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Effect of Fluxoid Quantization on Transitions of Suyerconducting Films*
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This paper presents an elementary theory for the transition of a superconducting 61m in the presence
of a perpendicular magnetic 6eld. The theory is based on the Ginzburg-Landau theory, with emphasis on
the qualitatively important consequences of fiuxoid quantization. The theory predicts that the transition
occurs at a 6eld Bg(T) =k&p (T)H, Fz(T)/yo, where X,(T) and B,q(T) are the usual penetration depth
and bulk critical 6elds, respectively, and q» is the flux quantum hc/2e. Experimental data agree very well
with this result if the transition is determined by measuring thermal conductivity or Qux penetration. The
resistive critical 6eld for full normal resistance appears to be about twice this value, probably because of a
residual 6lamentary structure. The theory also predicts that the angular dependence of the transition 6eld
should be given by (II& sin8/B'»)+(Hz cos8/H&ll) i. This unusual form agrees with the thermal con-
ductivity measurements of Morris.

The same theory leads in an elementary way to a quantitative interpretation of the periodic variation
of T, with Sux through a cylinder in the experiments of Little and Parks. The result for the maximum
change is hT/ T,= ~'/L32HE'X, '(0)H, F2(0)j.This agrees with their experimental value if X.(0)=4'l00 A,
whereas from the I!~ited mean free path in the sample one would estimate ),(0)=2000 k The agreement
is probably within the uncertainties as to the details of the transition region. It should be noted that the
present theory predicts a change larger by a factor of order (Tp/T, ) (l/&o) than the theory given by Little and
Parks. The present theory also gives a semiquantitative account of the parabolic background e6ect observed
by Little and Parks.

d (5"9„(T), (2a)

which is the condition for the transition to be of second
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I. INTRODUCTION
' 'T is well known' that the transition of a soft super-
' ~ conductor to the normal state occurs when the mag-
netic energy resulting from the diamagnetic Aux ex-
clusion overcomes the condensation energy of the super-
conducting state. For bulk superconductors in geome-
tries which eliminate demagnetizing effects (i.e., field
parallel to long dimension), this leads to the thermo-
dynamic critical 6eld H, ~ given by

F„(T) P, (T)=H, g—/Ss, (~)

where F„and F, are the free energies of normal and
superconducting state, respectively. It is also well
known that when one considers a 61m of thickness
comparable to the penetration depth, the critical 6eld
Hp at which the transition to the normal state occurs
is increased above H, q, provided the field is applied
parallel to the surface. This occurs because with the
incomplete Aux exclusion of a thin film, the magnetic
energy is less for a given Geld. According to the Ginz-
burg-Landau theory, '3 this transition held for a thin
61m is

Hr( )2/H, (i2') =2(+6)X,(2')/d,

where X,(T) is the penetration depth in the equilibrium
state (i.e., in weak f'ields). This result is valid for films
of thickness d satisfying the inequality

' D. H. Douglass, Jr., Phys. Rev. Letters 7, 14 (1961).' D. E. Morris and M. Tinkham, Phys. Rev. Letters 6, 600
(1962}.
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order. In such a second-order transition, as B is in-
creased toward Hr, the order parameter (energy gap,
"number of superconducting electrons, " or Ginzburg-
Landau f function) approaches zero continuously,
while the penetration depth X increases from X,(2') to
in6nity. For thicker 6lms, the transition is of 6rst
order, with a discontinuous change of order parameter
and a concomitant latent heat. These conclusions have
been well substantiated experimentally, for instance,
by tunnelling experiments4 and by thermal conductivity
measurements. '

In contrast to the results quoted above, when the
field is applied perpendicular to the 61m surface, or
when it has a component perpendicular to the surface,
quite a diferent situation prevails. Experimentally it
is known that the transition is less well de6ned, full
normal resistance appearing only at 6elds about twice
the 6eld required to produce essentially normal Qux
penetration and thermal conductivity. e This can be
understood in terms of a residual network of super-
conducting 6laments left after the order parameter is
reduced essentially to zero over the majority of the
material. It has also been noticed that the transition
in perpendicular 6eld occurs at an Hy& which is of the
same order as H.&, whereas B&F& may be greatly en-
hanced according to Eq. (2).

