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the momentum-frequency variables,

p= (po,n).

Expanding G(p) in terms of the Pauli matrices, v, , I in

the 2X2 spin space leads to the expression (16) for G
in lowest approximation. The trace is over the spin
space. The propagator 6 may be diagonalized by means

of the unitary Bogoliubov transformation:

U(y) G(p) U(p) = i/Lpo —v~(E(p) —ig)],

where U(p)=u(p)v3 —v(p)v~. Here u, v, and Z are

defined by

P'(p) —[(p2/2yg u)2+y2]1/2
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A method is formulated for the calculation from first principles of a variety of electronic and atomic
properties of metals. The method depends upon three approximations: (1) the self-consistent-field ap-
proximation; (2) the assumption that the core states are the same as in the free atom; and {3)a perturbation
solution, carried to second order, of the Hamiltonian matrix based upon orthogonalized plane waves. Only
the last approximation distinguishes the method from more traditional band calculations; it is regarded as
appropriate for the treatment of most polyvalent metals. The only experimental parameters which enter
for a given metal are the atomic number and the atomic volume.

It is found that many electronic properties, including the Fermi surface and scattering by defects or
phonons, may be calculated as for free electrons with an effective perturbing potential. The matrix elements
of this potential may be written as the product of a structure factor, depending only on the ion positions,
and a form factor depending only on the Hartree-Fock field of the ion and upon the atomic volume. The
form factor is found to be a function only of the magnitude of the change in wave number.

It is found that for a given ion density the energy of the system may be written in terms of a central-
force, two-body interaction between ions or in terms of a sum over wave number space of the Fourier trans-
form of this interaction (the energy-wave number characteristic). The procedure for computing these
functions from the Hartree-Fock field of the corresponding ion is given.

I. INTRODUCTION

XISTING o priori calculations of metallic prop-
- ~ erties based on the full Hartree or Hartree-Fock

treatment of the crystal potential have been, for the
most part, restricted to computations of the energy
bands. There are exceptions, notably calculations of the
lattice distance and attempts at calculation of the
cohesive energy, but for the most part properties which
depend upon the details of the lattice potential and the
electronic structure have been beyond the reach of
available techniques.

Recent developments have given hope of going beyond
these limitations in treating polyvalent metals. This
hope is based on the surprising fact that the Fermi
surfaces of these metals di8er very little from free-
electron spheres, ' indicating a relatively weak influence
of the lattice potential. This suggests that we might
regard this potential as a perturbation and sufhciently
simplify the analysis, in comparison to traditional band

' Extensive discussion of this point appears in the article,
%.A. Harrison, Phys. Rev. 118,1190 (1960),and in several articles
appearing in The Fermi Surface, edited by W. A. Harrison and
M. B. Webb (John Wiley R Sons, Inc. , New York, 1960).

calculations, that many new aspects of the behavior of
metals could be treated in some detail.

The work to be described here is part of such a
program. There are two classes of properties which we
wish to attack: hrst, atomic properties which depend
upon the variation of the total energy as the atoms are
rearranged; and second, electronic properties which
depend on the scattering of electrons when the crystal
is not perfectly ordered. For both classes of properties
the computations can be carried out without the explicit
determination of the energy bands. We propose to
carry out a rather complete Hartree calculation (ex-
change is also included where it is felt to be important)
for a general arrangement of the metal ions.

Certainly the most crucial approximation to be made
is the self-consistent-6eld approximation. Because of
this approximation we regard the cohesive energy,
which has a large contribution from the correlation
energy, as beyond our reach. Further, we might expect
the change in energy associated with change in volume
to have a large contribution from correlations. On the
other hand, it is hoped that changes in energy when the
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ions are rearranged at constant volume may be rather
insensitive to many-particle effects. Detailed calcula-
tions of the type described here should give a test to
the hypothesis that the Hartree approximation sufIices
for treating such properties.

The second major approximation which is made is the
treatment of the crystal potential as a perturbation, and
the use of second-order perturbation theory. In most
of the polyvalent metals the band gaps, as determined
from band calculations, are of the order of a tenth the
Fermi energy and the perturbation treatment should
be justi6ed. In cases where degenerate, or nearly de-
generate, electron states are coupled by the lattice
potential, degenerate perturbation theory must be used.
This corresponds to taking principal values at singu-
larities which occur when energies of all occupied states
are added. There is, of course, no hope of treating the
noble metals in this manner since the band gaps are
comparable to the Fermi energy. In the polyvalent
metals, on the other hand, the errors involved in using
the perturbation treatment shouM be small compared
to those in determining the potential. Thus, considered
as a band calculation, the accuracy should not be
appreciably less than for more rehned methods of com-
puting the band energies from a computed potential.
Such a treatment of the band energies has been used
by Bassani and Celli' previously. It shouM also be
added that the use of perturbation theory allows a self-
consistent treatment, and therefore favors this treat-
ment over methods which are not done self-consistently.

