
in computing elastic constants than in computing
energies. It is interesting to note that the effect of band
structure is to reduce the elastic constants signi6cantly.

An attempt was made to compute the band structure
contributions to the other two shear constants. They
were found to be small, as they should be; the numbers
obtained were within error of zero.

5. Stabilization of Structures

We wish to make two comments concerning the
ordering of alloys though these are not strictly within
the domain of our analysis. It v, ould probably be most
convenient to formulate the theory of a binary alloy in
terms of a form factor which is the average of that for
the two components and one which, for each component,
is the difference from the average. We can then focus
our attention on the term from the diGerence. We may
6nd that, just as in the study of the liquid, the band-
structure energy is lower in the disordered alloy; if then
Z* is the same for both components, the alloy will not
order at any temperature.

Sato and Toth" have met with significant success in
correlating the ordering distance in binary alloys with
Brillouin zone faces tangent to the surface, so-called
stabilization. Clearly on any simple model, the energy

'0 G. A. Shim, E. S. Wajda, and H. B. Huntington, Acta Met.
1, 513 (1953).

"H. Sato and R. S. Toth, Phys. Rev. 127, 469 (1962}.

due to a zone face drops monotonically as that face is

brought in through the Fermi surface. Thus stabilization
does not exist in three dimensions unless the effective
band gap has an accidental maximum in this region.
We see from Fig. 3 that there does exist a sharp mini-

mum in E(q) in zinc which arises from the maximum

form factors seen in Fig. 1. If we are to explain the
stabilization in terms of a similar eGect in the systems
studied by Sato et cl., we must assume that this mini-

mum moves with the Fermi surface during alloying.
Clearly our calculation on a single metal does not tell
us whether such a movement is to be expected.

It is interesting to note that the prominent minimum
in E(q) derives almost entirely from the orthogonaliza-
tion corrections Lfirst term in Eq. (3.2)] which would

be entirely absent in a wave-number-independent
pseudopotential approximation.

6. Phonon Structure and Dispersion

We proceed with the construction of the phonon as in
Sec. IV 5. We include two amplitude vectors, aq and

aq, corresponding to wave numbers in the double zone
and differing by 2s/c in their component along the
c axis. We also include a q

——a@* and a q =a@ ~. The
structure factors are given by Eq. (4.3). We find
second-order corrections to S*Sat lattice wave numbers,

qo, which had nonzero structure factors in the perfect
lattice, and values of S*Swhich are second order in the
a's at wave numbers, qo&Q. Each of these second-order
terms, in general, depends both on aq and aq. The
change in energy may be written in terms of these
structure factors and is a quadratic form in the six
components of the a' s. The coeKcients depend upon
E(q). We may also write the kinetic energy as a quad-
ratic form in the a' s. This results in the problem of
computing the normal modes (the structure of the
corresponding phonons) and vibration frequencies of a
system with six degrees of freedom.

We restrict our attention here to the interesting case
in which Q is parallel to the c axis and very near zero;
Q' is parallel to the c axis and very near —2x/c. We
first let Q approach zero and keep only terms which are
zero-order in Q. We compute a correction to S*Snear
each qo by adding the modified S*Sat qo to those at
qo&Q and subtracting the initial S*S.We find that only
the a and a* corresponding to Q' enter; these modes will

correspond to the optical modes. We 6nd corrections to
the structure factors given by S*S=(—1)"+'2

~

qo. so
~

'
for qo

——2sn/c and .parallel to the c axis, and
S*S=(—1)"

~

qo. aq
~

' for qo having a lateral component
equal to the smallest lattice wave number in the basal
plane (4m/3"'a) and component along the c axis equal
to 2~n/c. Contributions of the more distant qo to the
energy are negligible. There are no cross terms between
mmponents of aq parallel and perpendicular to the
c axis, so we obtain pure longitudinal and pure trans-
verse waves; the transverse waves are degenerate. We
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compute the band-structure energy associated with the
6rst set (qo parallel to the c axis) by summing through
n=3, and with the second set by summing through
rl, =2. We obtain for the longitudinal wave (~ ao

