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seen by the results reported here, t/'„„at an Fe'+ site in
beryl is considerably smaller than for the other three
crystals.
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The longitudinal dielectric constant has been calculated for the extended Bardeen-Cooper-Schrieffer model
of a superconductor. An explicit formula is obtained which has been evaluated numerically. The competition
between collective and single-particle effects is pronounced, so that the dielectric function differs remarkably
from the most elementary approximations to it. However, the dielectric function of the superconductor
does not differ greatly from that in the normal metal in either the high-frequency or static limit, regardless
of the wavelength. This prevents the modi6cations due to superconductivity from being readily observed.
In particular, the shift in the static polarizability should cause very small shifts in the phonon speed, so
small that no effect on the lattice speci6c heat should be observed.

I. INTRODUCTION

HE dielectric function of a metal is of fundamental
interest not only for its direct experimental rele-

vance, but because of its close relationship to the cor-
relation structure and excitation system of the metal.
In a "normal" metal, the dielectric function is believed
to be determined primarily by the single-particle excita-
tions. In a superconductor, on the other hand, there
exists a strong competition between the single-particle
and collective eRects, especially in the longitudinal di-
electric function. We have studied the longitudinal
dielectric function of a superconductor, in order to
exhibit these collective eRects, as well as to clarify some
points which we shall mention below.

Anderson' and Rickayzen' have previously studied
the dielectric function, and they have obtained the
fundamental equations. More recently, Nishiyama' has
discussed limiting cases of these equations. We have ob-
tained numerical values for the dielectric function, and
thus are in a position to discuss the dielectric function
quite generally.

An elementary approximation to the dielectric func-
tion is obtained by restricting the possible excitations
to those of two quasi-particles. In the normal case, this
leads to the Lindhard4 formula. We shall consider the
irreducible polarization part, rather than the dielectric

* Supported in part by the U. S. Air Force Ofhce of Scientific
Research.

' P. %. Anderson, Phys. Rev. 112, 1900 I', 1958}.
~ G. Rickayzen, Phys. Rev. 115, 795 (1959}.' T. Nishiyama (to be published).
4 J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. -Fys.
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function. The wave number and frequency-dependent
dielectric function is related to the irreducible polariza-
tion part, iVA(q, o&), by

e(q)td) = 1+v(q)le(q)M))

where v(q) is the Fourier transform of the Coulomb
potential,

v(q) =4n-e'/q'=3(ra„/voq)'/X. (2)

Ke have introduced the notation ~„for the classical
frequency, rv„'=4mne', 'm, and vo for the Fermi velocity.
The density of states at the Fermi surface is denoted by
X=mpo/z . The irreducible polarization part is slightly
more convenient to discuss theoretically than the di-
electric constant itself. The function A(q, co) is to a first
approximation independent of the coupling. It depends
weakly on the Coulomb potential e(q), being much more
strongly influenced by the "average" attractive force.

It, of course, should be realized, that co„/veq is very
large for wavelengths of interest, namely, wavelengths
such that vpq&k~O& for 0~&100'K. As a resu]t of this
large, direct Coulomb coupling, great experimental
difhculties stand in the way of a direct observation of
the dielectric constant.

The polarization part is given by the sum of all ir-
reducible graphs shown in Fig. 1. An irreducible graph
is one which cannot be separated into two pieces by

FIG. 1. General structure of the
polarization part. The shaded area
represents the sum of all graphs which
cannot be separated into two disjoint
graphs hy breaking a single Coulomb
line.
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(a)

FIG. 2. (a) Lowest order
bubble graph. (b) Lowest
order bubble graph in the
theory of superconductiv-
ity. Heavy directed lines
represent propagators for
"dressed" electrons, i.e.,
quasi-particles. (c)Approxi-
mate self-energy correc-
tions used in defining the
quasi-particle operators. A
graphical representation of
the integral equation.

2-

cutting either a single Coulomb line (denoted by the
dashes) or a phonon line (denoted by the wavy line).
The Lindhard formula can be obtained by retaining the
graph of Fig. 2(a) alone.

