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Direct Spin-Lattice Relaxation Processes*
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A spin-lattice Hamiltonian for direct processes (the dynamic spin Hamiltonian} is dehned which contains
the effective spin operator and nuclear spin operator used in the static spin Hamiltonian. From the form
of the dynamic Hamiltonian, certain combinations of the lattice operators can be identi6ed as the dynamic
analog of the static spin Hamiltonian parameters. The direct relaxation rates can be expressed in terms of
spectral densities of the products of the dynamic spin Hamiltonian parameters. Assuming that the inter-
action of the ion with the crystal is adequately described by a crystal 6eld, the sources of which are charac-
terized by a symmetry group, it is possible to express the spectral densities involved in the spin-lattice
relaxation in terms of the spectral densities of the normal modes of the complex. %'e use the symmetry of the
complex and the crystal to limit the number of independent spectral densities of the normal modes without
making any detailed assumptions about the lattice phonons nor the way that the sources of thecrystal
6eld participate in the lattice vibrations. Particular attention is given to the case of a Kramers doublet with
hyperlne structure, and the matrix elements of the spin-lattice Hamiltonian between the eigenstates of the
static spin Hamiltonian are given explicitly. These results are applied to the case of divalent cobalt in a
nearly cubic 6eld, and it is found that all twenty two of the relaxation rates between levels for which the en-

ergy separation is gPH for any direction of the applied held may be expressed in terms of four constants
if the nuclear quadrupole interaction is ignored. The efl'ect of the dynamic hyperfine interaction is found to be
surprisingly large. Since all of the relaxation rates depend on the direction of the applied magnetic field, the
four constants can be vastly overdetermined by experimental measurements of the direct relaxation
processes.

I. GENERAL THEORY

EVERAI. recent theoretical papers' 4 have done

~ ~

much to suggest decisive experiments for the
clarification of the spin-lattice relaxation processes in
paramagnetic salts. The present paper is an extension
(with some modifications) of that work to a discussion
of the direct relaxation processes which can occur in a
dilute paramagnetic salt with resolved hyperfine
structure. These relaxation processes, which are
important in dynamic nuclear orientation experiments,
have been treated in a phenomenological manner by
Abragam5 and in more detail but in the same spirit by
Jeffries. ' The present treatment is an effort to relate
these processes to the more fundamental processes of
lattice vibrations.

In Sec. 1, we begin with a discussion of the dynamic
crystal field which parallels that given by Van Vleck~
and, for the most part, serves to define our notation.
KVe conclude Sec. 1 with a definition of the dynamic
spin Hamiltonian in a way that is suitable for the
treatment of a wide variety of problems. In Sec. 2,
the relaxation rates between the eigenstates of the
static spin Hamiltonian are calculated and expressed
in terms of the spectral densities of the products of the

dynamic spin Hamiltonian parameters which have a
semiclassical interpretation that is frequently stressed
in discussions of nuclear magnetic relaxation. ' In this
section„ the spectral densities of the products of the
spin Hamiltonian parameters are formally related to
those for the products of the normal modes of the
complex which is assumed to produce the crystal field.
Ke discuss the relation of the number of independent
spectral densities to the symmetry group of the complex
and the over-all crystal symmetry which is reQected
in the properties of the lattice vibrations. Sec. 3 is more
specialized, and is devoted to the detailed evaluation of
the matrix elements of the dynamic spin Hamiltonian
for a Kramers doublet with electric and magnetic
hyperfine interactions and a strong external magnetic
field. In part II, we apply the method to divalent cobalt
in a nearly cubic field.

1. Spin-Lattice Hamiltonian

From the point of view of crystal field theory, the
energy levels of ions in crystals are eigenstates of the
Hamiltonian

Wr = W +Vrp+PH (L+2S), (1)

where 5'q is the Hamiltonian for the free ion and Vo
is the static crystal field. The spin Hamiltonian is
useful when a restricted set of the eigenstates of lV~,
say Ppp (where k=1, 2, , 2S+1 and 0=1, 2,
2I+1), are isomorphous with a set of functions
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4 C. B. P. Finn, R. Orbach, and W. P. %'olf, Proc. Phys. Soc.
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y.,= P C„„„.~Sm&~lm&, (2)

A. Abragam, The Principles of Nuclear Magnetism (Clarendon
Press, Oxford, 1961), Chaps. VIII and IX.
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which are linear combinations of the products of
eigenfunctions of the e6ective spin operator S and the
nuclear spin operator I. The spin Hamiltonian X',8 is
a function of I and S such that' "

&P»I Wrlf»)=&@»IXslq4a&. (3)

The coupling between the ions and the lattice vibra-
tions in the crystal 6eld view is produced by the
modulation of the crystal 6eld by the motion of the
sources relative to the paramagnetic ion. We assume
that the sources of the crystal held are a number of
nearby molecules or ions which, together with the para-
magnetic ion, we designate as a complex without any
implications concerning the nature of the chemical
bonding. If one describes the motion of the sources in
terms of a set of generalized coordinates Q,'"', the dy-
namic crystal potential to 6rst order in the displace-
ments from the equilibrium positions is

8V(r))
V'(r)= E IQ~'")= E V~")(r)Q~'"), (4)

p JQ{»j zx

where V,'"'(r) are operators in the space of the ionic
wave functions and the generalized displacements are
functions of the lattice phonon operators

Q'"'= E QJ'"'(Kp )= r, dJ'"'(Kp )(«P-+«y. '), (5)

in which K is a unit vector in the direction of propaga-
tion of the phonon, ru is the angular frequency, and p
is the polarization index. The choice of the generalized
coordinates for describing the motion of the sources
relative to the paramagnetic ion will depend not only
on the nature of the complex but on the symmetry of
the lattice vibrations which are the driving force for
the displacements.

The evaluation of spin-lattice relaxation rates be-
tween the states (h, k) and (h', k') requires the calcula-
tion of &{:I&+»I V'l{p))').")If) w"ere l~& and

I f& a« lat-
tice states. Ke wish to replace this calculation by the
analogous one for the states p~~, with the use of a
spin-lattice Hamiltonian de6ned so that

&~I&4»1 V'l0'~)lf&=&~I&&»l&sLI&~ «&If» (6&

where it is clear that XSL will contain the nuclear spin
and eGective spin operators as well as lattice operators.