~

=u'
parallel to c axis) a band-structure energy of —0.93a"
Ry/ion if u' is in atomic units. For the transverse wave
we obtain —0.035@" Ry/ion if a' is in atomic units

(a.u.). Similarly we may compute the electrostatic
energy for these two cases from Eq. (3.4). For the
longitudinal wave we find the electrostatic energy,
within about 1%, by summing only along the c axis
from — to ~ before letting g go to infinity. We obtain
47rZ*'e'u"/00 per ion, or 0.99a" Ry/ion. For the trans-
verse wave almost the entire electrostatic energy is
obtained by summing over the six lines parallel to the
c axis and through the smallest transverse lattice wave
numbers. We obtain for the electrostatic energy
(12m.Z*'e'$a"/Qo)/(e& e&)—, per ion with $=(2n.3 "')
X (c/a). This corresponds to 0.026a" Ry/ion.

We find that the band-structure contribution and the
electrostatic contribution tend to cancel in both cases.
We find in fact that the band-structure term dominates
in the case of the transverse wave and thus that the
crystal is unstable against the corresponding distortion.
This incorrect result is related to our earlier finding that
the fcc structure was lower in energy than the hcp
structure. The fcc stacking of close-packed planes is
found to have lower energy than the hcp stacking;
similarly, the change in stacking corresponding to an
optical transverse wave propagating parallel to the
c axis also is found to have lower energy. We may com-
pute a frequency for the longitudinal optical mode from
the above numbers; we obtain 3.3XIO" cps. This is in
remarkable agreement with the value of 3.5X10" cps
found experimentally by Joynson. 22 It may also be
contrasted with the value obtained from the electro-
static energy alone, I3.2)&10"cps.

We could proceed in the same way for the acoustical
waves, keeping terms to second-order in Q. In the long-
wavelength limit we expect only the a's corresponding
to Q to enter, and the longitudinal and transverse waves
to separate. The computation proceeds as with the
optical modes, but the first and second derivatives of
E(q) enter, as well as E(q) itself. For the long-wave-
length limit, it is probably simplest to treat the trans-
verse waves in terms of shear constants computed as
in the preceding subsection.

The longitudinal acoustic waves cannot be treated in
terms of a uniform distortion without violating our
condition of rearrangement at constant volume so we
consider the waves. On physical grounds we know that
this must yield the same answer as if we had retained
the diagonal terms in the Hamiltonian and computed
the differential change in energy under a uniform expan-
sion. Rather than estimate the second derivatives of
E(q) which enter as Q goes to zero, we chose to compute

~ R. E. Joynson, Phys. Rev. 94, 851 {1954}.

the frequency at the center of the hexagonal face of the
single zone. At this point the acoustical and optical
modes are degenerate. We consider longitudinal polari-
zation vectors a ~, and a ~,=a ~,*.A particular mode
is selected by taking the a's to be real and the energies
found to second order in the a's and i's as above. The
electrostatic energy is found to be formally identical to
that for the longitudinal optical mode given above while
the mass factor in the kinetic energy is doubled; thus
we find the frequency based only on the electrostatic
energy lower by V2. On the other hand, the magnitude
of the band-structure term is increased by more than
30% it dominates the electrostatic term, and we find an
instability as we did for the optical transverse mode.

7. Kohn Effect

The Kohn effect" is, in principle, included in this
treatment. We use Hartree screening, which gives rise
to a singularity in E(q) at q= 2k +.This singularity is not
visible in Fig. 3 and it is in fact very slight. Woll and
Kohn'4 have shown that the resultant singularities in
the phonon dispersion should only be observable under
very favorable circumstances. It has, therefore, been
surprising that irregularities do show up in dispersion
curves, " though not quite at the wave numbers
expected.