The dielectric constant which we have written down
here is the electronic contribution to the complete di-
electric function. To it must be added the ionic contribu-
tion which in the ion plasma approximation takes simple
form, —(Q~/ru)', where Q~ is the ionic plasma frequency.
The inverse of the complete dielectric function takes
into account correctly all of the polarization graphs,
both reducible and irreducible. Ke shall not concern
ourselves with the refinements possible in calculating
the ionic contribution, but shall concentrate on the
electronic part only.

The results of Lindhard may, for our purposes, be
summarized most easily, by noting that the absorptive
part of A(qp&), which we denote by A2(q, ra), is given by

A2tz'(q, ~) =~or/2soq, &u(soq
3)=0~ Mp spy.

Q~'e are assuming throughout that Avpq is much smaller
than the Fermi energy. The dispersive (real) part of
A(q, ~) is given by the Kramers-Kronig relation,

A&(q, (o) = (2/s) a)'dec' A2(q, co')/((aim —co') (4)

o
2~ 5~ 4~

S Csee

Fro. 3. Function B&(q,ao), defined in the text, vs frequency. (I)
g~pleo& (II) &=cup/eo, ' (III) q=3cop/~o', (IV} q=4co, /vo

which is generally valid. Furthermore, the sum rule,

(F2(q,co)(4= s (soq)'/6,

and the property

A2(q, co))0, cu) 0 (6)

hold for any permissible polarization part, be it for a
superconductor or for a normal metal.

The most striking e6'ect of superconductivity is the
introduction of an energy gap into the spectrum of
A (q,co). Thus, we naively expect that for a supercon-
ductor, A2(q, ru) will vanish for frequencies below a gap
frequency ~„. The "oscillator strength" thus removed
from the gap region must be replaced at higher fre-
quencies, according to (5). Consequently, in a super-
conductor, A2(q, ra) might appear as in Figs. 3 and 4.

We have plotted in Fig. 3 the function B2(q,co), where

B(q,a&) is the polarization part connected with Fig. 2(b)
in which the propagators are associated with the quasi-
particles of the theory of superconductivity. In the
matrix Green's function notation of Nambu, ~ we have

B(q,s&) = (i/Ã) (2 )s' Tr d'k ~36(k ~q, k, ,'co)~gG(k+—iq—, ko+-', s))

2 d'k &(k+2q)+B(k —kq)
LN(k+-', q)s(k —~q)+e(k —yq)s(k+sq)]' . (7)

A (2z.)' fE(k+gq)+E(k —-', q)P —aP

This formula and all subsequent ones are based on the
approximation,

~,= 2@=constant.

We have denoted the energy gap by P. The u's, r's,
and E's are the usual Bogoliubov functions. '

Now 8 is not an approximation to the polarization
part consistent with gauge invariance. In particular,
the sum rule (6) is not satisfied. Insofar as $ is a con-

' Y. Nambu, Phys. Rev. 117, 648 (1960). This notation is re-
viewed in the Appendix.'¹

¹ Bogohubov, Zh. Eksperim. i Teor. Fiz. 34, 85 (1958)
)translation: Soviet Phys. —JKTP 7, 41 (1958)j.

stant, in fact, the total oscillator strength of B(q,co) by
itself is infinite, since the high-frequency tail of 8 is
proportional to (Q/ra)'. Consequently, it is essential to
include the collective sects for this reason alone.

IL EXISTENCE OF COLLECTIVE EXCITATIONS

Ke now proceed to show that at suf5ciently long
wavelengths there necessarily are contributions to
em(q, s&) and therefore to A~(q, u&) at very low frequencies.
Indeed, we must have

&(qpp) —+ ao q
—+ 0 (9)
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since we are dealing with conductors rather than insu-

lators. It is easy to see that this condition is incom-

patible with
es(q&pp) =0, co (pps.

Since one can find the bound

(10)

e(q, o) & 1+((u„/p» p)' (11)

by using the conditions (4) and (5). Thus, the strict
energy gap (10), cannot be correct. In fact, it turns
out that there is a pole in e, i.e., a Q function in ps(q, co),

at a frequency pp=co(q), where pp(q) is proportional to q
in the long-wavelength limit.

III. CALCULATION OF THE POLARIZATION PART

It is well known that, in order to maintain gauge in-

variance, one cannot keep an arbitrary selection of

graphs in calculating the response to an electric field.
Just as in ordinary quantum electrodynamics, along
with every graph, one must also include all those graphs
in which the external field interacts with every charge
carrying line.