A third approximation is made in assuming that the
core states are the same as in the free atom. This shouM
be quite good in most polyvalent metals, moderately
good in a metal like zinc, and of course totally inade-
quate in a noble or transition metal. This assumption
is essential not only in allowing us to neglect the banding
of the core states and their corresponding energy change
but also in assuring that the first-order, self-consistent
crystal potential can be written as a sum of spherically
symmetric terms which do not change when the ions
are rearranged.

Some further numerical approximations may be made
in any detailed analysis, but those mentioned above are
the significant and essential ones.

The procedure may be outlined as follows: %e take
as a starting approximation to the conduction-band
wave function, single plane waves orthogonalized to the
core states on each ion (wherever it may lie). The
expectation value of the energy, based upon this wave
function is found to be independent of the arrangement
of the ions. These approximate wave functions are then
improved (and orthogonalized to each other) by taking
linear combinations (time-dependent linear combina-
tions in the case of scattering) of orthogonalized plane
waves, and the improvement in the energy expectation

'F. Bassani and V. Celli, Nuovo Cimento 11, 805 (1959);
J. Phys. Chem. Solids 20, 64 (1961}.

value (the time dependence of the linear combinations
in scattering) is found to depend on the ion arrange-
ment. It is the structure-dependent terms which we
seek in our analysis. The above calculation is facilitated
by transforming to a pseudopotential formalism, which
is then carried out self-consistently in a perturbation
expansion.

A prominent feature of the method is the factorization
of matrix elements of the Hamiltonian into a structure-
dependent factor and an ion-potential-dependent factor
(form factor) as one does in diffraction theory. Once
this set of form factors is computed, the scattering by
any defect of interest involves simply a computation of
the geometrical structure factors which multiply the
appropriate form factors, and the application of ordi-
nary free-electron scattering theory. %hen the efrect of
the band structure is important, it appears in the
second-order scattering calculation.

A second feature of the method derives from this
same factorization. In the energy computation these
structure factors, which are functions of wave number,
are separated out and all other summations performed
first. Thus, the total energy is written as a sum over
wave number space of the square of the structure factor
times an energy wave number characteristic. This
characteristic may be computed for a particular type of
ion at a given density and then the energy of any
arrangement of ions is readily computed from the simple
structure factors and this single characteristic.

Ke may alternatively make a Fourier transform of
this characteristic and derive an entirely equivalent
two-body central force between ions which allows the
calculation of the total energy change when the atoms
are rearranged at constant volume. It is rather striking
that there exists such a two-body central force inter-
action (for rearrangements at constant volume) in this
nearly-free-electron limit. Such an interaction (for
general rearrangements) exists also in the tight-binding
limit, but in the intermediate case it appears that
multibody forces are required.

Because it is possible to separate out the factors which
depend upon the ion positions, it is perhaps more de-
scriptive of the method to say we calculate the Hamil-
tonian of the ions rather than the energy of the metal.
%e may, for example, introduce a vacancy and minimize
this Hamiltonian with respect to the positions of the
neighboring ions. Thus, we obtain rather easily the
structure of the vacancy with a calculation which has
the validity of a full band calculation.

A third feature which we might mention is the com-
plete independence of the method on any long-range
periodic structure. Ke precede just as directly with a
defect present, with a stacking fault, or even with a
liquid metal. %e need simply compute, or determine
from diBraction experiments, the structure factors and
use our previously computed energy wave number
characteristic. The method is also directly applicable to
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alloys and shouM lose nothing in reliability, though the
computations are complicated some~hat.

A fourth feature of the method is that it is a working
method which can be applied in detail to a real metal
with a moderate amount of computation. The author
has, in fact, applied it to zinc and obtained form factors
and the energy wave number characteristic and con-
sidered several properties in terms of them. These are
to be described in the adjoining communication.

II. DERIVATION OF THE EFFECTIVE
HAMILTONIAN

In an independent-particle approximation the elec-
tronic behavior is derivable from a one-electron Schro-
dinger equation,

(T+V,p) 0'g iA8%'——a/Bt (2 1)

T is the kinetic energy operator, V,~ contains the crystal
field and is written as an operator since it will include
some exchange terms. We distinguish between con-
duction-band states O'I, and core states,
Xexp( —iE t/h). The core states are the free-atom core
states computed in the Hartree-Fock approximation.
The index n, therefore, specifies the ion position as well
as the angular momentum and energy quantum num-
bers. The conduction-band states are to be computed
in the Hartree approximation but including exchange
with the core states; that is, we use a hybrid system.