A likely resolution of this puzzle may be seen in
Fig. 3. Any irregularity in E(q) will cause corresponding
irregularities in the phonon dispersion curve. The sharp
oscillation seen there should cause a sharp oscillation in
the dispersion curve. This need not occur at precisely
2k& though it may, as in zinc, be in roughly this position.
We therefore suggest that the irregularties observed by
Brockhouse et al.25 are not images of the Fermi surface,
but images of the energy-wave-number characteristic.

8. Experimental Determination of the
Energy-Wave Number Characteristic

The fact that E(q) enters so directly in phonon dis-
persion and that the spectrum spans a large segment of
wave-number space suggests it as a tool for the experi-
mental determination of E(q). It is appropriate 6rst to
compute the electrostatic contribution to the energy
associated with a given phonon and subtract it from the
energy obtained from the experimental frequency. One
then deduces the band-structure contribution from
which the E(q) curve is to be obtained.

It is clear that E(q) cannot be uniquely determined in
this way. This is most easily seen by considering the de-
pendence upon 'U(r), which is the Fourier transform of
E(q). The phonon spectrum is completely determined

~3 W. Kohn, Phys. Rev. Letters 2, 393 {1959}.
'4 E. J. Woll, Jr., and W. Kohn, Phys. Rev. 126, 1693 {1962}."B.N. Brockhouse, K. R. Rao, and A. D. B. Woods, Phys.

Rev. Letters 7, 93 {1961);B. N. Brockhouse, T. Arase, G.
Caglioti, K. R. Rao, and A. D. B. Woods, Phys. Rev. 128, 1099
{1962}.
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by the 6rst and second derivatives of 'U(r) at the
observed interatomic distances. Thus 'U(r) is not uniquely
determined by the spectrum„nor is its transform. It is
therefore necessary to postulate a form for E(q) and
6t parameters.

This attempt has been made for lead using the ac-
curately determined dispersion curves of Brockhouse
ef al. 25 We found that the results were suSciently
sensitive to the form of the postulated E(q) curve that
no meaningful curve could be obtained. We conclude
that a rather reliable E(q) must be obtained first theo-
retically, which could then be improved by adjusting
to 6t the observed spectrum. Because of the uncertainty
of the eftect of core-core interactions in zinc it did not
seem appropriate to carry out this rather extensive
analysis for zinc.

VI. CONCLUSIONS

Though we have not been entirely successful in the
quantitative computation of properties, much can be
learned from the analysis.

We 6nd that the rather rough calculation which one
is able to do on a desk machine seems to su%ce for the
determination of the OPW form factors. The single
curve, corresponding to initial and final states on the
Fermi surface, enables the quantitative computation of
a sizable array of electronic properties. %e found that
our results were quite accurate for the determination of
the Fermi surface and the resistivity of the liquid. Ke
also found agreement with the observed electronic
speci6c heat but did not expect such agreement would
be found in other polyvalent metals. Electron-electron
and electron-phonon effects enter the density of states
directly but seem not to aGect the result in zinc. These
effects are not expected to enter the resistivity nor the
Fermi surface in any case.

In considering other polyvalent metals we may note
that in all cases the form factor approaches —-', Ep as
q goes to zero. Further, in any polyvalent metal which
is rather free-electron-like, the form factors must be
near zero at q near 2k+. Thus, we may expect the form-
factor curve to be very much the same for other poly-
valent metals as it is for zinc. '~

%e 6nd that the OP% form factor curve in question
is a rather straight line in zinc. This suggests a phe-
nomenological approach in cases where one does not
wish to carry out the complete calculation. One knows
the q=0 intercept and needs only one other point on the
curve. This may be obtained from an existing band
calculation or even from an experimentally known
Fermi surface. In the latter case there is the ambiguity
of sign discussed in 0, but if more than one gap is known

'~ Pote added ie proof. We have recently made calculations of
the OPW form factors corresponding to initial and final states at
the Fermi surface for all nontransition metals with atomic number
less than that of zinc (results to be published). The resulting
curves for each of the polyvalent metals (Se, Mg, Al, and Ca) are
strikingly close to that for zinc if all curves are plotted in units
of the Fermi energy for the metal in question.

the signs can be determined readily if the form factor
is in fact roughly a straight line.