Accordingly, following Nambu, we must include not
only the graphs of Fig. 2(a), which contain "self-energy"
corrections, but all the "ladders" as in Fig. 5. This
remark applies equally well to the corrections to the
Lindhard formula in the normal case. Glick' has studied
this selection of graphs in the theory of the electron
gas with repulsive interactions. The procedure we are
following is practically the same as that adopted by
Anderson and Rickayzen, who in e6'ect kept only those
ladders giving the scattering of particles of opposed
spin. %e choose to approximate this sum of graphs
slightly di6erently than was done by Anderson and
Rickayzen, however.

Again utilizing the notation of Nambu, we may write
the polarization part as

A(q, ru)=sN '(2pr) 4 Tr d'k

y~sG(k —$q)r(k —pq, k+gq)G(k+$q), (12)

where F(p,p') is the vertex part satisfying the approxi-
mate equation

&(p+lq, p sq)—

In this equation g is the electron-phonon coupling
constant, k(q) is the form factor associated with this
coupling, and c is the phonon vel.ocity.

%e recall that the energy gap equation, in this nota-
tion, is

e+= (2s)—' dpk ~,G(k)~yG(k)~, D(p —k). (15)

In order to study Eq. (13) it is customary to suppose
that G(k) has the structure

G(k) =i/[kp es(k'/2—m p) eg—P]— (16)

More importantly, D(q, a&) is replaced by a frequency-
independent shell potential V, which vanishes outside a
shell of width coo around the Fermi surface and is
constant within. '

This set of approximations has been questioned re-
cently. ' The final results are at present unclear. It seems
safe to say, however, that the ordinary approximation is
quite satisfactory for many purposes.

The use of a shell potential is, of course, not strictly
speaking gauge invariant. However, it is well known
that the shell potential leads to small deviations from
gauge invariance as long as the width of the shell is
large compared with the energy gap.

I I I I I IIvs IppQ WQ OpsQ 0pl FeQ'

FIG. 4. Function B&(q,eu) vs frequency. Heavy lines: (V)
g = 5calg/'vo ' (VI) g= 6Mp/eo, (VII) g =Tang/eo Light lines: A&i) (q
at corresponding wavelengths.

=e,—i (2e)—'ed'k G(k+-', q)

XI (k+-', q, k —-', q)G(k+-', q)D(p —k). (»)
Here D(q, pp) is the sum of the Coulomb and phonon
propagators, i.e.,

D(q a)) =4vre'/q'+gsk'(q)/(ru' (cq)s). (14)—
' A. Glick, Phys. Rev. 129, 1399 (1963).

Fig. 5.

FIG. 5. Ladder graphs included in higher approximations.

s J. Bardeen L. N. Cooper, and J. R. Schrie8er, Phys. Rev.
IQS, 11'H (195 ).' J. C. Swihart, IBM J. Res. Develop. 6, 14 i1962). P. Morel
and P. %. Anderson, Phys. Rev. 125, 1263 (1962). G. J. Culler,
B.D. Fried, R. %.Hu8, and J. R. Schrie6er, Phys. Rev. Letters
8, 399 (1962).



In order to solve Eq. (13), having made this simpli-

fication, we make the substitution

z~rz~ ——z3——hp+~ghi —z~2h..+~sh3. (17)

It may be readily verihed that the components hp, and

hi, satisfy homogeneous equations. In order to show this,
the symmetry under the exchange k+-,'q~ —k+-,'q

must be exploited. One must further take advantage of
the thinness of the effective interaction region around
the Fermi surface (cpp((pp'/2m) by noting that one may
reflect through the Fermi surface as if it were Rat. We
thus have symmetry under the re6ection k'/2ric —p ~
—(k'/2m —p) (g is the chemical potential). 6'e may
therefore suppose that hp and hi vanish. With the sub-
stitution (17), we obtain from (13) the result,

where
pic = pc B(q,cp),

Iz3
———VV vs+ (

Ã
1+XVm+

(1—ÃV/))

(19a)

cfPk N(k ——,'q)v(k ——,'q)+N(k+pcq)v(k+-, 'q)
Gi

(2pr)p [E(k+-,'q)+E(k ——,'q)]' —cpp

(19b)

1 d'k

X (2v )'
[&(k—pq)g(k+ pq)+v(k —

pq) v(k+-,'q)]'[B(k+-,'q)+&(k ——,'q)]

P(k+ pq)+~(k —pq)]' —~'
(19c)

Ke thus have

Ke now proceed to an evaluation and discussion of
formula (20). Unfortunately, although the functions
m, n, and. l, are relatively simple, it is not easy to see
even the gross features of the final formula except by
numerical methods. Before giving the numerical results,
however, we shall discuss some of the salient features.