It is the purpose of this paper to present an elemen-
tary theory, based on the Ginzburg-Landau (G-L)
theory, which describes the nature of the transition in
a perpendicular 6eld in terms of a simple model based
on the concept of fluxoid quantization. The theory
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bears considerable resemblance to Abrikosov's theory7
of type II superconductors in bulk form, and leads to
an equivalent expression for the critical 6eld. Thus it
provides a simple model to help in understanding that
rather mathematical paper. As will be indicated, the
present theory accounts for the available data on
61ms of thickness below 5000 A, including both the
absolute magnitude and the temperature dependence
and angular dependence of the transition field. With
the concepts developed, it is also easy to give an in-
terpretation of the magnitude of both the periodic
and nonperiodic quadratic changes of T, with magnetic
Aux in the experiments of Little and Parks. '

D. THE MODEL

For simplicity, we first concentrate on finding the
condition for the transition to occur, leaving aside the
discussion of the approach to the transition. The only
aspect of the approach that we require is the knowledge
that it leads to a second-order transition, so that there
is continuous variation of order parameter to zero at
H~. The most clear-cut experimental evidence that
this is the case arises from the thermal conductivity
measurements of Morris. ~ Because the thermal con-
ductivity approaches the normal value continuously
(but without "tailing" as in a broadened transition),
these results show that the transition is second order
in normal fields. This is true even in a 4000 A indium
film, which in parallel field had a 6rst-order transition
with the energy gap dropping discontinuously from
about 90% of its field-free value to zero. The resistive
transition and Aux penetration measurements of Broom
and Rhoderick6 also suggest that the 61m goes con-
tinuously into the normal state, with the 6nal restora-
tion of full resistance occurring at very closely twice
the field at which the difference in Aux penetration
from that in the normal state has dropped to an un-
measurably small value. The 6eld for complete Aux

penetration agrees well with the "critical field" found
in the thermal conductivity experiments. Thus, we
take the critical 6eld for Qux penetration and thermal
conductivity to be the value most apt to be predicted
by a model which ignores the possibility of a residual
filamentary network.

Given that the transition is second order, we can then
consider the situation right at the transition, where the
order parameter is vanishingly small and hence the
penetration depth approaches in6nity. In that case,
the 6eld penetration is complete, and the field every-
where is the applied field H. In this case, the curl of the
supercurrent J, is determined by the London equation
(which is valid here, since X-+oo and nonlocal effects

~ A. A. Abrikosov, Zh. Eksperim. i Teor. Fiz. 32, 1442 {1957)
Ltranslation: Soviet Phys. —JETP 5, 1174 {1957)j.' W. A. Little and R. D. Parks, Phys. Rev. Letters 9, 9 {1962).

D. E. Norris, Ph.D. thesis, University of California, Berkeley,
1962 {unpublished).

are unimportant)

—H=c curl(A J,), (3)

where H is simply the applied field. The parameter A.

is as usual given by

H ds+c AJ, ds=0,
8

(5)

provided the material within the loop is supercon-
ducting so that Eq. (3) holds everywhere inside the
loop. However, if there is even a point on the surface
S where the material is normal, Eq. (3) fails to be true
at that point, and Eq. (5) is no longer valid. Rather
one has only the weaker result that

8 dS+c AJ, .ds= neo, (6)

where
go=bc/2e=2. 07X10 ' 6-cm'

is the well-known Aux quantum for pairs. It is easily
seen that Eq. (6) is equivalent to the Bohr-Sommerfeld
quantum condition applied to pairs since

HdS= Ads,

and since

8

e,e' (2e)

so that Eq. (6) is equivalent to

~

~

(2e)
p ds= (2m) v+ A ds=lhg.

8 C

Now consider a circular loop of radius r centered on
a normal spot. Then using cylindrical symmetry, Eq.
(6) becomes

J,(r) = (Ipo ~r'H)/2s rcpt

A =rn/n, e' =4n X'/c',

where ) is the penetration depth. Although the actual
charge carriers are n, /2 pairs with charge 2e and mass
2', we note that this parameter A is unaffected by the
change to a paired model. We must bear in mind,
however, that mean-free-path limitations will increase
X, and hence A. We will also relate sz, to its value n„'
in equilibrium at T=O by the order parameter ~
=n, /N, o. The order parameter will vary between 0 and
I, depending on both temperature and applied 6elds.
Integrating Eq. (3), we have the fluxoid C of any
closed loop to be
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The associated kinetic energy density is

nqp —xr'H '
T(r) =-,'n, npo, '=~pAJP=— (10)

2A 2mrc

Introducing the order paranieter

this becomes
op=n, /n, o=Ap/A,

co fnyp prr'H—'
T(op,r) =

2Aok 2~re
(12)

This term must be added to the usual 0-L free energy
difference expression, " namely,

FIG. 1. Schematic di-
agram of current con-
figuration in parallel and
perpendicular 6eld cases.
In parallel 6eld geom-
etry (a), the width of
the loop is limited by
61m thickness. In per-
pendicular field geom-
etry, size of vortex can
adjust depending on
Geld strength so as to
minimize energy. Con-
6gu ration (c) corre-
sponds to higher 6eld
strength than (b), so
that smaller vortices
contain one Qux quan-
tum.
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OOOO,
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f(co,T) = —e(T)co+-,'b(T)cpo, (13) in toward the center, one has

where

H.o' X,(T) ' -) .(T)-'
a(T) = and b(T) =a(T) . (14)

x,(o) X,(0)