Mattuck and Strandberg' have given an explicit
calculation of a spin-lattice Hamiltonian

I their Eq.
(44)j for an ion with an orbital singlet lowest and no
hyperhne structure which is almost, but not quite, in
the form required by our de6nition. Their Hamiltonian
contains a quantity g» and an operator 8 which we
would replace by equivalent operators in the effective
spin.

'W. Low, in SONS' State Physics (Academic Press Inc. , Ne~v
York (1960), Suppl. II."G. F. Koster and H. Statz, Phys. Rev. 11$, 445 (1959).

Aside from the presence of lattice operators XSL is
precisely the same as the change XB' in the static spin
Hamiltonian under a static crystal-6eld perturbation of
the same form as tj'. This correspondence is very useful
in the estimation of the importance of the terms in
3'.SL. For example, if it is known experimentally or
theoretically that the hyper6ne interaction is more
sensitive to the crystal 6eld than the Zeeman splitting
(at some 6xed applied 6eld), then the hyper6ne inter-
action may dominate the direct spin-lattice relaxation.

For the remainder of this section, we assume that the
spin-lattice Hamiltonian has been calculated according
to the scheme described above. In order to keep the
complexity of notation to a minimum consistent with
the discussion of the sects of the hyper6ne structure,
we shall restrict our considerations to the case in which
the lowest eigenfunctions of 8'p are a Kramers doublet
with hyper6ne structure. The static spin Hamiltonian
will have the form

Xs=PH. g S+I.A S+I P I,

where the e6ective spin S is one-half. The parameters
g, A, and P are second rank tensors. The number of
independent components of these tensors is restricted
by the symmetry of the static crystal 6eld. The dynamic
spin Hamiltonian will have the form

Xs,=PH g' S+I A' S+I P' I. (g)

The second rank tensors g', A', and P' in the present
approximation are linear functions of the phonon
operators. It is desirable to write (8) in a more compact
notation

acsL=Q Ug{ )M; ),

where u takes on the values g, A, and P. U;, ( ~ are spin
operators and M;;& ' are linear combinations of phonon
operators. Rather than expand the latter directly in
terms of phonon operators, it is more useful for our work
in the next section to consider the expansion in the
generalized coordinates of the complex:

This is also the form in which the results will be obtained
if the perturbation V' is applied in the form given by (4).

2. Spectral Densities and the
Utilization of Symmetry

We assume that the general features of the statistical
aspects of spin-lattice relaxation are familiar. The
transition rate per unit population from a level c to a
level b of a spin system is related to that for the reverse
process by

W, q
——W{,Lexp(E, —E{)/kTj, (11)

where T is the lattice temperature. Abragam' has
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shown that

x 2 &sM&"'If&&fliif -((»'Is&
g~ ef

Xs (z')"&-b(E.—Er+AN), (12)

in which X0——P, exp( —E./kT), I')coo=Eo E(„a—nd the
sums will include integrals over continuous spectra.
After the average over the initial states

I s) and summing
over final states

I f) of the lattice, one may write

)&2

W. (, =I — p J;),( 's)((u)
&),;)m

x&ol f/, ;&-&1»&f
I U,.«&'I o&, (13)

where

ad&ex~ I
M „i(»'I ex~+1))(),(K,coo) (14)

is called the spectral density tensor for the n and P
components of the dynamic spin Hamiltonian. p), (K,&a)

is the density of phonon states per unit energy interval
and per unit solid angle with the polarization p, and
dQK is a dia'erential solid angle in the direction K. The
state vectors

I r&x~„) are representations of the lattice
states labeled by the number of phonons in each mode.
Since the thermal average has been taken already, the
squares of the matrix elements of the lattice operators
between these states are

I &«~ I «~~1«~+ 1)I'= [1—exp( —h~/&2')]-'. (15)

Substituting (10) into (14), we obtain

j,,.,„«)&= P ~,,„„«)g „«))[Q (i& Q o))

[Q'"),Q.(")1-=2 dfix(. (K,~)(«~I Q, &"'I «~+1)
X(« -+11Q.'""

I «.-& (17)

are the spectral densities for the products of the general-
ized coordinates.

In a semiclassical view of the lattice, the spectral
densities defined in (14) would be the Fourier transform
of the correlation function of the time-dependent spin
Hamiltonian parameters. Our spectral density is
de6ned for those transitions in which the lattice absorbs
energy. In the limit of in6nite lattice temperature, the
spectral densities for absorption and emission of energy
by the lattice are the same and agree with the semi-
classical result. The spectral densities defined by (17)
have a corresponding interpretation.

where n' is the number of symmetry operations in 6,
and the sum over T is over all symmetry operations in
6,. It follows from the orthogonality theorem for the
representation matrices of T that"

[Q (h)
Q (y)j —('(b)(~)g, &)i

If the same representation occurs more than once, the
cross products of corresponding elements will not vanish
and if Q, &"" is an element of a repeated representation,
then we have

[Q (x)~
Q (x)] —fl(x) (~)h

[Q (i)'
Q (x)'j —C(i&'((g)g„

(20a)

(20b)

so that if the irreducible representation is repeated
n times there are )&i(I+1)/2 independent constants
introduced.