We found that the calculation of the energy-wave-
number characteristic would have to be improved
signi6cantly for a quantitative test of the method for
computing atomic properties. It was apparent in par-
ticular that the E(q) would need to be computed for
more values of q. Further, it may be necessary to com-
pute more OPW form factors to avoid the interpolation
we required for the summation over states. Finally, in
zinc it may be essential to include the effects of core-
core interaction, particularly in the treatment of the
change in energy upon melting and the elastic prop-
erties. %hile we obtain semiquantitative agreement
with some properties, in others we obtain errors in sign
for the di6erence between band structure and electro-
static energy and resulting instabilities against
rearrangement.

On the whole, we regard the results as encouraging.
The computed band-structure energy entering the
atomic properties appeared in all cases to be semi-
quantitatively correct. This implies that the band struc-
ture effects are as small as we find and therefore that
the perturbation approximation is justified. The validity
of neglecting changes in core states would be much
greater in other metals. Thus, assuming only that the
Hartree approximation is sufIiciently accurate, the
method should be capable of giving reliable results. A
more careful computation of E(q), using high-speed
computers, is much to be desired. Magnesium, alumi-
num, or gallium would seem to be likely choices; also
possibly sodium.

It would also be of interest to use the method phe-
nomenologically; that is, to adjust a computed E(q) to
6t the observed phonon spectrum and to use this experi-
mental characteristic to compute a range of properties.

It seems at first surprising that large band-structure
eftects are present when the Fermi surface is so free-
electron-like. It will be recalled that when Leigh" fit a
band structure for aluminum to the observed elastic
constants, he found very large deviations from a free-
electron Fermi surface. The primary feature of our
calculation which explains this result is the very steep
slope of the E(q) curve, corresponding to matrix ele-
ments which change very rapidly with wave number.
Thus, when the lattice is distorted and the zone faces
displaced, the band gaps change very rapidly. Thus the
important terms are the change in band structure under
distortion rather than the redistribution of electrons in
a rigid band structure.

Another feature of our calculation, which is not
apparent from the results alone, is the relative contribu-
tion of various terms. It turns out that E(q) in the im-
portant region near q= 2k & is determined almost entirely
by the f'irst term in Eq. (3.2). This term arises from
the non-orthogonality of OPW's or equivalently from

"R.S. Leigh, Phil. Mag. 42, 139 (1951).
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the nonhermiticity of the pseudopotential. The inclusion
of this term does not, introduce any band gaps at the
zone faces, but simply deforms the bands slightly, Thus
we obtain the main qualitative features of the atomic
properties before we introduce the familiar band-struc-
ture e6ects at the zone faces. It is also interesting to
note that this term is absent in a wave-number-inde-

pendent pseudopotential approximation.
We have found the computation of the atomic prop-

erties in terms of a sum over wave number of the energy-
wave-number characteristic more convenient for almost
all properties we consider than the equivalent sum over
neighbors of the effective ion-ion interaction, 'U(r).
When the electrostatic energy is computed separately
the convergence of the band-structure energy is quite
rapid. It may be seen from Fig. 4 that the forces (the
derivative of Fig. 4) are very appreciable well beyond
six sets of neighbors (38 neighboring atoms) so that the
convergence using 'U(r) is certainly no more rapid.
Furthermore, the computation of 'U(r) requires taking
the Fourier transform of E(q) which may introduce
further error. It has been rather striking that such a
wide range of properties can be computed so simply
once the energy-wave-number characteristic is known.

It should be noted that we have included in the band-
structure energy all of the screening. One might suggest
that this is the only important contribution to the band-
structure energy and thus that one could hope to com-
pute most of these properties simply using Hartree
screening of the net Coulomb potential of the ion with-
out concern for the detailed structure of the ion. We
may show that this is not the case.