Since cp will, in general, depend on r Lso as to minimize

(12)j, we must also include the G-L term in ~%opto

which represents the energy increase associated with
a spatial variation of the magnitude of the order pa-
rameter. This term is

n,ofc' df ' fP 1 dco)'
T~(cp, r) =

See dr 32e'Aoco dr)

T(cp,r) =co(r) (1—r'/R')P
n CPp

(2prrc)'
(17)

Even allowing for the volume element 2~rdr, this gives
a divergent integral unless cp(r) goes to zero at the
origin. Consideration of the con6gurational energy Tj
given by Eq. (15) shows that it leads to the same con-
clusion. Application of the Euler equation obtained.
from applying the calculus of variations to minimiza-
tion of the total free energy shows that co should go to
zero as r'", where n is the number of Qux units in the
vortex. This suggests using a simple trial function

cp(r) = cop(r Iff) (1S)
where co= ~f~o, f being the Ginzburg-Landau effective
wave function of pairs normalized to unity at T=O.

Rather than attempting a direct solution of the com-
plete variational problem of minimizing the over-all
free energy, let us 6rst examine the problem qualita-
tively. From Eq. (12) we see that if n=0, T ~~ as
AH'r~. This would soon lead to values in excess of the
condensation energy, Eq. (13), and the critical field
would depend on specimen size and be very small for
macroscopic specimens. This indicates that to maintain
a superconducting state in the presence of 6nite 6elds,
we must have Aux penetrating through in a uniform
way, with a nearly uniform density of closely packed
"vortices" of current everywhere. The contrast be-
tween this vortex geometry and the usual parallel field
geometry is illustrated in Fig. i.

Now consider one such vortex containing n Aux
quanta. Since the 6eld penetrates uniformly, the over-
all radius E of the vortex will be such that

if we ignore errors due to the fact that circular cells
wiB not pack to cover a surface. At the radius E, Kq.
(9) tells us that J„s,nd hence T, is zero. As one comes

IJ. Bardeen, in Hawdbech der Physik, edited by S. Flugge,
{Springer-Verlag, Berlin, 1956), Vol. 15, p. 324.

assumed to hold all the way from r= 0 to R. If one does
this, one can compute the free energy difference per
unit volume with H, n, and e as parameters. The result
is

Bytes)p Sn CX

AG= -+-
4n.c'Ao a(a+2) (a+4) 4n

2 ~ b
t 1—a o (+~o'I I (19)

a+2) 2 (a+1)
In this, the 6rst term in the bracket arises from the
kinetic energy of the current circulating in the vortices,
whereas the second arises from the gradient of the
order parameter. As might be expected, for a given
distribution of au in the vortex, speci6ed by the param-
eter n, the kinetic energy per unit area increases as n,
whereas the gradient term falls as 1/n. This behavior
is qualitatively reasonable since with increase in n,
fewer but larger vortices/area are required to carry the
total Aux. This leads to less energy from rapid variation
of the order parameter, but more kinetic energy from
the larger currents that must Bow to maintain Auxoid
quantization.

If one now examines Eq. (19), one notices that the
maximum field in which cop) 0 can be sustained is de-
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termined by setting the coefficient of the term linear
in ohio equal to zero. This leads to the following expression
for the transition 6eld, namely,

(20)
tee $4ss/a(a+4)+a(a+2)/SN j

The variational problem is then equivalent to 6nding
n and 0. so as to maximize Hg. If one treats 0. and e as
continuous variables, the optimum value occurs as 0.

and n both approach zero, maintaining the relation
0.=2n, in which case the bracketed quantity goes to
unity. "To get the best physical solution, n must take
its lowest nonzero integral value, namely, n= 1. In this
case the minimum value of the bracketed quantity is
approximately 1.1. On the other hand, if one lets
n —+~, the minimum value increases only to V2. In
view of the crudity of the variational function, this
increase in Hp is hardly even reliable. Ho~ever, if
instead of 6nding only HT, one computes hG for
H 4Hz, one 6nds a clear optimum for e and n small.
From these results we conclude that the optimum con-
6guration is one in which the Qux penetrates in fluxoids,
each containing a single unit of Bux. However, it ap-
pears that the variation with I may be weak enough
so that physical inhomogeneities could shift this result
to allow a coarser grained current pattern. This quali-
6cation is particularly necessary because of the ex-
tremely limited class of variation functions we have
used.