By utilizing a pseudopotential formalism based on
the orthogonalized-plane-wave (OPW) method, we will
convert Eq. (2.1) into a form which allows for a pertur-
bation expansion. Following Phillips and Kleinman' we
write the conduction-band wave functions as two terms

+.=[v ~
—Z.Q-, v~)4-3~ ' "', (2 2)

~here yA, is to be made smooth in some sense. Roj, will,
of course, be taken equal to the appropriate electron
energy, but at this point p& may depend upon time.
Such a form is always valid and simply makes explicit
the orthogonality between the 4'& and the f .

Equation (2.2) may be substituted into Eq. (2.1) to
obtain an equation satisfied by pl„

&v I+ V.pv ~ Q(4., v I)(&. —~I)4
=I ~v ~+i&(&/&t)Lv. Z.(k., v ~)4-j —(2 3)

We define the pseudopotential, S', by

Wv ~= V..v ~ Z-(k. , v a)(&- ~—~~)W«, (2 4)

so that (2.3) may be written in the form,

Tq1,+Wv I, Acogq g+iM/Bt——/v I, Q.(P., pl)$.—] (2.5).
The term in 8' will be regarded as a perturbation in
all of our analysis.

3 J. C. Phillips and I. Kleinman, Phys. Rev. 116, 287, 880
(1959}.

Cohen and Heine' have pointed out that there are
many choices of the q» which correspond to the same
4& derived by Eq. (2.2). We wish to pick a particular
set of pI, which gives speedy convergence to the pertur-
bation expansion and which puts the pseudopotential,
8', in convenient form. Cohen and Heine sought rapid
convergence by minimizing —(q q, V'ya)/(yq, ya). If q q

is an energy eigenstate, this is equivalent to maximizing

(yl„Wqr&)/(yl„pk), as may be seen from Eq. (2.3). This
was also the procedure used by the author' in his earlier
treatment of zinc. Such an approach leads to difhculties
if the potential is written as a sum of localized, but
overlapping, potentials; the resulting expression in-
volves overlap integrals between local potentials and
neighboring cores. These difhculties are avoided by
defining an approximate potential Vo~' which can be
written as a sum of nonoverlapping potentials and
maximizing the corresponding (yq, W'yq)/(qa, qq). We
include the strongest part of the potential near the ion
cores in V,~' so that we do not expect to lose appreciable
speed of convergence. Furthermore, when we compute
matrix elements, we use 8' rather than only 5", so the
accuracy of the method should not be afI'ected and our
result is almost independent of the precise manner in
which V„' is constructed.

The optimization proceeds just as in our earlier
treatment of zinc' and we obtain

with

(v ~, Uv. )Z-(4-, v ~)4-8"q I = Uqg+
(v k, ~~) Zn(A—, v ~)(v ~As)

f/va= V.D'vt ZQ' V 9
—0'~)4' (26)

We may note that the operator 8" is not Hermitian,
nor is it linear; these difhculties derive from the non-
orthogonality between the orthogonalized plane waves.
We may avoid associated ambiguities by defining a
more general operator, W'(K):

(v.,f7'.)Z Q-, v")4-
W'(x) pg= Ups+ . (2.7)

(~.,v.) Zl (v.,A) 44, v—")
The difference between lV and 5" is a simple po-

tential, which we write as V(r). Thus, the total pseudo-
potential which enters our calculations is given by

W(P) v, = W'(P) ~,+V(r) v „. (2.g)

We have found a special form' for the pseudopo-
tential, W(k). This has been achieved without approxi-
mation and should be distinguished from treatments in
which 8' is assumed to have the form of a simple po-
tential. ~ Such an assumption is frequently called a

4 M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961).
~ W. A. Harrison, Phys. Rev. 126, 497 (1962).
B.J. Austin, V. Heine, and L. J. Sham )Phys. Rev. 127, 276

(1962)J, have discussed the relationship between various forms of
the pseudopotential.

7 J. M. Ziman, Phil Mag. 6, 1013 (1961).
M. H. Cohen and J. C. Phillips, Phys. Rev. 124, 1818 (1961).
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pseudopotential approximation though it would more
appropriately be called a wave-number-independent
pseudopotential approximation. In our detailed treat-
ment of zinc, we find such an approximation totally
inadequate.

In our subsequent analysis, we will regard off-diagonal
matrix elements of O', 8", and V as small. We may
readily see that this assertion requires also that we
regard expressions of the form p„(yk,f )(f,yk) (which
we call OPW overlaps) as small and of the same order.
This follows from Eq. (2.4), from which we see that
different matrix elements will differ by terms of order
(Ek —Ek)p (yk pp„)(f,pk). In our detailed treatment
of zinc we 6nd, in fact, that g (q kpp )(p, yk) is of the
order of the matrix elements divided by the Fermi
energy (near 10%) so this is consistent in practice.