The number of irreducible representations which
contribute to the spectral densi(, ies defined by (16)
depend on the matrix elements of the operators V;&").
These operators transform in the same way as the

"V. Heine, Group Theory ie Quaefum Mechanics (Pergamon
Press, New York, 1960), p. 139,

Ke consider the situation in which the complex is
characterized by a symmetry group G~ and the crystal
by the symmetry group 6&, and we further assume that
one of these groups is a subgroup of the other. It is
then clearly permissible to choose the generalized
coordinates so that Q;&"& is the jth component of the
Xth irreducible representation of the smaller of the two
groups which we designate as 6,. Let T be a symmetry
operation of G, and K'=T(K) be the unit vector
produced from K by the symmetry operation. Since this
new direction is equivalent to the initial one as far as
either the complex or the crystal are concerned the
following statements may be made: Independent of any
model for the phonons, the phonon modes may be
separated into the same set of polarizations for the
direction of propagation K' as for K, and these polariza-
tions correspond to the same displacement vectors rela-
tive to K' as the original set did relative to K. It
is clear then that the displacemen. ts of the compo-
nents of the complex by the phonon traveling in the
direction K' is the same as the set produced by the
photon traveling in the direction K and with the
corresponding polarization after that set has been
transformed by the symmetry operation T. In addition
p~(K, a&) =p„(K',&0). Therefore, we may average (17)
over the phonons traveling in equivalent directions to
obtain

)'1'&
LQ. '"',Q. '"'j-=

I

—IZ dilly. (K,~)
&n'i ~

XZ(I „„IrQ„&)INx +1)
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corresponding Q's. There is clearly only one independent
constant V &"' for each irreducible representation. The
eigenstates of Wl+ Vo consist of degenerate sets which
are irreducible representations of the group which
characterizes Vo. Since G, is a subgroup of the group
defined by the Hamiltonian, the eigenfunctions of (1)
can be writ ten as linear combinations of ionic states
which transform as the irreducible representations of G..

4'ca= 2 Asap''") (21)

and the matrix elements of V operators are

&Pk k ~
&""'~yak&= Z Aaki~AA a iy'&p»j

~
p&Vf&&("' (22)

in which we have used the generalized signer coefB-
cients for irreducible representations. " I'rom (21), it is
apparent that the number and nature of the irreducible
representations which contribute to the direct relaxation
processes is governed by the nature of the states and the
normal coordinates. Van Vleck' has considered the
limitations on the number of normal modes for several
cases and Orbach' has treated others. In general, if the
matrix element of V;(~' does not vanish and the irreduc-
matrix element of V;(") does not vanish and the irre-
ducible representation X occurs e times, there are
n, (n+1)/2 independent constants introduced into (16)
of the form

[P(&)]2+(i)(~) P(x) p(k)I+(i) (~)

3. Calculation of Spin-Lattice Relaxation Rates

A. The SraA cspie Hami'ltaeisn

The Hamiltonian (7) when specialized to effective
axial symmetry may be v ritten

pcs ——pg) )Ks.+pg, (&D.+eg„)+A I,s.
+8(IQ,+I„s„)+PIi, (23)

where the s axis is the symmetry axis of the complex
and the x, y axes are any orthogonal pair perpendicular
the the symmetry axis. If the magnetic field is the
largest term in (23), one should apply perturbation
theory in a representation in which the Zeeman interac-
tion is diagonal. This is accomplished by choosing
states for which the electronic spin is quantized in the
direction g H. In the treatment of the hyper6ne
interaction, the nuclear spin should be quantized in the
direction (g H) A so that the part of the interaction
which is diagonal in the electronic spin is also diagonal
in the nuclear spin. The direction of these axes relative
to the symmetry axis is shown in Fig. 1 for the case in
which the magnetic 6eld is in the xs plane and at an
angle 8 with the s axis. The angles P and x defined in
the figure are given by the relations taniP= (gi/g)))tan8

» J.S. Grif5th, The Theory of Transition Meta4 Ious (Cambridge
University Press, New York, 1961},p. 168.

FIG. 1.A diagram of the coordinate axes used in the quantization
of the spin Hami1tonian when the g and A tensors are anisotropic.
The ass z1 is in the direction of I, the z~ axis is in the direction
of g 8, and the zl axis is in the direction of (g.a) ~ A. The angles
8, P, and g are defined here for use in the text.

A,;(e= Z ~'.(x». «- )';(~), (24)

~')(~)= Z~;a(X)»i(& ')V(X),

where the matrix E(Q) is that for the transformation of
a vector by the rotation of the coordinates by the angle
0 about the y axis. The components of the tensors on
the right-hand side are referred to the symmetry axis.
In writing the HamBtonian, we omit explicit indication
of the dependence on 8 and let it be understood that
Greek subscripts g, g, and g refer to the axes defined in
Fig. 1 and may be diferent axes for the nuclear or
electron spin operators. The spin Hamiltonian takes the
form

$Qs ——Qrrsr+A rrIrsr+Ar+rs++A+rI A+ A ~ I~+
+A~+ ++~rrIr +~r+(IrI++IP~)+~W4-

+P,, ;I+I++Hermitian adjoint, (25)
where

Grr —P+grr, Ar+ —i2Arr, A+r ——0; A~=xi(Air+A„„);
A~= x(Air —A.,); &r+= x&ir ' &++= 4~i r

=~+

The components A ~~, A g„, A „~, A „~, and A „g are zero
because of the form of the transformation (24). Constant
terms in the quadrupole interaction have been omitted.
When the transformations (24) are carried out, Eq. (25)
gives results which agree with Bleaney. "

For our discussion of relaxation processes only the

13 B. gleaneyr Phil Mag 42' 441 (1951).

and tang= (8/A)tang. In order to obtain the appro-
priate components when the three vectors 8, S, and I
are referred to different axes in terms of their values
when all of the vectors are referred to the symmetry
axis, a mixed coordinate transformation must be made:

g;;(8)= 2 &"(~)g. (~-'), (O),
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first-order expressions for the energy eigenvalues are
required:

E. =Grto+Arrmo+Prtm' ', P—«-m2, (26)

where 0. and m are eigenvalues of Sr and Ir. If we assume
that the quadrupole interaction is much smaller than
the magnetic hyperfine interaction, we may write the
first-order wave function as

(-,',miK'I o,m")(o,m"
I

Qt „I=(-,',m, i+g, (27a)
~m" (E, —E. „)

(o,m"
I
3C'

I

——,',m')
,m"), (27b)"" (E-t,- —E,- )

where 3C' is the nondiagonal part of 3C8.