Because of the very restricted trial function used to
obtain Eq. (20), the results described above provide
only a sort of lower limit for Hg. Moreover, the model
replaces the real Quxoid "ceHs" by a circular approxi-
mation. Thus, even a rigorous solution to the varia-
tional problem, as set here, would not be an exact
solution for the physical problem. Accordingly, in our
comparison with experiment we shall simply set the
bracket in Eq. (20) equal to unity, the absolute mini-
mum determined above. If we also replace the param-
eter u(T) by its value given in Kq. (14) and express
A.o in terms of the equilibrium penetration depth
Kq. (20) becomes

4rrh. s (T)H.ss(T)
Hr(T) =

po
=6.06X10'X '(T)H ss(T) (21)

"The fact that the most favorable value in Eq. (20) arises
when e 0 and n 0, corresponding to co coo everywhere, might
appear to contradict our original qualitative observation that
m=0 could not be the lowest state for a macroscopic sample in a
6nite 6eld. More careful consideration, however, shows that when
e 0, the order~&arameter has a spatial variation approximating
ruo expL —(r/rs)s (, where s.rssH= es. Such en island of super-
conducting material shrinks in radius as H increases, ending up
with a radius only ~$0 at the 6nal transition 6eld, which is the
same as found below for e)0. However, a macroscopic system
would nucleate fluxoid vortices long before that point because of
the more favorable free energy for the whole of any 6hn whose
surface dimensions exceeded po.

which is our fundamental result. Since yo is a universal
constant, and X, and H, ~ are quite mell known from
other experiments, this leads to a parameter-free pre-
diction of the critical Beld Hp. It is perhaps not sur-
prising that this result is precisely equivalent to that
of Abrikosov' for the critical 6eld H, 2 of bulk sample
type II superconductors, in which the Aux is shown to
penetrate in a vortex structure similar to that de-
scribed here. Explicitly, he 6nds H,2=VZeU, ~, where
e=V2(ee/Ac)8esH. s. Our result is equivalent, since
e"=2e and be X.——Fu. rther, since X,s=hr, '($e/t) when
l«ge, the large value of H, r for dirty superconductors is
seen to follow naturally.

In order to facilitate comparison with experiment,
let us approximate the temperature dependences in
Eq. (21) by the usual Gorter-Casimir ones, namely
X,s(t) =lw, .s(0) (1—t') ' and H, b(t) =H, s(0)(1—t'), where
t=T/T, . Then Eq. (21) becomes

H, (t) =4rrke'(0)H. a'(0) 1 ts-
1+t'po

(22)

Since X,(0) is roughly 500 A for typical soft super-
conductors with electronic mean free paths not too
severely limited by film thickness, lattice imperfection,
or impurity, Eq. (22) leads to the prediction that at
low temperatures Hy should be proportional to the
square of H, ~, namely,

Hr(0) =1.5X10 sHcs'.

This is a surprising result, considering the experi-
mentally known fact that in magnitude Hz =H, &. The
reason for this apparent coincidence can only be that

q e=4 &'(0)H.s(0).

Relations among the parameters of superconductors
given by the BCS theory" can explain this. If one uses
the usual free-electron model for the normal state pa-
rameters, one 6nds that

q p
——hc/2e= (2/3)'Issr'gpXr, (0)H, s(0). (23)

Thus the requirement for the coincidence that Hz =H, ~

is equival. ent to the requirement that

&'(0)= (2/3)"'( /4)$& (o)

But according to the BCS theory, in the limit of )e&)Xr,
with diffuse surface scattering one has

X„s(0)= (3"'/2w) PpXr,s. (24)

Since the two numerical coefficients are similar, these
two expressions for X'(0) differ only by a factor of
roughly ($e/Xr, )' Is, which is typically about 2 and
depends relatively weakly on the material at hand.
Thus there is a clear explanation of the approximate
numerical coincidence of Hq and H, q in typical cases.

'~ J. Bardeen, L. N. Cooper, and J. R. SchrieHer, Phys. Rev.
108, 1175 (1957).



TRANSITIONS OF SUPERCONDUCTING FILMS 2417

Finally, before passing on to a detailed comparison
with experimental results, let us consider the angular
dependence of the critical 6eld according to our model.
From the free-energy expression, Eq. (19), we see that
a perpendicular Geld component produces a contribu-
tion Hmeur in the applied 6eld to be balanced against
the condensation energy. By contrast, a 6eld compo-
nent in the plane of the 61m produces a quadratic
eGect. The reason for this diGerence is evident from
Fig. 1. In the parallel orientation the important di-
mension of the current loops is fixed by the 6lm thick-
ness, hence is constant, and the energy increases as H';
on the other hand, in the perpendicular orientation,
the size of the current loops scale down as H increases,
leaving only a residual linear dependence. From this
argument, we see that for thin Glms we expect a critical
6eld vs angle relation of the form

Hr sin8/Hr&+ (Hr cos8/Hr«)'= 1, (25)

where Hr~& is given by Kq. (2), Hr, by Kq. (21), and
where 8 is the magnitude of the angle of the field from
the plane of the 61m. For a thin 61m, Hz&&&H~I&, and
the 6rst term will dominate over a considerable angular
range. The fact that the variation is with sin8 rather
than sin~8 is important for explaining the extreme sen-

sitivity of critical Geld measurements to small per-
pendicular 6eld components. If the 61m thickness
d&5'"X,(T), the transition in parallel 6eld becomes
6rst order, and the simple formula Kq. (25) will no
longer be reliable.