Ke remark immediately, that if the simplifications of
symmetry about the Fermi surface and reflection sym-
metry are made, the approximations of Anderson and
Rickayzen correspond exactly to the expression

Ac" i =B(q,pp)+2XVrc'/(1 iV Vl). —(21)

In some senses, this is as meaningful an approximation
to the correct polarization part as the formula (20). As
the energy gap vanishes, while the coupling strength
XV remains fixed, A&~) approaches the Lindhard ap-
proximate value. Thus, we can regard A&~) —A'~) as
giving the difference between the value of the polariza-
tion part in the normal and superconducting states.

%~c'e shall therefore discuss first the expression (21).
The 6rst term of this expression, B(q,cd), as has already
been mentioned, may be regarded as the contribution
of the quasi-particles alone, whereas the second provides
the corrections arising from the collective eBects. As
might be anticipated, the contribution of the inde-
pendent quasi-particles dominates for wavelengths
shorter than the coherence length (qvp/cpp»1). The
collective oscillations predominate for long wavelengths,

2XVe'
A(q,~)= B(q,~)+

1—XV&

EVm'
1+XV m+ . 20

1—EVl

(qvp/ppp(1), and are competitive for wavelengths such
that qvp/cd, & 7.

The quasi-particle term has the properties

Bp(q, M) =0, M (M&

Bp(q,cp) —Ap& i(q,cp) &0) cp) cpp

A c"'(q,0) =B(q,0).

(22b)

(22c)

However, as noted before, there is too much oscillator
strength in B2 alone, so that the sum rule is not satisfied.
Property (c) is particularly important, namely, that the
collective excitations have no influence on the static
polarizability.

IV. STATIC POLARIZABILITY

Ke have just seen that the excitation of independent
quasi-particles determines the zero-frequency polari-
zability. This is particularly important since the static
polarizability determines the eGect of the electron
screening on the phonon spectrum. [The phonon
frequency is determined by the zero of the complete
dielectric constant, 1—v(q).VA(q, cp) —(0„/cp)', which is
to a good approximation at cp'=0„'/v(q)cVA(q, 0).]

A shift of the phonon spectrum can be observed by
measuring the specific heat of the lattice. However, it
turns out that the static polarizability depends very
weakly on the energy gap, i.e., it does not depend
strongly on whether or not the superconducting transi-
tion has taken place, so that the lattice specific heat
should not undergo an observable change.

It is easy to demonstrate that the static polarizability
is insensitive to the superconducting transition once it
is realized that the entire contribution to it comes from
the independent quasi-particle excitations. Indeed, it
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is easy to see that B(q,O) may be expanded as

B(q,O) 1+a(vpq/y)+ b(pip/pp p)'+ . , (23)

where a and b are constants. In particular, there are no
terms depending on the ratio vpq/pi, . The values of the
constants as given by (7) are not particularly meaning-
ful„however, since the whole approximation scheme is
based on the supposition that pip/pip and vpq/g are small.
Thus, we reach the conclusion that the static polariza-
bility and, consequently, the sound speed are practically
independent of the energy gap, for all wavelengths, and
especially for wavelengths comparable with the coher-
ence length, tp= 2vp/v pip.

Consequently, we find especially, that the experi-
ment of Bryant and Keesom' cannot be explained on
the basis of a shift in the sound speed, as proposed by
Ferrell. " (The static polarizability would have to in-
crease by a fraction of order pi, /vpq when this fraction is
in the neighborhood of 1/7 if the experiments of Bryant
and Keesom are to be explained on this basis. )

V. COLLECTIVE EFFECTS

The second term of (21) can be regarded as deriving
from collective effects. The denominator, d (q,pi) vanishes
at a frequency pi(q). It is not diflicult to study the van-
ishing of the denominator in the long-wavelength limit.
The result is the well-known one, pp(q) = qvp/v3, q(p((1.