B. The Matrisc Elements of the Spin Lattice H-amiltonian

We assume that the dynamic tensors have been
calculated for the case in which all vectors are referred
to the symmetry axes. To calculate matrix elements
between the eigenstates of (25), the dynamic tensor

components must be transformed by Eqs. (24). The
spin lattice Hamiltonian may be written in precisely
the same form as (25) except that the parameters are
primed. Because there is less symmetry in the dynamic
tensors, the expressions for the parameters are more
involved when they are expressed in terms of Cartesian
components. In the dynamic analog of (25), we have

Gr+ = (AH/2) (Crt igr. ) '

Ar+ =k(Art 'Are) '

A+r'= k(At t' iA—~r')

A +'=-:(A—«'+A~~')+-'Z (A t~' A—~t')

A++= '(A «-' An—~') ~i—(A te'+A~t')

(2g)

The components of the P' tensor have the same form
as those of A'.

We shall work out the matrix elements of the
dynamic spin Hamiltonian between those states for
which the energy difference is of the order of Grr. The
relaxation rates for the other transitions are several
orders of magnitude slower because of the co' depend-
ence of the density of phonon states. We find for those
matrix elements

&|P.—,.I ~sL If-t, - )=(k,mI ~sL I

—
2 m )

&2 ml ~'I o,m"&&o,m"
I &sLI —k,m') &k,mi ~sLI o,m"&&o,m"

I

~'I —2,m'&+"
(E;„F. )— (E-;,- —E.,- )

When these are worked out in detail, we obtain

(29)

mAr+ (A+r'A~+A r'A++)
IK If;, )=Gt '+mAr ' (Gtt'+— Atr')— [C'(m)+C'(m —1)]

~rr 26rr

(Pr+'A~ Pt 'A++—)- 2(A~'Pt+ A~'Pt —)-+ [2I(I+1)—&m']+ (2m[2I(1+1)—2m' —1])
Gg Arr

(29a)

&f~,„i3csLIQ;, +,)=c(m) A~' — [(2m+1)(At+A~'+A~Art')+2Grr'A~]

(2m+1)
+ [A~Ptt' Ar+Pr '+2A++—P ' 2A~P~']-

6
2——[(2m+1)((2m+1)At+'+2Gt+')Pt +-'{C'(m+1)+C'(m —1))P A++'] (29b)

Arr
1

&g;,„I3CsLirP t, „~2)=—C(m)C(m+1) [A~'A~+2Ar+P ' 2A „Pr ']-
Grr

2
+ [(2m+3)(2m+1)A~'Pt + (m+1)Ar+'P ] (29c)

Arr

where C'(m) =I(I+1)—m(m+ 1).The matrix elements
Qt, ~, I3'-sLI\p $, wa) and (f&,~2I3'.sLIQ 1,„) can be
obtained from (29b) and (29c) by changing the sub-
scripts (+) of the tensors which refer to the nuclear

spin to a (—), and changing the sign of all terms which
contain elements of either the dynamic or static
quadrupole tensors.

It is instructive to note that the terms containing
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the elements of the static quadrupole tensor have the
static hyperfine splitting in the denominator. The
static quadrupole terms can therefore lead to important
eA'ects even though the terms are too small to produce
observable splittings in the paramagnetic resonance
spectrum. The dynamic quadrupole terms and dynamic
hyperfine terms have coeKcients which are comparable
and these tensors must be of comparable magnitude in
order to compete in the direct relaxation processes.

The calculation of the spin-lattice relaxation rates
requires the evaluation of the square of the matrix
elements given in (29). For every product of the compo-
nents of the primed tensors, a spectral density defined
by Eq. (16) must be inserted and the entire result
multiplied by 1/h. In part II, a detailed application of
these results is made; but for a case in which all of the
quadrupole terms are omitted and the static spin
Hamiltonian is isotropic.

II. AN APPLICATION

In this part of the paper, the method described above
is applied to divalent cobalt ions in the X site of
lanthanum zinc double nitrate (La-Zn)."The purpose
is twofold: to illustrate the development of the spin-
lattice Hamiltonian for a relatively complex situation,
and to obtain expressions for the relaxation rates with
as few undertermined constants as possible. Ke have
chosen divalent cobalt in this particular site because a
large amount of experimental data is available for
comparison with theoretical results. "

The nuclear spin of the 100% abundant isotope Co"
is -', so that there are sixteen hyperfine levels. For the
X site of La-Zn, the static spin Hamiltonian constants
at 4.2 K are g~t=4.37, g~=4.31, A=0.00986 cm ',
and B=0.00948 cm '. No static quadrupole interaction
has been detected. The spin Hamiltonian constants
imply that the local symmetry is very nearly cubic.
The crystal field is presumed to be due to an octahedron
of water molecules oriented with the [111]axis along
the trigonal axis of the crystal, and it appears that the
octahedron is virtually perfect for the X site of La-Zn.
For other diamagnetic constituents (La-Mg, Bi-Zn,
etc.), the octahedron has an appreciable trigonal
distortion. In our treatment we assume that the local
symmetry is perfectly cubic, the static spin Hami~ tonian
is perfectly isotropic, and that quadrupole eGects are
negligible. In this approximation, we are able to obtain
expressions for those relaxation processes in which the
energy of the spin system changes by gPH in terms of
four constants which depend on the phonon spectrum,
the sources of the crystal field and the coupling of the
phonons to the sources of the field. Since there are 22
relaxation processes that should be competitive and

"J.%. Culvahouse, W. Unruh, and R. C. Sapp, Phys. Rev.
121, 1370 (1961)."%.P. Unruh and J. %. Culvahouse, following paper I Phys.
Rev. 129, 2441 (1963)j.

they all depend on the direction of the applied magnetic
field relative to the crystal axes, a very complete test
of the theory can be made.

4
22600 ~
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0500

000
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Ti / 2b,

A

Cubic LS
FIG. 2. A schematic diagram of the energy levels for Co~+ in a

cubic Geld in units of cm . Splittings caused by the spin-orbit
interaction are shown at the far right. Several levels which arise
from the ionic 'G level are not shown.

'6 A. Abragam and M. H. L. Pryce, Proc. Roy. Soc. {London)
A206, 175 (1951)."See reference 12, p. 304."%.Low, Phys. Rev. 109, 256 (1958).

1. The Dynamic g Tensox

A. Divalent Cobalt in u Cubic Field

The energy levels for divalent cobalt in a cubic field
are shown schematically in Fig. 2. %hen the spin-orbit
interaction is ignored, the lowest states of the 4F term
are an orbital triplet, the wave functions of which form
a representation 4Ti of the octahedral group. The spin-
orbit interaction splits the levels of 4Tj into three
Kramers multiplets with the doublet lowest. The
approximate separation of the levels are given in Fig. 2.