III. COMPARISON VQTH EXPERIMENT'

The two most extensive sets of experimental data
available for comparison with the theory are the
thermal conductivity measurements of Morris'~ and
the resistive transition data of Rhoderick. '3 Morris de-
termined the critical 6eld, as indicated by attainment
of the thermal conductivity of the normal state, for
61ms of tin, indium, and lead, at various temperatures,
and. in the case of lead at a range of intermediate
angles between normal and parallel 6elds. Rhoderick
measured the resistive transitions of tin Glms of various
thicknesses over a wide range of temperatures. The
interpretation of Rhoderick's data is furthered by the
Aux penetration measurements of Broom and Rhod-
erick. e The latter showed that Qux penetration ap-
peared to be complete at very nearly half the 6eld at
which full normal resistance was restored. Since this
full Qux penetration value agrees well with the 6eld
for normal thermal conductivity, we take this value to
represent the establishment of the normal state except
for 61aments which keep the electrical resistance below
its normal value. Since the extensive data of Rhoderick
give only the resistive transitions, to allow comparison
with Morris' data on a comparable basis, we eventually
divide all the resistive critical Gelds by a factor of two.

"E. H. Rhoderick, Proc. Rov. Soc. (I,ondon) A267, 231 (1962).

ALE I. Perpendicular critical Geld data of Morris, based on
thermal conductivity, and penetration depth deduced from them
using Eq. (22). The extrapolation to Hp~ 0) from Hgj. (t) is made
using a factor of (1+t'}/(1—tg).

Film
Thickness

(L)
Hgg(t) Hgj. (0) H, f, (0) X,(0)

t (exp) (Oe) (extrap) (Oe) (Oe) (L)

In IV 4000

Sn II
Pb II

0.36 110 143 269 570
0.66 66 169 269 620
0.32 150 184 305 570
0.30 1110 1330 805 580
0.64 525 1260 805 565

0a
es 3QQ
e0

~ 200

I.'
Experimental points {Rhoderick)

o d = 1000 A
& ct =5000k
& d = 10 000 A

Q I I I I I I I I I

0 0.2 0.4 O.b 0.8
t' = tTiT, I'

1.0

Fro. 2. Temperature dependence of critical Geld for restoration
of complete normal resistance. Data are from Rhoderick, refer-
ence 13. To allow critical examination of the data, Hp/(1 —fg) is
plotted vs P, where t=T/T, . If Hz H, q, the data Gt the hori-
zontal line. If Hz follows Eq. (22) of the text, the data fall on
the sloping curve.

Ke start by comparing Morris' data for H~ with the
values given by Eq. (22). Since an o priori estimate of
X,(0) will be made somewhat uncertain by mean-free-
path effects, it is perhaps most iBuminating to use
Eq. (22) and the observed Hr& to compute X.(0) to see
if the values found are reasonable and consistent. This
is done in Table I. Ke note that the inferred penetra-
tion depths are all in quite reasonable agreement with
what one would estimate allowing for mean-free-path
effects. The temperature-dependence data are meager,
but what there are show good agreement for the thin
lead 61m, but poorer agreement for the thick indium
film. Finally, we note that if one considers the data at
low reduced temperatures, one Gnds the predicted pro-
portionality between HT and the square of H, t„rather
than H, ~ itself.

Next let us compare Eq. (22) with the extensive data
of Rhoderick. "Ke take data for Hp vs P for various
thickness tin films from his Fig. 6. To allow a more
critical examination of the temperature dependences,
in our Fig. 2 we have replotted his data for several
representative films with the observed H~ in each case
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b000

(Ahorris)

T = 23b'K

-8 4000I
4m
VhI0

Cg
~ 2000

0
O

I I

30
8, degrees

90

FIG. 3. Angular dependence of transition 6eld as determined
by thermal conductivity experiments of Morris, reference 9.
Curves A, 8, and C represent three possible interpolation func-
tions between Hzq and Irzff. Curve A is based on Eq. (25) of this
paper. Curve C was suggested by Morris. Curve 8 vmuld result
if the magnetic energy increased as H~ for both perpendicular and
parallel components.