In this limit, all of the oscillator strength of the
polarization propagator is associated with the collective
pole. Consequently, we find that

p(q, ~) ~ 1—~v'/E~' —(ipq)'/3j q&p&&& (24)

It should be realized that collective states of the system
are given by the singularities of 1/p(q, pi) which accord-
ing to (24) consist of a pole at pi =piv. The pole of the
dielectric function itself does not have such a direct
meaning, although it is a manifestation of a collective
response.

In a neutral fermion superQuid, there would exist
actual states at a frequency approximately determined
by the vanishing of the denominator. Even in a charged
system, these states are of interest, since it is usually
convenient to regard the system as consisting of an
underlying one with effectively short-ranged forces, and
then to take into account later the effects of the long-
range forces on the density Quctuations. Thus, we see
that the ghost of the collective state of the underlying
neutral system remains to haunt the dielectric constant
of the charged system.

In a neutral Quid the collective states have a simple
classical interpretation. They are simply the states of
ordinary sound which can persist because in the presence
of an energy gap there is no way in which they can decay.
The sound speed is related to the compressibility in the
usual way. Thus, in the weak-coupling limit we obtain

' C. A. Bryant and P. H. Keesom, Physica 4, 460 (1960)."R. A. Ferrell, Phys. Rev. Letters 6, 541 (1961).

118 2 )

n —+ pi/2pip,

(26a)

(26b)

(g V) ' —l -+
I

-'p (qvp)' —piP j/2ip p'. (26c)

By using these expressions together with (20) and (25),
we find the speed of ordinary sound in the neutral
Fermi liquid to be o' = isvps (1+p VE). This result differs
from that of Anderson, ' and is somewhat more general
in that we have included the ladder graphs as well as
the "bubble" contributions.

At shorter wavelengths such that qeo&3', the col-
lective pole practically disappears. In A&~'(q, p&), the
pole at the zero of d(q, co) never completely disappears.
Rather, the position of the pole approaches the gap
frequency, approximately as pp, pi(q) —p&,e """p'v,

~here P is a number of order unity. The residue at the
pole vanishes exponentially also. However, in the more
complete expression (20), there is no pole for these
shorter wavelengths. In expression (20), the absorptive
part of the polarization-propagator is modified so that
instead of jumping discontinuously at the gap frequency,
it rises continuously from zero at that point. The rise
occurs over a region exponentially small in size,
however.

Even though the pole itself is unimportant, the col-
lective effects are strongly felt for wavelengths with
Ipo&7~, and are important for considerably shorter
wavelengths. In general, the collective effects tend to
increase the oscillator strength at lower frequencies,
at the expense of oscillator strength at greater fre-
quencies. The high-frequency tail of the absorption due
to independent quasi-particles is, of course, completely
eliminated.

We may raise the question of whether there are any
collective states, that is, whether there are any zeros of
the dielectric function (other than at the plasma fre-
quency). % hen there is a pole in the dielectric function,
the function will be negative for frequencies just greater
than the frequency of the pole. On the other hand, the
absorptive part of the dielectric function rises very
abruptly at the energy- gap. If this rise were infinitely

the sound speed for a perfect Fermi liquid, vp/v3. It is

possible to obtain corrections to this sound speed in the
case of weak coupling.

The sound frequency is the frequency at which there
is a pole in the improper polarization propagator. The
improper propagator is defined as the sum of all graphs
of the type shown in Fig. 1, including those in which a
connection is made by means of a single interaction
line. It is readily related to the proper polarization
part by the formula

A; v„v„=A/(1 EV—A) (25)

The pole of this expression may be readily studied in the
limit in which both the frequency and wave number
~anish. In this limit the functions defined in (19) have
the form
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on the absorption well away from the gap edge. Accord-

ing to the numerical evaluation of Kq. (20), the dielec-

tric function never actually vanishes in the gap region.
%'e can thus conclude that there is no (s-wave) collective

state.
VL NUMERICAL RESULTS

In this section we deal with numerical results for
representative values of the wavelengths. The results
were obtained by numerical integration of formulas (22).
The absorptive parts of the functions, m, n, and I, can
be found in closed form. Expressions for these absorp-
tive parts are given in the Appendix. This leaves one-

dimensional principal-value integrals to be performed
numerically. It is estimated that these formulas were
evaluated with an accuracy such that the difference
A~ ' —A. '~' is correct to Yj~. The accuracy is less good
when this diBerence is itself very small.