The theory of the static spin Hamiltonian has been
given in great detail by Abragam and Pryce" and a
simplified but highly instructive discussion has been
given by GrifBth. " A specialized discussion of cubic
symmetry is given by Low." Comparison of Fig. 2

with the energy diagram given by Low shows that we
have omitted the levels which split oft from the 'G term.
Low has discussed the conditions under which this level
may aBect the calculation of the static spin Hamil-
tonian. The success of Abragam and Pryce in calculating
the spin Hamiltonian parameters for hydrated cobalt
complexes suggest that we may ignore these levels as
they did.

The wave functions of 4T~ may be written in terms of
ionic 4F wave functions and sorted into the components'

(30a)

(30b)

(30c)



where the functions f~, $2, and |fv are defined on page
78 of Van Vleck's paper. The z axis is the [111jdirection
of the octahedron which in our case is the trigonal.
axis of the crystal. These functions have the same
transformation properties under the operations of the
octahedral group as do real p wave functions. Therefore,
the matrix elements of the angular momentum operator
L between the states (30) are proportional to those of
an effective operator I between p states.

When a magnetic field is applied, the states with
J=1/2 are mixed with those having larger J values.
The admixture of higher lying levels can safely be
ignored. Since the magnetic moment operator is a
vector operator, only the states with J=3/2 will be
admixed with the J=1/2 states. We obtain for the
first-order wave functions in an applied fieM

where
I p,) is the p state with the same transformation

properties under the cubic group as the lg,). For the
wave functions given in (30), the value of 8 is —1.5. If
some of the 'I' term is admixed by the cubic field, the
isomorphism still exists but the value of 8 is changed and
in the limit of a very strong field will approach —1.0.
At the end of this section we show that 5 is near —1.5
for the present situation. For our calculations, it is
desirable to use combinations of the wave functions
(30) which are eigenfunctions of l. :

(32)

These wave functions obey the phase convention
(If,m))*= (—1)'+"

I 1,—m), which is convenient for the
use of signer coeKcients in the addition of half-integral
angular momentum. "

Using the eGective angular momentum I, the com-
bined eGects of the spin-orbit interaction and a trigonal
distortion can be described very compactly with the
effective Hamiltonian

K,=pl.'+»(f S.), (33)

where the s axis is the trigonal axis of the crystal, S, is
the ionic spin and X is the 6ne structure constant. In
addition there are small effects due to the admixture of
the T2, A 2, and P levels by the spin orbit interaction and
the trigonal 6eld. These eGects are rather tedious to
calculate, but from the work of reference 16, we can be
sure that they do not aGect the g factors by more than
5%.The difference for g~ ~

and gi for the X ion of La-Zn,
corresponds to a value of q/X=0. 01. We completely
ignore the trigonal splitting and use the eGective
Hamiltonian

3C,'= -', »[J(J+1)—23/4], (34)

where J= l+S„and J=5/2, 3/2, 1/2. For the free ion,
X= —180 cm—' and therefore Q.=+270 cm—' which
implies that the doublet is lowest. The eigenfunctions
of R,' are

I
J ~J)= 2 &f~ mrmslf~&~&)lf m&&l~, ms& (35)

sos $, srs8

If the eigenfunctions on the right conform with the
phase convention used above, the

I J,Sf') does also."
~~ A. R. Edmonds, Angular Momentum ie QuanAcm mechanics

(Princeton University Press, Princeton, New Jersey, 1957), p. Si.

P (-'„3fsly HI-'„+2)12, 3f'z&, (36)
3Q, ~g

where p =P (2S,+8 l) .

The dynamic g tensor is gotten by a comparison of
the matrix e)ements of V' calculated in the space
defined by I&) with the result for KsL=H'g S
calculated in the space defined by ISm). In this way
we 6nd for the dynamic g tensor relative to the sym-
metry axes of the crystal

g„'=4eFp,

g„'= 2cF,+2vS—v. Re(F2),

g„v'= —2&F0—2vg~ Re(F2),

g~g = ggg =4tRe(F()')

gv* g*v 4c Im(F

g,v'= gv.'= 2&3' Im(F2),

where e= (5'~v/3) (2 —8), and

F (v 1
I
Vil 1 1)/(8l g)

(38a)

(38b)

(38c)

(38d)

(38e)

(381)

(39a,)

Fi= —
&2

—
k I

v'I 2 k&/(2») (39b)

F = —
&l,—ll v'll, l)/(l»). (39c)

These results have been greatly simpli6ed by the use
of the fact that V' is Hermitian and invariant under
time reversal.

The dynamic hyperhne interaction tensors could be
calculated by a method analogous to that used for the

g tensor. In the next section we show that this is not
necessary because the hyperfine interaction tensor in

B. The Static and Dynamic g Tensors

The wave functions (36) are used to calculate the
static g tensor by defining states ISm) which are
eigenfunctions of the eGective spin operators S and S,.
The g tensor can be deduced by a comparison of the
matrix elements of p H calculated in the space defined

by the wave functions
I &) with the matrix elements of

H g S calculated in the space spanned by the wave
functions

I
Sm). This comparison yields the result

&+ IH I *I+)
g, =g..= g„„=g„=2 lim = (5 5) (-37)— .

H, 3
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this case can be simply related to the g tensor for an
arbitrary V '.

Equations (38) can also be used to investigate the
validity of oUr approximation by allowing V' to be a
small. stat~'c trigonal distortion. It can be seen by
reference to Eq. (33), where the effect of the trigonal
distortion has been represented in terms of l„that It i
and F2 are zero. %e therefore 6nd for small trigonal
distortions in the present approximation

A I. Q1
Q~ Q3

'r~: Q»', Qs', Qs'

Q1
Q4'

Q~ 08-Q8' Q~'

TABI-E I. The gerade normal modes of vibration of an octahe-
dron as deaned by Van Vleck and their classilcation by the
irreducible representations of Oq and D3.

s(g*.+g* +g-) —s(») —go. (40)

Inserting the experimental values for the g tensor of
cobalt ions in the I site, we 6nd 8= —1.497. When
account is taken of the small effects from admixture of
the higher levels by spin-orbit interaction, 5= —1.45
is probably a better choice. %e continue to ignore the
admixture of higher states and use Eqs. (38) with
6= —1.5, and the slight static trigonal distortion is
ignored.