(V«, Uq k)E-(4",qk)4-+- — =&krak (3 1)
(q k, q k) —Z-(q «,4")(4-,V k)

The zero-order solutions are plane waves. qk is expanded
in the form,

+k
—Q &/qeik ~ r P o(k) eiq ~ r (3.2)

where 0 is the volume of the crystal. o(k)0 is of zero
order; the remaining a(k)q are 6rst or higher order.
Equation (3.2) is substituted in (3.1) and the resulting
equation solved in zero, first, and second order. Particu-
lar care must be taken in this analysis because of the
nonlinearity of O'. We obtain finally the first-order
coeflicients in the wave function,

(k+ql w(k) lk)
a(k) q= s(k)q,

~k Tk+q

and the energy to second order,

(3.3)

Ek Tk+(kl W(k)
I

k)——

(k I w(k) I k+ q)(k+ q I
W(k) I k)

+Z (3.4)
~k 1k+q

Here Tk is the kinetic energy, f«'k'/2m. The matrix
elements are all between plane waves and are given by

&k'I w(.) lk&= &k'I vlk&+ &k'I Ulk&

+ (3 5)
1—

Re&~I &&&PI ~&

IG. THE PERTURBATION EXPANSION

A. The Energy Eigenstates

Ke seek first the time-independent perturbation
expansion. Writing the energy-eigenvalue Amok =Ek,
Eq. (2.5) becomes

with

(k'I U
I
k&= Q ' e '""Ue'"'dr, (3.6)

(nlk&= fl-&~q P +e'k'dr. (3.7)

B. Scattering

We also find the time-dependent perturbation result.
We regard 8" as the perturbation giving rise to the
scattering. It may be noted that in proceeding in this
way we include in the scattering, terms which are
customarily regarded as band structure; that is, S'
includes the periodic lattice potential as well as the
potential arising from the defect of interest. It is readily
seen, however, that the periodic potential does not
contribute to the resistivity in that the set of electrons
involved is of measure zero and our result will be propor-
tional to the number of defects as it should be.

When scattering occurs in first order, the band struc-
ture (or periodic potential) does not enter at all. When
it occurs in second order, we obtain cross terms so that
the band structure does enter and again the resistivity
is proportional to the number of defects. This is distinct
from Umklapp, which is still only first order in the
pseudopotential.

This inclusion of the periodic potential to just the
same order as the defect potential seems totally appro-
priate; the strength of the potential of an ion in the
periodic array is ordinarily comparable to that of
the defect. The analysis is immensely simpler than

For purposes of calculation, it is conveneint to rewrite
the matrix element (kl W(k) I k+q) such that the state

I
k) lies to the right. This interchange is not immediate

because of the non-Hermiticity of W(k) arising from
the non-Hermiticity of U. Taking the form of U from
Eq. (2.6),we see that

&k'I Ulk&*= &kl v.,'Ik'& —z.&kl v.,'ln&&nlk'&. (3.8)

Furthermore, since V,p' is a good approximation to the
ionic potential in the region of the core, we may write

&k
I
V.,'In&=

&klan.

—T ln&= (Z.—T,)&kin&.

When this is substituted into Eq. (3.8), we obtain

&k'I UI k&*—&k
I
Ulk') = (Tk —T')2-&k In&&nlk'&.

Finally, we combine this result with Eq. (3.5) to obtain
the non-Hermiticity of W(~) explicitly:

(k+ql W(~) lk&*—&kl W(~) Ik+q&
(Tk Tk+ )Z.&k ln&&n I

k+ q). (3.~)

The energy, (3.4) becomes

zk= T,+(klw(k)lk)
—Pq(k+ql W(k) lk&g. &kin&(nlk+q&

+rql &k+ql w(f ) lk) I'/(Tk —T.+,) (3 1o)
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analyzing the band structure to all orders before intro-

ducing the defect, and the formulation is much more

straightforward.
The formulation given here was developed in con-

junction with Smith Freeman, Jr. It is similar to, but
more direct than, a formulation given by Austin,
Heine, and Sham. ' We expand y~ in the form

ft-l/2 P o(t) ei {K+q) ~ r i~—qt

This is substituted into the time-dependent Schrodinger
equation, (3.5), and again solved by orders. The deriva-

tion proceeds as in the usual time-dependent case
except that we must insert the explicit form for 5' from
Eqs. (2.7) and (2.8) and keep track of the additional
terms arising from the nonlinearity of W. At time zero
we take only ao to be nonzero; we take

tt, = &k+q(2'+ll'(&) Ik+q& —&kI2'+ll'(~r) Ik&

We 6nd finally that if there is a nonvanishing matrix
element of 5' connecting the initial state k and the
final state k' that

i~d'-~= «&k'I li'(&) Ik& exp(~Q —Qt),

from which we may proceed to the transition rate as if
we were treating free electrons:

f'~ ~= (2~/ft)
I
&k'I lf'(&)

I
k) I

'~(tt ~ -~) (3 11)

Ke may note that this transition rate gives us the
correct decay of the current since the wave function
between cores is directly proportional to p. Therefore,
the current in these regions may be evaluated as if the
wave function were for free electrons.