divided by (1—P) to take out (approximately, at least)
the temperature dependence of H, ~. If Hp were pro-
portional to H, i, (1—P), the points would fall on a
horizontal line. If Hr is proportional to (1—P)/(1+P),
as predicted by the present model, the points should
fall on a curve which drops by a factor of 2 in going
from 3=0 to k=1. Inspection of Fig. 2 shows that Hp
for the 10 000 jli film does follow H, i„but that for the
1000 A and 5000 A 61ms the sloping curve correspond-
ing to the present model gives a somewhat better
fit. Rhoderick's data for other 6lms of 600 4 and
2000 k thickness are not plotted to avoid cluttering
the diagram. They also can be Gtted at least roughly
by (1—P)/(1+P), but the advantage is not really
clean cut because of scatter in the data. Such scatter
is probably unavoidable when one is trying to read the
6eld for attainment of "full" normal resistance, a
criterion which is hard to apply with precision. Thus
the comparison here probably only shows that for thin
61ms the present model gives no worse a fit for Hr, (l)
than does (1 P), wh—ereas for a thick 61m Hp& is ob-
served to be proportional to (1—P) as might perhaps
be expected.

To continue the comparison of the Rhoderick data
with our model, Table II shows the penetration depths
X,(0) inferred from the extrapolated values of Hr&(0)
obtained from graphs such as those in Fig. 2. The
indicated errors indicate reasonable limits of error for
a fit to a (1—P)/(1+P) temperature dependence. The
"corrected" values in column 3 are half those in
column 2 to allow empirically for the observed diGer-
ence between the resistive transition Geld and the
"magnetic" one. Since the 10000 K film appears to
follow a (1—P) temperature dependence, it was extra-
polated to zero using that dependence rather than
(1—P)/(1+P). The values for this 61m are quoted
parenthetically in Table G.

Tmm EI. Thickness dependence of critical 6elds. The data are
from Rhoderick (reference 13) extrapolated to T=0 as indicated
in Fig. 2. The numbers in the third column are half those in the
second to give estimate of critical Beld for "magnetic" transition
from the measured resistive transition (see text). Final column is
calculated using Eq. {22).

d
(L)

600
1000
2000
5000

10 000

Hgg(0)
(Oe}

660'60
500~50
370~40
340~30

(290~20)

Bzg(0)
{corrected)

(Oe)

330
250
185
1'l0

(145)

X,(0)
(i.)
765
665
575
550

(510)

'4 M. Tinkham, Phys. Rev. 110, 26 (1958); P. S. Miller, ibid.
113, 1209 (2959).

Inspection of the results shown in Tab1e II reveals
that X.(0) displays the monotonic variation with d
expected because of coherence length efI'ects. For the
thickest 6lms, the values seem to be approaching the
accepted experimental value for bulk samples, namely,
510 A. For the thinnest film, if one takes'4 $ '= $0

'
+d ' and X=Xz($0/$)'" with Xr, =350 A and
= 2500 A (as quoted by BCS"), one obtains /=485 A
and X=790 A. The latter value is in quite good agree-
ment with the 765 A shown in the table. The over-all
agreement is highly satisfactory in view of the sim-
plicity of the analysis. This establishes the fact that
Eq. (22) gives a satisfactory account of the magnitude
of Hz& for a wide variety of cases.

Let us now test Eq. (25), which predicts, in par-
ticular, a dependence on the 6rst power of the per-
pendicular component of the applied 6eld. The only
directly relevant data on this question seem to be those
of iforris on a 500 A lead 61m. His data are particu-
larlv useful since residual 6laments would not obscure
thermal conductivity measurements of II~. The values
of H~ which he observed. at T=2.16'K as a function
of the angle 8 between the 6eld and the plane of the
Glm are plotted in Fig. 3, together with calculated
interpolated values between the measured values at
8=0' and 90'. He also took data at 7=4.5'K at 8=0,
30', and 90', not plotted here. The calculated inter-
polation (A) is based on Kq. (25) of this paper. Inter-
polation (8) is based on a similar formula, but with
both parallel and perpendicular components coming in
quadratically as would be expected for the usual case
of a susceptibility which is Geld independent to Grst
order. Interpolation (C) is based on a similar formula
in which both 6eld components enter linearly. The
latter form has no clear a Priori justification, but it
was proposed by Morris' as giving a reasonably good
Gt to his data. Although agreement is not perfect, the
interpolation (A) based on Kq. (25) seems to give a
better account of the data than either (8) or (C).
Speci6cally, (8) falls much too slowly for small values
of 0 because it involves sin'8. Since (C) also uses a
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linear dependence on sine, it is about equally good as
(A) for small angles. However, for large angles (A)
gives a better fit, especially at the higher temperature
(not plotted) where the single experimental point at an
intermediate angle (30') falls above all three inter-
polated curves, and hence considerably closer to (A)
than to (C). Thus, on an over-all basis (A) is preferable
on the basis of goodness of 6t as well as (), priori
justification.