C. J!oaluation of the Spectral Densities for the g Tensors

Since we are ignoring the admixture of higher lying
levels by the spin-orbit and trigonal distortion, the
matrix elements of V' will be evaluated between states
for which the orbital parts are components of the
1epresentatlorl Ty of the cubic group. This implies tliat
only those components of V' which transform as the
irreducible representations contained in the direct
product TI)(Ti contribute in 6rst order. This is
equivalent to our general prescription given in Eq. (22).
This limits the participating normal modes to the
gerade vibrational modes of the octahedral complex.
We use for these six modes the notation of Van Vleck. '
In Table I we give the decomposition of these modes
into the irreducible representations of O~ and, for latter
use, their decomposition for D3.

The expansion of V' in these normal modes has
been given by Van Vleck, and he has worked out the
matrix elements for the basis functions of Ti defined
by our Eqs. (30). Changing to the basis defined by (40),
we obtain

crystal field independent of nature of the individual
sources. Ke are content to carry these constants as
parameters which may be compared with Van Vleck's
values after they have been adjusted to 6t experimental
data. This comparison is complicated by the fact that
the experimental results determine products of these
numbers with spectral densities of the normal modes.

When the matrix elements (41) are used together
with the expansion of the

I JMs) states given by (44),
we find

Fo= —LbD/(15)'")Qi', (42a)

Re(Fi) =+LD/(10)'")I (b/6)'"Qi' —av3Q2), (42b)

Im(Fi) = —LD/(10)"')I (b/6)'"Q6'+aV3Qs), (42c)

Re(F2) = —LD/(15))'"$(-')'"bQe' —avSQ8), (42d)

(Fs) =+LD/(15)) I ( ) 2bQi~+a~Qs) (42e)

where D = —(2e)/3Q, .
These values for the F; when substituted into Eqs.

(38) yield an expansion of the dynamic g tensor in
terms of the normal modes of the complex which is a
realization of Eq. (10).The calculation of the relaxation
rates require the evaluation of the spectral densities of
the g tensor by means of Eq. (16). Since the rotational
si~metry of the double nitrate crystals is only 3m(DS), '4

the equivalence and orthogonality of the normal modes
when driven by the lattice vibrations will be determined
by the number of irreducible representations of D3
which is the group G, discussed in part I. The average
values of the normal modes as defined by Eq. (17) are
such that

(+ll lr'I+1&=&—ll lr'I —»= —sit3bQ4',

&+1I i"Io)= —
&
—ll I"Io&= —avt3Q +(b/v'6)Q '

—iLaV3Qs+ (b/+6)Q6'), (41b)

&0I V'l0) = lv3bQ ', (41c)

LQ2 Qs)-= LQs,Qs)-=cs,

LQ ',Q ').=C,
fQs' Qs')-= LQ~' Qe')-= C4,

I
Qs', Qs)-= —LQs Q~')-=Ca,

(43)

and the rest are determined by Hermiticity. The
quantities a and b are as de6ned by Van Vleck. He has
worked out their values for a number of ionic terms and
for both a charge and dipole model for the sources of
the crystal 6eld. The number a corresponds to the
constant V&"' in equation (22) for X=K and b is the
corresponding number for X= T2. Th us if a and b are
freely adjusted, the model is just as general as our
assumption that the octahedron is the source of the

and the average of the products of all other pairs of
Q's in (42) are zero. If one had cubic symmetry for the
crystal, one would have C&=C4 and C3=0. If one
assumes an isotropic phonon spectrum and that the
components of the octahedron are free to vibrate just
as an atom in a monoatomic crystal, the result given by
Van Vleck is obtained: CI =C~ =C4, and C3 =0. It is
apparent that the maximum possible value of C~ is
(C4C&)' which corresponds to a complete equivalence
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TABLE II. The spectral densities for the components of the g shown that
tensor of divalent cobalt in a nearly cubic site but with a phonon
spectrum with only trigonal symmetry. AJ.——I'gl„,

As. = —p&I'gs,
(46a.)

J,,„=Jy„.yy
= (40t4+2a3+a2+ ~40.1)

J...» ———(4 4+2~,+~,—~4~,)
J.y.y= (4 4+2~,+~,)
Jzz;xs =Jzz;yy = $Jzz;zz =
Jy;y =J; =2 (a4 a3+a2)
Jxy;sz= Jxs; y

= Jyy;zy= ($) (2a4 —~3—~2)
Jzz;xy= Jzz;zy Jzz;zs Jyy;xz Jss;sz= Jsz;yz=o
Jxs;xy =Jyy;xy =Jyz;sy =0

of the two E representations for averaging over the
phonon spectrum.

1Vote added in proof. X-ray measurements reported
by David H. Templeton, Allan Zalkin, and J. D.
Forester [Bull. Am. Phys. Soc. 7, 608 (1962)j show
that the crystal point group is only 3. This does not
a6ect the results obtained here, as the classihcations of
Q's will be the same as for D3.

Twenty one of the spectral densities for the g tensors
have been tabulated in Table II. The remaining sixty
can be derived from the symmetry under interchange
of the 6rst and second pair of indices and the inter-
change of indices within any pair. No superscript is
used for the spectral densities in the table as we only
use those for the g tensor in expressing relaxation rates.
Otherwise the notation is the same as used in part I.
The constants used in Table II are dehned as

a) ——(16/15)D'b'Cr, n2 (12/5——)D'a'Cg)

ns= (4%2/5)DeubC3, a4 ——(2/15)D'b'C4, (44)

where we must have as& 2(a2a4)'". For cubic symmetry,
as=0, and a~=(1/8)a~. No more restriction on the
0.'s can be made for an isotropic phonon spectrum.