Fro. 6. Function A&(»(q, ~), de6ned in the text, vs frequency.
Vertical lines represent 8-function contributions. (I) q=cog/4vp,
(II) q=(ug/2vp, {III)q=3cog/4vp, (IV) q=cog/vp.

L5-

steep, it would produce a large positive contribution to
the dielectric function just below the gap frequency.
In between the frequency of the pole and the gap fre-
quency would lie a zero of the dielectric function.

The dielectric function is not discontinuous at the
frequency of the energy gap. According to the formula
(20), the behavior of A2(q, or) for frequencies just greater
than the gap frequency is

A2(q, (a) = a/fin(a) rag)]'—,

where u is weakly dependent upon the frequency.
This behavior is just mild enough that it does not lead
to a large positive contribution to A(q, cv) for frequencies
near fd, . Consequently, the sign of the polarization part
just below the gap frequency will depend predominantly

FIG. 8. Function A2(") (q,&) vs frequency. Vertical line repre-
sents 8 function contribution. (I) q=3co, /vp, (II) q=4a, /vp, (III)
q= S,/vo, (IV) q= W,/v, (V) q= 7,/v, .

8.0 '-

5.0-
.YD 4.0-
.10- 1K

.50-

3.0-

R.O

AO- 1.0

zo " «l. 0

.lo- -2.0

-5.0

FIG. 7. Function A2& )(q,au) vs frequency. Vertical lines repre-
sent 8-function contributions. (I) q=5a, /4vp, (II) q=3eu, /2vp,
(III) q=7cu, /4vp, (IV) q=2&ag/vp.

FrG. 9. Functions A( ) and A& ) (q,~) vs frequency, q= p0, /vp,
(I}x,(»; (II) X,«); (III) x,&»; {IV)X,&~).
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Figures 6, 7, and 8 contain plots of Amc"&(q, ra) as a
function of frequency for several values of the wave-
length. The competition of the independent quasi-
particle and the collective eBects can be seen. Figures 9
and 10 contain plots of the real part of the polarization
part as compared with the Lindhard formula, for two
values of the wavelength. The real part is strikingly
changed in the transition. However, it shouM be re-
rnembered that the inverse of the dielectric constant is
more readily observed, and in the inverse dielectric
constant the difference is much less striking.

We have also obtained by numerical integration the
values of the 6rst few moments of the absorptive part
of the polarization propagator. The moments are de-
hned by

p. (q) = (2/~) ~"+'~2'"'(q,~)~~/(qv )"+'

I.O-

0.8-

0.6-

0.4-

0.2-

FrG. 11. Functions A&(q, co) and A&("&(q,co) vs frequency for
q=2cap/vo. (I) A, ( ) (II) A„XV=0.1; (m) A„XV=0.31 (IV)

(26) Ac, XV=0.72.

The "moment" p 2 is just the static polarizability. This
turns out to be independent of q over the range of wave-
lengths here considered. It has the same value as in the
normal case, as was previously remarked, namely,

vpq/cog co (q}/cog fc/COg

0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
3.00
4.00
5.00
6.00
7.00

0.142
0.282
0.412
0.529
0.634
0.724
0.798
0.853
1.0

0.227
0.443
0.640
0.810
0.928
0.968
1.002
0.969
0.437

0.578
0.570
0.563
0.560
0.555
0.548
0.547
0.550
0.524
0.519
0.516
0.510
0.509

0.206
0.219
0.225
0.229
0.234
0.236
0.238
0.241
0.250
0.249
0.242
0.244
0.245

0.21
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20
0.20

2.0-

TABLE I. Position and residue of the pole of A(") (q,co) are listed
as a function of wavelength. Also listed are the "moments" of the
oscillator strength. The symbols are defined in the text.

p &
——1. The zeroth moment is 6xed by the sum rule.

With our normalization it should be

1Po= 3

Numerical integrations of the formulas for p 2 and po
agree with the theoretical values to about one part in
104 or 10', respectively. Most of the error occurs in the
numerical integration of the frequency region in the
neighborhood of vg.