If there is no matrix element connecting the states k
and k', we must go to second order from which we obtain

2~ r..&k+qlif'(&) lk'&*&k+qllf'(~) lk&
'

Pry' h(hco~ g).
h Ace,

(3.12)

It is interesting to note that in the scattering problem
we do not obtain any terms, such as the next to last
term in Eq. (3.10) for the energy, which arise directly
from the non-orthogonality of the OPW's.

S(q) =Q, e—'& "/1V) (4.3)

&k+q~o~k&=00 ' e ""+""o(r)e'"'dr. (4.4')

Qo is the atomic volume, 0/X. S(q) is the structure
factor which appears in di6'raction theory; it depends
only upon the positions of the ions and not on the ionic
potentials. (k+q~ o

~
k) is analogous to the atomic form

factor in diGraction theory; it depends upon the ionic
potential, but not on the positions of the ions. We may
note that, in contrast to diffraction theory, o(r) may

9 See reference 6.

IU. THE SELF-CONSISTENT POTENTIAL

We wish to write the potential operator as a sum of
spherically symmetric operators centered on the indi-
vidual ion sites. The bare ion potentials can be written
this way, and since only 6rst-order screening enters, the
screening field for each ion may be computed separately
and will also be spherically symmetric. Thus each crystal
field operator, 0, which enters our computation may be
written as a sum of local operators, 0, entered on the
ion sites, r;,

Q(r) =P, o(r r;), — (4.1)

This allows us to separate the matrix elements into
two factors,

&k+qlO(r) lk&=S(q)&k+qlolk» (42)
with

not commute with exp(ik r) and therefore this form
factor may depend upon k as well as q.

The index o, specifying the core states is replaced by
a double index (j,t), with j specifying the position of
the ion and t specifying the quantum numbers of the
atomic state. Then matrix elements between core states
and conduction-band states may also be written in
convenient form,

with

&o
~

0)k&= (e"'/1V"')(t
~
o~k&, (4.5)

(t
~

o
~
k) = Qo ' ' f&(r)o(r)e'"'dr. (4.6)

The orthogonality coefficients are of this form with 0
replaced by unity. This separation of matrix elements
into structure-dependent and potential-dependent fac-
tors not only gives an immense computational simpli6-
cation, but also gives us hope of realistically computing
the changes in energy when the ions are rearranged.

Since S(0) is equal to one and is thus independent of
the arrangement of the ions, the diagonal matrix ele-
ments are independent of the arrangement of the ions.
We are only interested in the changes in energy and in
matrix elements as the ions are rearranged at constant
volume; therefore, we may disregard diagonal elements
throughout our analysis. We may now proceed to an
explicit discussion of the potential.

In our derivation of the e6'ective Hamiltonian we
divided the potential into a nonoverlapping part, v,~'
and an overlapping part, e. We require that e,~' include
the strong portion of the potential near the ion core. In
our calculations we take v,~' to be the Hartree-Fock
held of the bare ion, cut oE at a sphere with volume
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equal to the cell volume. Then e includes the tails of the
ion potential beyond the cutoff sphere and the potential
due to the conduction electrons. The results appear to
be quite insensitive to the details of the splitting of the
potential.

With this definition of e„,and with the definition of
localized operators given above, the form factors associ-
ated with V and 8' become, respectively,

(k+ q I
u

I
k) = (k+ q I

v.,' I k)
—P,(~Is.,'I k)(k+q I ~), (4.7)

(k+qlw(z) Ik&

= (k+ q I
v

I
k)+ (k+ q I

I I k&

(«III «)
+ P,(k+ q I &)(& I k). (4.g)

I—P,&«
I
t)(~

I
«)

The form factor associated with 8' is called the OP%
form factor. It enters directly in the computation of
energy states and in scattering.

The potential e„' is obtained directly from a Hartree
or Hartree-Fock analysis of the ion or atom in question
by truncating at the equivalent sphere. The potential
~ contains the tail of the ion held beyond the equivalent
sphere and the 6eld due to the conduction electrons.
This latter requires further calculation.

Ke develop the 6eld due to the conduction electrons
by orders, noting again that terms of order g ~(k'

I t)(t I k),
as well as terms of order m, are first order. The charge
distribution due to individual OP% s contains a zero-
order uniform charge density, —Ze/Qo, and a first-order
charge density which derives from the orthogonalization
of the plane waves to the core states and their renormal-
ization. This first-order charge density contributes to
o8-diagonal matrix elements, (k+ql W(k) I

k) for qWO,
while the zero-order charge density contributes only to
diagonal elements.