Ke have described the spectral densities of the g
tensor in terms of four constants. It is apparent that
their form depends on the choice of the reference axes.
Our choice of the xys axes is that chosen by Van Vleck
because of our choice of basis functions in Eq. (32).
The spectral densities can be transformed to another
set of axes by the rule for fourth rank Cartesian tensors.

2. The Hyper6ne Interaction

Abragam and Pryce'6 in their discussion of the
hyper6ne interaction have separated the tensor into
three parts:

A= AL,+As,+Asd. (45)

Ar, is the contribution due to the orbital angular
momentum of the 3d electrons, As, is the contribution
from the admixture of ionic con6gurations which have
unpaired s electrons, and Asg arises from the spin
moment of the 3d electrons. Abragam and Pryce have

(g-) L = (g**)~= (g..)i= —3~,

and using ps, we find

(48a)

(g**) = (g**) = (g„).= »/3. (48b)

On the other hand, all of the changes in g due to U' may
be written in the form

(~go) ~= —~e*,

(+g~t) s =2eij

(49a)

(49b)

This result can be seen by inspection of Eqs. (38) in
which all of the changes in g are proportional to
(5' /3)(2 —b) and it is obvious that the erst term in
the bracket corresponds to the contribution of ps and
the second to that of pl. . In the changes of the g tensor
by V', the fraction of the spin contribution is smaller
than it is for the cubic field values. Using these results,
we may write

where
(AA; )I. e/AD= r(ag, )r,+e/gQ,

(.yb)(5 —b)r=
(-',.+ b) (2—b)

(50)

(51)

For 6= —1.5 and ~=0.325, we 6nd 7=3.25.
The relation (50) should be valid for either the

dynamic perturbations described by V' or static
perturbations. The available data on the g and A
tensors in crystals with a range of slight trigonal
distortions give a check on the validity of Eq. (50).
The X ion in (La,-Mg) (H20), (La-Zn). (D20), and
(La-Zn) (H20) provide appropriate data. " For all of

~The 020 in brackets indicates that most of the water of
hydration is heavy water.

where I' is the hyperfine interaction constant for a d
electron. The constant ~ is an empirical constant which
measures the admixture of con6gurations with unpaired
s electrons. For several hydrated complexes of divalent
cobalt, ~=0.325~0.01. The tensors gl, and gs are
obtained by the method of the last section by using

yr, =blP and ye=2PS, . Aee depends on the matrix
elements of

[L(L+1)(I S)—-', (L S)(L I)——',(L I)(L S)]
and for divalent cobalt in a cubic field, it is not dificult
to show that

Aee =P (2/315) [(12/b) —(21b/4) jgr, . (47)

For 8= —1.5, we see that As& is clearly negligible, and
we subsequently ignore it.

Using the wave functions (35) and the magnetic
moment operator pl. , we 6nd
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)o 0 Lrr-Zrr(H}

Q Lo-ln(D)

~ Le-Ny(H)

permits one to write for any applied magnetic 6eld
direction

A r+ = A++ =0 A~= A o/2, Grr =Go= PHgo.

0
AA/A

XIO'

o4

aI0

'O&s4' )

OJ ss

Ke assume that all of the quadrupole eRects are
negligible and utilize our results for the proportionality
of the dynamic A and g tensors. Ke find

(4}~~~sr. ~4; ~)=-,'F(m)(Grr' iG—r„')) (54a)

(4}, ~8('-sr. ~P }, ,r)=-,'C(m)A{Gss'+G„„'
—t:2—~(2m+1)]Grr'/r), (54b)

Q'},m+r ~XsL ~4}')=, ~C(m)A(Gtr' G—„„'+2(Gr„'), (54c)

Q'},~2)3'-sL)}} —;, )=())t'}, —~~KsL~Q;, )=A', (54d)

where

IO -I 0 I
hyly X le

FIG. 3. A plot of the fractional deviation of gli and gz from the
weak cubic field values g0, vs the corresponding deviations of A
and 8 from the weak cubic field values A 0 for a number of double
nitrate crystals. The line is drawn in accordance with the theory
of part II, Sec. 2 with F=3.25. The experimental errors are
represented by the size of the data points.

them (g„+2g,)/3=4.33=go and (A+28)/3=0. 0096
cm '=Ao. In Fig. 3, we have plotted (go—gr)/go vs
(A o

—I})/A o and (gi) —go)/go vs (A —A o)/Ao for these
three salts. The straight line is drawn for F=3.25; a
slightly better fit is obtained with I'=3.0. The experi-
mental errors for the data in Fig. 3 is represented by
the size of the data points, and one could regard these
results as a good determination of the constant ~. Data
which we have for other diamagnetic constituents
agrees with the data plotted, but is less precise.

For the dynamic A tensor we may write

A; =PH(Ao/goPH}I'g, ,'=APHg, ,'=KG, . (52)

It follows that the spectral densities for the products of
the components of A' and 6' may be written

J;,;r (0'(()=dAJ, , r
(0 )(o)), (53a)

J".r (~")((d)=A'J . r (go)(o)) (53b)
where

7 (GG) (o)) —P&H2J ..
r

(gg) (&o)

3. Spin-Lattice Relaxation Rates

The matrix elements of the spin Hamiltonian
between the levels of the strong field hyper6ne structure
of the Kramers doublet are given in Eqs. (29). In the
present case, the isotropy of the static spin Hamiltonian

W =4'NF(m)(Jr};rr+Jr, ;r„), (55a)

W ~r = ro%)A C (m}LJrr;rr+ J „;„„+2J«;„
2f(m—) (Jr(;-+Jrr; «)+f'(m) Jrr;rr] (55b)

Wm+r-~ = ro'9(~'C'(m)(Jr(;sr+ J..;„
2Jrr, —„„+4Jr„r„), (.,55c)

)vhere W = (1/h)H2pr and f(m) = (1/I')L2+A(2m+1)].
In this notation for the relaxation rates, the minus
superscript indicates that the f component of the
electron spin changes by —1. The notations for the
inverse transitions are

+=0.$
TJ~ +—TJ.

m+1-+m 0 r}' m~m+1

IV +g+=o, lV +g

in which o is the Boltzmann factor. In the approxima-
tion in which the hyperfine correction to the energy
splittings is ignored, it is simply exp( —Go/kT) where
T is the lattice temperature.