The remaining moments are listed in Table I. Also
given is the position co(q) and residue r, of the pole of
the polarization part. This 6xes the 8-function contribu-
tion to the absorptive part of Ag(q, cd) as r,b(co u&(q))—

The listed moments may be compared with those of
the Lindhard formula, which are y, „c~~=1/(I+3). We
also note the moments obtained in the long-wavelength
limit, i.e., for co(q)=voq/v3', ro voq/&S

——In th. is case
p„&'&=-', (V3) ".It should be noted that the continuum
contribution already makes a signihcant contribution
to p2 at qvo ——co,/4.

VII. NORMAL CORRECTIONS TO THE
DIELECTRIC FUNCTION

Equation (20) contains, in addition to corrections to
the Lindhard formula deriving from the nonvanishing

I.O

-1.0 " 3.0-

2.0-

Qlg 20Pg 3llJg 4ldg 54Llg 60lg 7CIPg

FIG. 10. Functions A( ) and A( ) (q,co) vs frequency: q=5aug/vQ.
(I) A ("); (II) A (~&; (III) A ("&; {IV)A (~).

0 w 2~ Su 4M 5&& I 7

FrG. 12. Functions A&(q,cu) and A2(~)(q, ar) vs frequency for
q=7cu, /vo. (I) Ag("&; (II) A2, XV=031; (III}Ag, XV=0.72.
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Fro. 13. Functions A~( ) and normal corrections to
A&(L& vs frequency {after Glick).

energy gap, corrections which wouM be present even
in the normal state. These corrections are relatively
small for small coupling constant. There exist corrections
to the polarization part other than those given by (20),
of course, but it is believed that the ladder sums are
among the most important of the corrections.

The efI'ect of the correction is greatest whenever the
approximate value of the polarization part, etc"'(q, cg) is
large. Consequently, the corrections will be most im-
portant near the "jumps, " i.e., for frequencies in the
neighborhood of M, and vpq. The jump at vpq will be
particularly important, because Ac"&(q,cg) is large and
negative there. The correction to A will consist of an
enhancement of the absorptive part near vpq, and a
suppression near Mg. In Figs. 11 and 12, the absorptive
parts are plotted as a function of coupling constant for
two values of the wavelength. As can be seen, for strong
coupling, the difference is significant.

Glick' has found, that in the case of repulsive inter-
actions alone, the absorptive part is enhanced at lower
frequencies and suppressed at frequencies near the
maximum. In addition, he finds a shift of scale arising
from the self-energy correction. This shift has been
neglected in our calculations, This behavior is sketched
in Fig. 13. It is to be contrasted with the behavior in a
superconductor. The change in sign of the effective
coupling in the two cases accounts for the difI'erence.

One should not put too much faith in the magnitude
of these corrections, since the many additional correc-
tions have not been systematically studied.
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APPENDIX I

Ke list below the formulas for the absorptive parts
of the functions m, n, and /. In these formulas we have
put cc= (cg —cg,)/(cg+pg, ), sin'8=

I
1—cg,'/(cg' —vpgq')]

XLvpq/(cg —cgg)]', and denoted by E, F(cc,e) the com-
plete and incomplete elliptic functions of the first kind.
The corresponding functions of the second kind are
denoted by E, E(cc,e), respectively. The modulus of
these functions is ~.

For pgg cg,'+ (vpq)P, one has

7I Mg M

ng(q, cg) = ——E,
2vpqM+Mg

7l M+Mg
gng (q, cg) =— E ng (q,pg—),

4 qvp

ig(q, cg) =gng(q, cg).

(I2)

(I3)

For (cg '+(v q)']i» &cg &0 5cgg+Dv pq)'+(0 5cpg)']'", one

X'MgM

(nqp, )=cgtc2IC F(cc,e)], —
4'vpq(cg+cg g)

(I4)

m. (cd+ cg,)
gn, (q,cg) = $2E E(cc,e) Ksin8—]—n&(q c—d), (I5)

8

X' M Mg

lg(q, cg) = gn, (q,cg)+ sine.
4vpq

F«cg) ppgg+L(vpq)'+ (pcgg)']'», one has

(I6)

7IMgM

np(q, cg) = F(cc,e),
4vp q (cg+cg g)

(I7)

pr (cg+cd, )
gng(q, cg) = LE(cc,e) cc sine] —np(q, cg), (IS)—

8

7i M —
Mg

4(q, cg) = gng(q, cg)+ sing.