The replacement of individual OPW's by linear com-
binations of OP%'s to 6rst order in 8' gives an addi-
tional first-order charge distribution corresponding to a
linear combination of plane waves and an additional
second-order contribution due to the orthogonalization
terms. Such a second-order contribution to the matrix
elements does not enter our second-order energy calcula-
tion nor our scattering calculation.

The off-diagonal matrix elements of e, then, derive
from the tails of the ionic potential, from the charge
distribution associated with orthogonalization of the
plane waves to the core states, and 6nally from the
self-consistent charge density, p„, which we may com-
pute from the 6rst-order q~'s";

psc= —e ~I &a~ +I pa.

Cohen and Phillips' have also made this replacement
of the OPW's by plane waves in computing the screening
without, however, indicating that this is consistent to
the order to which the computation is made. Our treat-
ment of screening differs from theirs primarily in that
they also replace W(k) by a simple potentiaL For our
purposes this is quite inadequate. Where they find the
matrix elements are simply divided by the Hartree
dielectric function, we 6nd a more complicated
expression.

The 6rst-order screening charge density is readily
obtained from the 6rst-order pl, 's given by Eq. (3.2).

Using Poisson s equation, we obtain the screening po-
tential, V", and obtain for the corresponding form
factor,

v,~= (k+ql s-I k)
= (4ne'/q'n)gg(k~ La(k),+u(k),*j.

Finally we may substitute for the e(k) ~ from Eq. (3.3),
write w(k) as a sum of the unscreened value, w(k)' and
the screening potential, e", snd solve for z".We obtain

4xe'

~2@ k&ky

&k+qlw(&)'Ik& &k—qlw(&)'Ik)*
+

Tk Tk+q
(4 9)

q~Q ( F Tk —TI+g Tl —TI, q

If (k+qlw(k)'lk) and (k—qlw(k)'lk) were inde-
pendent of k they could be taken outside the summation
to obtain the Cohen-Phillips result,

s,-= (k+ q Iw(e) o
I k&(I —e,)/.„

where e~ is the Hartree dielectric function. This, how-
ever, is not the case and the rather laborious summations
of Eq. (4.9) must be performed to obtain the self-
consistent potential.

V. COMPUTATION OF THE MATRIX ELEMENTS

We will follow and extend the method which we
developed for the computation of matrix elements for
zinc. ' In that treatment we took for the potential (called
the unscreened potential in that treatment) simply the
s,~' described above (with a slightly different cutoff

' Summation over k here, and throughout the analysis, should
be regarded as sums over states; i.e., they include a sum over
spin as well as a sum over wave number.



ELECTRONIC STRUCTURE AN D PROPERTI ES OF METALS. I 2509

procedure). That appears to have been reasonably reli-

able for computation of the Fermi surface, but not for
the more general problems we wish to consider. In the
earlier treatment, we considered only matrix elements
between states lying on the Fermi surface; we now need

more general matrix elements. We proceed by com-

puting the form factors associated with the potential
v,p; we then include additional terms in the potential
to obtain the unscreened form factors (k+qjw(k)'~k),
and finally compute and add the screening terms to
obtain the final OPW form factor from which matrix
elements are to be determined.

v„' contains exchange between conduction and core
electrons and is, therefore, an l-dependent potential. It is

appropriate in computing these terms to expand the
plane waves in spherical harmonics and spherical Bessel
functions. We then follow the procedure described
earlier, ' but generalized such that the magnitude of the
6nal wavenumber, k'= k+ q, may diAer from the magni-
tude of the initial wave number, k. We obtain for the
form factor associated with u,

(l+q~lik)
= (4x/QD) P i(2l+ 1)Pi(cos20)

X r'j )(k'r)s, p'ji(kr)dr

rP „((r)v.p'j r(kr) dr

X xj ~(k'x)P. ((x)dx . (5.1)

The Pi(cos20~) are Legendre polynomials of

cos20=k k'/kk';

i.e., 20 is the angle between k and k'=k+q. The
P„i(r) are the radial core functions,

r'P„((r) Y( (8, (p). ——

We may write the sum of overlap integrals which also
appears in the expression for (k+q

~
w(k) ~k) in similar

form,

P,(k+ q i t)(t ~
k) = (4'/Q0) Q i(2l+1)Pi(cos20)

rj ~(k'r)P„~(r)dr xP ~(x)j i(kx)dx. (5.2)

In computing the form factors associated with the
tails of the core potential, the potential due to replace-
ment of plane waves by OP%'s, and actually some
parts of v,~' which are not l dependent it is convenient
to expand the product of the initial and 6nal states
rather than the two individually. Then since the po-
tentials are spherically symmetric, only the l=0 term
contributes; this procedure was followed previously. '

We have again achieved a sizable reduction in nu-

merical work in that only the small number of integrals
appearing in (5.1) need be evaluated to obtain all of
the matrix elements between any initial state with
magnitude of wave number k and any 6nal state with
magnitude of v ave number k'. In scattering calculations
the right-hand state in any matrix element which enters
has the Fermi wave number. In energy calculations, it
has always a wave number equal to or less than the
Fermi wavenumber.