Summing up the results of this section, we have
found that the predictions of our model appear to be
in good agreement with the observed critical fields of
thin (d($0) 61ms of tin, lead, and indium. It predicts
the angular dependence, the temperature dependence,
the slight thickness dependence, and the absolute mag-
nitude of Hz as determined from thermal conductivity
or Qux penetration experiments, which are not obscured
by filamentary sects. Complete normal resistance is
only restored at about twice the "magnetic" or "thermal
conductivity" critical field predicted by the model.

zv. rnscUssrom

(()0 X(0) 3)r
ming =

P, (T) l (T)(2),(26)

In the previous section, we have seen that the pro-
posed model gives a satisfactory account of the ob-
served critical 6elds. In fact, it is in principle limited
to that purpose by the simplifying assumption that
the order parameter co is sufBciently small that pene-
tration is complete and H is uniform in space. None
the less, it would be desirable to have at least a quali-
tative picture of how the superconductor reacts to a
normally incident 6eld all the way from zero 6eld up
to the transition region. Since in this case H is no
longer uniform and equal to the applied fieM, we must
supplement the free energy density expression used
previously by adding the customary term H /87r. This
term evidently favors keeping the 6eld as uniform as
possible.

Now we consider a simple idealized model in which
each flux quantum goes through the film as a uniform
held over a circular region of radius Ei, over which the
order parameter increases linearly with r to a value coo

which obtains outside the regions of Qux penetration.
(The linear dependence is near the variational op-
timum although not correct near r=o. This model is
admittedly not entirely self-consistent, since the fallo6'
of H to zero wouM be rounded instead of square, but
it is qualitatively correct. ) For this model, the kinetic
energy and

~
&cu ~' terms give contributions independent

of EI but the condensation energy naturally favors
R~ —+ 0, so that co=zoo. This condensation energy term
is countered, however, by the field energy, H'/8s, which
favors Xi=ED, the radius corresponding to uniform
Qux penetration. Minimizing the total free energy, we
6Ild

If we further assume that coo c—u—,(T), then this reduces
to

(27)

which shows that within our approximation the 6eld
inside each region of Qux is of the order of the bulk
critical field. Given the relation Kq. (23), based on the
BCS theory, one can express Kq. (27) for T=O as

212= |r()(']01(,L, =)(„'(0)()0/xz, )'('. (28)

Thus each Qux quantum is con6ned to a region with
radius of the order of the penetration depth. As H is
increased, more Quxoid vortices must be created, each
having this same radius. Eventually, these vortices will
start to 611 an appreciable portion of the material.
LAccording to Kq. (27), they would fiD it all when
H= (2/3s)'(~H, (,(t) =Hri.] When this happens, the
6eM has become essentially uniform, and the original
model becomes valid for the description of how coo is
then depressed from co,(T) down to zero at Hr.

From the above picture of the sequence of events,
we see that until near Hp, the order parameter or has
a range of values from 0 to ~,(T). All that changes with
H is the fraction of the volume which is still at ~,. This
decreases linearly with H, as more vortices form. One
might think this result to be at variance with the ex-
perimentally known fact9 that the thermal conductivity
increases quadratically with H& as well as with Hff.
This is not necessarily the case, however, since the
scattering of excitations by the eariatioe of ro with
position will largely counteract the fact that (ca), is
decreased by the presence of vortices, until the vortices
"touch. " Then the subsequent decrease of oro and the
corresponding spatially uniform approach to the normal
state will cause a strong increase in thermal conduc-
tivity. The resulting dependence might well look nearly
quadratic in H. Further tests of this hypothesis would
be desirable.

One final remark is that the inhomogeneities present
in real samples of even soft superconductor films will
be expected to modify these results considerably. They
will produce barriers which impede the free motion of
the Qux quanta in from the edges, which is envisioned
in the model. They will certainly produce local varia-
tion in the ease of Qux penetration, leading to spatial
inhomogeneities on a scale large compared to that of a
single quantum. Broom and Rhoderick~ already have
concluded that that is the most likely interpretation
of the structure they observed in the Geld penetration,
since the characteristic period of the variation was equal
to the resolution limit of their apparatus. Another evi-
dence of complication is their observation of a certain
amount of Qux trapping after the 6eld is removed. Evi-
dence of the severity of these effects is also given by the
photographs of domain structure in tin and lead 61ms
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obtained by Desorbo, Newhouse, and Healy. "These
irreversible sects have to do with the presence of
physically localized structure in the 61m which is
broken through in an irreversible discontinuous way.
With hard superconductors or severely strained 6lms,
even more serious departures from our simple model
are to be expected. However, one might expect the
criterion for the critical 6eld to retain considerable
validity even if the low-6eld behavior is complicated
by inhomogeneity effects.