The electronic properties depend on the OPW form
factor curve given in Fig. 2. To be sure, with simple
screening, we obtain the correct value, —~Ep, in the
long-wavelength limit, and the curve rises as q ap-
proaches 2k'. However, it rises only to about —0.15 Ry;
thus we lose completely the free-electron-like behavior
which characterizes the metal so well.

The atomic properties are described in terms of the
energy-wave-number characteristic. If we compute this
characteristic with Hartree screening of point ions, we
again obtain results which are roughly correct in the
long-wavelength limit. This is rejected in the success of
the Bohm-Staver4 treatment of the speed of long-
wavelength longitudinal acoustical modes. However,
every other property we have considered depends most
strongly on the characteristic in the region q =2k&, and
the structure of the curve in this region derives entirely
from the details of the ion potential.

To be quantitative, it is a simple exercise to carry out
the analysis we have used for a simple potential (no
wave-number dependence). If that simple potential is
the Coulomb potential for point ions of charge Ze, we
obtain E(q) = (4n.e'Z/Qoq')(1 —e~)/2e, . We may add the
electrostatic and band-structure energy and find it to be
given by the electrostatic energy of Eq. (3.4) with
each term divided by the Hartree dielectric function e,.
LThis means that the effective ion-ion interaction 'U(r)

for this case is simply the screened Coulomb interaction,
a result included in Cohen's" Eq. (7).] We have carried
out this analysis for lead and computed the velocity of
sound in the L110]direction, For the longitudinal wave
we obtain 3.88 (in units of 10' cm/sec) compared to the
Bohm-8 taver value (uniform positive background rather
than point ions) of 3.44. Thus the discrepancy with the
observed" 2.43 is increased. For the transverse wave
with polarization parallel to the L110] direction we
found 2.75 which is higher than the value 1.07 based
upon the electrostatic energy alone and than the ob-
served" 0.64. For the transverse wave with polarization
parallel to $001] we obtain 2.88 to be compared with
the electrostatic value of 3.21 and the experimental"
1.26. These large corrections occur because the deriva-
tives of E(q) and, therefore, of the dielectric function
enter. Clearly the inclusion of screening does not elimi-
nate the large discrepancies of the electrostatic
approximation.

If one concludes thus that the major correction comes
from the structure of the ion, one might still suggest a
simple treatment in terms of a wave number inde-
pendent pseudopotential approximation. We found that
the wave number dependence was very strong and
important, as indicated in Fig. 1, so such an approach
is certainly not useful for a calculation from 6rst
principles. However, one might wish to use it phe-
nomenologically. To be sure, one may de6ne from the
OPW form factor of Fig. 2 an equivalent effective
potential, and from the energy wave number character-
istic an equivalent effective potential but these form
signi6cantly di6'erent potentials so we gain nothing at
all; it is simply replacing one unknown curve by another.
That these two potentials are not the same can be seen
most strikingly by noting again that the term in the
E(q) computation which most strongly influences the
character of E(q) is not the second term in Eq. (3.2),
which resembles ordinary second-order perturbation
theory, but the 6rst term which derives from the non-
orthogonality of OPW's.

We 6nd that the simpli6cations of the theory which
we have considered do not contain the important fea-
tures of the problem. We might also ask if we can readily
improve our calculation by carrying it to higher order.
We note that if we carry the screening to higher order,
the potential to be associated with each ion then depends
upon the arrangement of the ions. Thus, the separation
into structure-dependent and potential-dependent
terms is no longer possible; the OPW form factor and
the E(q) term lose their meaining. In terms of the
effective ion-ion interaction, this means that we pass
from two-body to multibody interactions, as indicated
by Cohen. "We conclude that the most straightforward
improvement of the calculation makes the computations
immensely more complex.

"M. H. Cohen, paper contributed to Colloquium on The
Structure of Metallic Solid Solutions, Orsay, France), July 9-11,
1962 (to be published in the Proceedings of the Colloquium).