If we have the Hartree-Fock 6elds and wave functions
for the ion in question, we evaluate the above integrals
for a set of wave numbers of interest and can then
write down the (k+q~u~k). We then compute the
additional potential v —e- from the tail and orthogonal-
ization terms and 6nd (k+q~w(k)'~k) for each q of
interest and for various k&k p. These are then substi-
tuted into (4.9) to obtain the s,"for the q of interest.
This is added on and we obtain the 6nal OPW form
factor which enters directly in the perturbation calcula-
tions of Sec. III.

This completes the bulk of the computation required
for a scattering calculation. For a particular type of
defect we determine the geometrical structure factors
$(q). These, in conjunction with the OPW form factors
computed as above, give us the matrix elements entering
(3.11) or (3.12) and we need simply sum over final
states to obtain a scattering time.

We are somewhat further from the end of the energy
calculations. The form factors above enable us to obtain
ma. trix elements and Hartree energies by Eq. (3.10),
but we require the total energy of the system and we
proceed to that calculation.

VI. THE TOTAL ENERGY

There are three contributions to this energy: First,
the sum of the band energies of the occupied conduction-
band states. This is a sum of the Ei, of Eq. (3.10) over
all k&k p. Second, we must subtract an energy equal to
the electron-electron Coulomb energy since this is
counted twice in the Hartree approximation. Finally,
we add the interaction between ions. This is simply the
Coulomb interaction since we have taken the core states
to be the atomic core states. The last two contributions
are individually infinite, but their sum is not.

It will be convenient to regroup these contributions
into three terms which we call the "free-electron
energy, " the "electrostatic energy, " and the "band-
structure energy. " The division is somewhat arbitrary,
but the one we select seems rather natural and is conven-
ient for the calculations. Only the last two depend upon
the arrangement of the ions and need to be computed
explicitly.

Before de6ning our separation of terms, it is necessary
to develop the various electrostatic contributions in
detail. %e define four charge densities:
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po is the average charge density of the electrons (the
charge density of all normalized plane waves with
k(k p).

p p is the change in conduction-electron charge
density due to orthogonalization with the core states
and the subsequent renormalization.

p„ is the change in conduction-electron charge density
arising from the use of multiple-OP% wave functions
(as a result of the perturbation calculation) rather than
single OPW's.

p;,„ is the charge density of point ions with charge
equal to the valence.

%e also define the four potentials, 4, 4'1'", 4", and
C" which may be derived from the corresponding
charge densities with Poisson's equation.

In terms of these quantities, the self-energy of the
electrons which we wish to subtract is-,'J (po+po, +p..)
X(4'+C"~"+4 )dr The . ion-ion self-energy which
must be added is 2j'p;, C" dr. (This integral should
exclude the infinite self-energy of the individual ions. )
It is convenient also to extract one contribution from
the sum over diagonal matrix elements from (3.10), the
contribution from the potential of the point ions and
the compensating uniform negative background,
Jpo(@'+C'")dr. These contributions may be collected,
noting that in any term p and C may be interchanged.
Further, we note that p„and p„have vanishing aver-
age values, while po is constant. The resulting energy is

1 1
( + )(g&D+ @ion)dr p @oowdr

2 2

1
p.,„q-dr p,.e—-—dr. (6.1)

2

the "free-electron energy, "which is independent of the
positions of the ions and not considered further.

The third term in (6.1) may be written in more con-
venient form by noting that C-=g, (1/e)V, "e'i'.
LSee Eq. (4.9) for the corresponding form factor. ) We
obtain p,„explicitly and obtain finally

p.p 4 "dr=+, V,-g., i (k—qln)(aik)

+(klo&&~lk+q) —
& l~)&olk& a.*u-"'dr .