APPENDIX II

Ke recall here for the convenience of the reader, the
notation of Nambu. Let the destruction operators be
redefined by agt —+ a(k)i, a c, ct ~ a(k)&.

G;,= (T(a(k);a t (k),)),
where T is the time ordering operator. It is also con-
venient to introduce four-dimensional notation for
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the momentum-frequency variables,

p= (po,n).

Expanding G(p) in terms of the Pauli matrices, v, , I in

the 2X2 spin space leads to the expression (16) for G
in lowest approximation. The trace is over the spin
space. The propagator 6 may be diagonalized by means

of the unitary Bogoliubov transformation:

U(y) G(p) U(p) = i/Lpo —v~(E(p) —ig)],

where U(p)=u(p)v3 —v(p)v~. Here u, v, and Z are

defined by

P'(p) —[(p2/2yg u)2+y2]1/2
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A method is formulated for the calculation from first principles of a variety of electronic and atomic
properties of metals. The method depends upon three approximations: (1) the self-consistent-field ap-
proximation; (2) the assumption that the core states are the same as in the free atom; and {3)a perturbation
solution, carried to second order, of the Hamiltonian matrix based upon orthogonalized plane waves. Only
the last approximation distinguishes the method from more traditional band calculations; it is regarded as
appropriate for the treatment of most polyvalent metals. The only experimental parameters which enter
for a given metal are the atomic number and the atomic volume.

It is found that many electronic properties, including the Fermi surface and scattering by defects or
phonons, may be calculated as for free electrons with an effective perturbing potential. The matrix elements
of this potential may be written as the product of a structure factor, depending only on the ion positions,
and a form factor depending only on the Hartree-Fock field of the ion and upon the atomic volume. The
form factor is found to be a function only of the magnitude of the change in wave number.

It is found that for a given ion density the energy of the system may be written in terms of a central-
force, two-body interaction between ions or in terms of a sum over wave number space of the Fourier trans-
form of this interaction (the energy-wave number characteristic). The procedure for computing these
functions from the Hartree-Fock field of the corresponding ion is given.

I. INTRODUCTION

XISTING o priori calculations of metallic prop-
- ~ erties based on the full Hartree or Hartree-Fock

treatment of the crystal potential have been, for the
most part, restricted to computations of the energy
bands. There are exceptions, notably calculations of the
lattice distance and attempts at calculation of the
cohesive energy, but for the most part properties which
depend upon the details of the lattice potential and the
electronic structure have been beyond the reach of
available techniques.

Recent developments have given hope of going beyond
these limitations in treating polyvalent metals. This
hope is based on the surprising fact that the Fermi
surfaces of these metals di8er very little from free-
electron spheres, ' indicating a relatively weak influence
of the lattice potential. This suggests that we might
regard this potential as a perturbation and sufhciently
simplify the analysis, in comparison to traditional band

' Extensive discussion of this point appears in the article,
%.A. Harrison, Phys. Rev. 118,1190 (1960),and in several articles
appearing in The Fermi Surface, edited by W. A. Harrison and
M. B. Webb (John Wiley R Sons, Inc. , New York, 1960).

calculations, that many new aspects of the behavior of
metals could be treated in some detail.

The work to be described here is part of such a
program. There are two classes of properties which we
wish to attack: hrst, atomic properties which depend
upon the variation of the total energy as the atoms are
rearranged; and second, electronic properties which
depend on the scattering of electrons when the crystal
is not perfectly ordered. For both classes of properties
the computations can be carried out without the explicit
determination of the energy bands. We propose to
carry out a rather complete Hartree calculation (ex-
change is also included where it is felt to be important)
for a general arrangement of the metal ions.

Certainly the most crucial approximation to be made
is the self-consistent-6eld approximation. Because of
this approximation we regard the cohesive energy,
which has a large contribution from the correlation
energy, as beyond our reach. Further, we might expect
the change in energy associated with change in volume
to have a large contribution from correlations. On the
other hand, it is hoped that changes in energy when the