The spectral densities used in Eqs. (55) must be
expressed in terms of those in Table II by means of a
coordinate transformation. When this transformation is
carried out, we obtain for H at an angle 8 with the z

axis and out of the xz plane by the angle P:
W„„=or&F'(m) {(9/4)ar sin'8 cos'8

+ (4n4+2a3+a2) sin'8(1+cos'8)

+2 (a4 —aq+ n2) L (cos'8 —sin'8)'+ cos'8]

+ (2n( —nr —n2) (4 sin'8 cos8)sin3$). (56)

Qc do not take the space to write out the angular

F(m) = {1+)1m—(A'/21')LI(I+1) —m.']).
The axes $r}{ have been defined in part I. In the present
case, 8=/=X, and these axes are the same for all
indices and are simply a coordinate system for which
the {' axis is at an angle 8 with the s axis and out of
the xz plane by an angle @. The relaxation rates cal-
culated from Eq. (13) are
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dependence of the other processes, but use them as
well as Kq. (56} in the analysis of experimental data in
the following paper. As a check on the work, it is re-
assuring that the g dependence of (56) has a periodicity
of 2s j3 which was put in indirectly by the requirements
on the mean-square amplitudes of the normal modes.

III. DISCUSSION

The application of the theory in part II is rather
specialized and the major stimulus for it was the
experimental results obtained for the Overhauser and
JeRries effects' (nuclear orientation produced by
saturation of allowed or forbidden transitions of the
hyper6ne structure) for this ion which are discussed in
the next paper. Aside from this, we feel that an exhaus-
tive study of a particular case is a useful preliminary to
the development of more general results. It is apparent
that general statements concerning relaxation in the
hyperfine structure are particularly difIicult to make.
without a detailed model of the crystal-field sources
and their thermal motion, there is no way to know
which of the transition rates 8' +i + or 8' ~~i+
will dominate so to allow the development of the
nuclear orientation by the Overhauser process. Ke may
even have TV ~+i+=8 ~i ~+)&IV~ ~+ which will
cause a JeR'ries-type nuclear orientation to fail.

It is apparent that in cases where the hyperfine
interaction is sensitive to the crystal field perturbations,
the hyperfine effects may compete with the effects from
the modulation of the g tensor even in what is usually
regarded as a strong 6eld. The hyperfine interaction is
sure to be the dominant eGect in many Kramers ions
at sufFiciently low field and the 6eld dependence of the
over-all relaxation rate of the system such as might
be measured in a concentrated salt would be complicated
by the hyperfine relaxation process. It should be
possible in many cases to estimate the relative eGective-
ness of the modulation of the g and A tensors from the
change in the static values in environments with
diGerent crystal fields. The statement that the corre-
sponding elements of the dynamic g and A tensors are
proportional must be justi6ed by a complete analysis
such as was made in part II.

No attempt has been made to treat any relaxation
processes other than the direct process. It is apparent
that when a resolved hyper6ne interaction is present,
the complications of the direct processes alone oGer a
considerable challenge; particularly, if (as may happen)
almost all of the processes are of comparable strength.
For the ions of the iron group, there should exist a
temperature below which the Raman and Orbach
processes are negligible, and (at least for highly dilute
salts) a lower temperature above which the phonon
bottleneck is not serious. There is always the possibility
noted by Van Vleck" that some sort of defect levels

"J. H. Van Vleck, in Quantum Electnvaics, edited by C. H.
Townes (Columbia University Press, New York, 1960), p. 392.

are present in the crystal that are near the ground state
of the paramagnetic ion and which will serve as relaxa-
tion centers. This complication is effectively eliminated

by the use of very low concentrations. I,ow concentra-
tions are also essential in order to eliminate the cross-
relaxation process discovered by Bloembergen. ~ AVe

have neglected the possible eGects of local modes which
arise from the fact that the paramagnetic ion represents
an impurity in a lattice of diamagnetic ions. It is easy
to find salts for which the mass defect is very slight, but
the paramagnetic ion may have a considerably diGerent
ionic radius than the diamagnetic ion and produce a
local strain 6eld. It appears from the work of Klemens"
that local-mode eGects are important only at relatively
high temperatures.

The de6nition of the static and dynamic spin
Hamiltonian in part I is quite general and therefore
the description of the direct spin-lattice relaxation in
terms of the spectral densities of the dynamic spin
Hamiltonian should apply to a wide variety of problems.
It is apparent that the introduction of the dynamic
spin Hamiltonian does not save any computational
labor, nor does it circumvent the problem of the
validity of the crystal-field view. It does permit one to
easily 6nd the correct states between which one wishes
to calculate transition rates for any direction of the
applied 6eld. It also permits one to isolate properties of
the ion and the symmetry of the environment from
other problems in much the same way that the static
spin Hamiltonian isolates those properties in the
description of the energy levels.

One may take the view that the spectral density
tensors are constants to be determined by the experi-
mental measurement of direct spin-lattice relaxation
rates just as the parameters of the static spin Hamil-
tonian are to be determined by experimental measure-
ment of the energy levels. Just as the number of
parameters in the static spin Hamiltonian are limited by
symmetry considerations, so are those in the dynamic
spin Hamiltonian. The spectral densities dealt with in
the present paper are fourth rank Cartesian tensors and
are always symmetric in the interchange of the first
and second pair of indices. Therefore, the number of
independent components consistent with a symmetry
group G is the same as the number for the piezo-optical
tensor. '4 The possibility of considerable angular
dependence for the relaxation rates even in cases where
the symmetry is high, as indicated by Kq. (56), suggests
that a complete definition of the spectral density
tensors may be possible. This is particularly likely when
the spectral densities for diGerent combinations of the
parameters may be related by the properties of the ion
alone as was possible for divalent cobalt.

~ N. Bloembergen, S. Shapiro, P. S. Pershan, and J.0. Artnian,
Phys. Rev. 114, 445 (1959).

~ P. G. Klemens, Phys. Rev. 125, 1795 (1962).~S. Higman, APPlkd Gr0NP-Theoretic and .Vfftrix 3lethod's
(Clarendon Press, Oxford, 1955},pp. 258, 26$,