The integral on the right has not appeared before; it
may be evaluated explicitly or might be estimated as
e''i'~. It can then be seen that the first and last terms
in the curly brackets very nearly cancel. The final term
in Eq. (6.1) may also be written more conveniently as

—(1/2) p C-dr= —-' Q„(Qq'/4n. e')
I
V -I'

The total band-structure energy per electron is, then

Eb.= (1/.Vz)P, ,a
—L(k+ q I W(k) I k)—V,-j

XQ.(kin)(a I 4+q)

+
I
(k+ q I w(k) I k) I

'/(Ti. Ti,+,)—
+V,-Z-(&k —

ql )&~ik&

—
&kl o)(~1k& P.*P.e*"dr)

The first integral is simply the electrostatic energy of
positive point ions, with charge equal to the valence,
and a compensating uniform negative background. The
second integral is a similar self-energy of localized
positive distributions arising from the orthogonalization
and a compensating uniform negative distribution due
to renormalization. If we define e8Z to be the total
charge localized at each ion by the orthogonalization
(about 0.28e in zinc) then the sum of the two first terms
is simply the electrostatic energy (within a constant
term independent of arrangement) of point ions with
effective valence Z*, given by

E"=Z~ ~*(q)~(qÃR), (6 3)

where E(q) is defined as the energy wave number charac-
teristic and is given by

E(q) =(1/&z)Z. —(k+ql ~(&)'lk&Z«kl ~&(&lk+q)

(1/2Z)g q(Doq2/4~e2)
I
V so

The matrix elements and orthogonality coefficients may
be separated into structure factors and form factors and
the energy per electron written in the final convenient
form,

Z+2 Z2 (gZ) 2 (6 2)

imbedded in a compensating uniform background. Ke
define this to be the "electrostatic energy. " It is cus-
tomarily computed by methods due to Kwald.

The last two terms in (6.1) and the sum over off-
diagonal (qWO) terms in Eq. (3.10) are to be included
in the "band-structure energy. "The remaining diagonal
terms in (3.10) and the kinetic energy are included in

+ I &k+ ql ~(&) lk& I
'/(2'~ —I' ~,)

+e,-Z (&k+ql&&«lk&

4 *We"'~ )

—(Qpq'/Ss. Ze') ~ e -I' (6 4)
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Here again w(k)' is the unscreened pseudopotential and

the summation over k implies a sum over wave number
and spin of the occupied states.

We may compute this E(q) by the methods described
above for a given ion type and given ion density. The
computation of the energy for a given arrangement of
ions then involves 6rst the computation of the structure
factors S(q); for a perfect crystal these will be delta
functions at the reciprocal lattice points. We then
multiply the square of each by the E(q) value calculated
and sum over wave number space to obtain the band
structure energy. To this we add the electrostatic energy
computed with the effective charge given by Eq. (6.2)
and obtain all of the energy which depends upon the
ion arrangement. The convergence of the computation
of band-structure energy at large q seems to be quite
rapid.

VII. THE EFFECTIVE ION-ION INTERACTION

For many problems, the above formulation is very
convenient. Furthermore, it is of some interest physi-
cally to separate the band-structure and electrostatic
contributions. For some purposes it may be preferable
to transform the formulation into an ion-ion interaction
which includes both the electrostatic and band-structure
terms. This approach has been suggested by Cohen. "
Such a formulation converges badly at large distances
for either contribution by itself, but appears to converge
quite well for the sum; this is because of the screening
of the long range Coulomb interaction by the self-
consistent 6eld.

This form may be derived directly by adding the
band-structure and electrostatic energy, writing the
structure factors out explicitly in Eq. (6.3), and inter-

"M. H. Cohen, paper contributed to Colloquim on The Struc-
ture of Metallic Solid Solutions, Orsay, France, July 9—11, 1962
in the Proceedings of the Colloquim (to be published).

3Z2 (7.1)
x sin(k ~x)E(k px)dx+Z~'e'/r,

with x= q/k p.
This transformation may be made explicitly once

E(q) has been computed. We may note the limiting
behavior at large and small distance. The short-range
limit has little meaning in that we have assumed that
the cores do not overlap and we cannot bring ions very
close without violating this condition. Under the ap-
proximations we have made, the 6rst term in (7.1) goes
to a constant as r goes to zero and the second term domi-
nates. The appearance of an eBective charge of Z*
rather than Z or than the total atomic number is of no
great signi6cance. At large distance the Coulomb held
is screened in any case. At small distances the appropri-
ate effective charge depends upon the conditions and
assumptions with respect to overlap.

At large distance we can show that the 6rst term
approaches Z*'e'/r—, just cancelling the second. We
may expect oscillating terms falling off as 1/r' to arise
from irrgularities in E(q) at q=2kg. However, these
are not important in the total energy unless there is an
accidental matching of a lattice distance and the Fermi
wavelength. The remaining terms are expected to drop
exponentially because of the screening.

changing the summations to obtain the energy per ion

E=(Z/&-")2* Z. E(q)e""' "'+
+(1/2&)g, , Z*'~'/~ r,—r, ~.

This is to be equated to the energy per ion written in
.terms of the effective ion-ion interaction 'U(r),

E= (1/2X)Q;, 'U(r; —r,).
From these two expressions for the energy, it follows
that

'U(r) = (2Z/X)P E(q)e"'+Z*'e'/r