Minimizing this with respect to eo, and then setting
co=0 to 6nd the transition condition, we obtain

(nq'p «R'H)'= a(T)Sw'—A pc'E'

=8«'R'X 2(T)H.P(T) (30)

If we use the standard temperature dependences for
X.(T) and H, q(T), this becomes

(nq p «E'H)2=8w'R'X '(—0)H P(0) (1—P)/(1+8). (31)

Expanding to first order in At=AT/T, =1 T/T. , we-
have for the displacement in T,

hT, (nqp —«R'H)'

T, Sw'E'X.'(0)P.P(0)
(32)

We note immediately that this has a parabolic varia-
tion about the values of H which place precisely an
integral number of Bux quanta through the tube. The
maximum drop in T, occurs when H is exactly be-
tween two quantized values. At that point,

(nq p «R'Ii), = q p!—2. (33)

'~%. DeSorbo and V. L. Newhouse, J. Appl. Phys. 33, 1004
(1962);W. DeSorbo and %.A. Healy, G. E.Research Laboratory
Report 61-RJ.-2743M, &96k (unpublished),

V. VARIATION OF THE CRITICAL TEMPERATURE BY
MAGNETIC FIELDS

As a 6nal application of our theory we treat the case
of the change of T, for a superconducting cylindrical
61m placed in an axial magnetic 6eld, as in the recent
experiments of Little and Parks. s Because these experi-
ments are carried on right at T„ru, (T) is very small,
so the complete 6eld penetration model should be
rigorous. Also, because the 61m thickness is small
compared to the radius of the cylinder, the optimum
con6guration will have au= const over the 61m to elimi-
nate the

~

Vcu(' term.
To get at the part of hT, which is periodic in H we

can treat the 61m as being so thin compared to the
radius R that in the kinetic energy expression Eq. (12)
we can set r=E. Then we have for the total free
energy diGerence

b(T) a)
AG= —a(T)s)+ a'+ (nq0 —«E'B)'. (29)

2 sx'Aoc'E'

Therefore

(ST.)„
32HR'&.'(0)P.P(0)

t'«R'H —nq', ~'

)16 R"& go
(35)

This differs from our Eq. (32) by a factor of the order
of (T,/T~)(b/l), where Tp is the Fermi temperature
of the electron gas. For the case at hand with /= 100 A,
the formula of Little and Parks predicts an effect of
about 1% that predicted by the present theory. The
experimental result lies in between, somewhat closer to
the prediction of the present theory. The discrepancy
between these two approaches appears to have arisen
from an error in the approximations used by Little.
As corrected, Little's result agrees substantially with
ours, as should be the case since the BCS theory should
reduce to the Ginzburg-Landau theory very near to T,.

' R. D. Parks (private communication).

In the experiment reported by Little and Parks, '
E=7X 10-' cm. Putting in the standard values for
T, and H, ~ for tin, we 6nd

(hT,), = [1.05K 10 '/X, (0)j'.
Since their estimate of (hT, ) from their data is
5)&10—4'K, this leads to the conclusion that X,(0)
=4700 A, which is almost an order of magnitude larger
than the usual values obtained earlier in this paper.
However, since the film is only 375 A thick and is
deposited on a subtrate of glue, one would expect the
effective mean free path to be very small. Based on the
normal resistance, " one would estimate t6100A. If
this were the case, X=X~($0/$)'t'~ 1800 A, which brings
the results into much better agreement. Actually one
would expect that the effective mean free path might
be even much less than 100 A under the conditions of
the experiment, since due to inhomogeneity one is
dealing with isolated threads of superconducting ma-
terial, girdling the Aux, but imbedded in normal
material right on the edge of transition. The diameter
of these threads would be the appropriate limiting
dimension, if it were less than l,. Actually, of course,
when the superconductivity is con&a.ed to regions small
compared to $0, the situation is inevitably complicated,
and the residual disagreement between the expected
1800 A and the fitted 4700 A penetration dep™y
mell be within the uncertainty in the relation between
what is actually measured and our model of a uni-
form change in T, over the entire sample, assumed
homogeneous.

In this connection it should be noted that Little and
Parks quote a formula based on the BCS theory which
predicts that the periodic part of d T, be given by
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p' (H,&H(H, I

I.ittle and Parks also observed a change in T, which
increased as H' in a nonperiodic manner. From inspec-
tion of Fig. 4, it is easy to see that a small effect of this
sort should exist for any finite ratio of d/R. This is
true because only at the radius R at which +E'H =nq 0

will there be no current density, For a hnite 61m thick-
ness, there will then be currents flowing one way for
r (R and the other way for r&R. From Eq. (12) or
(17) we see that near R the kinetic energy density will
be given approximately by

(a)H'/2Aac') (r—R)'.

Averaging over the film thickness, (r—R)' has a mini-
mum value of d'/'12, obtained when E. occurs at the
middle of the thickness of the 61m. Thus, a term

caH d'/24Aoc',

should be added to the periodic term treated above in
Eq. (29). Comparing the two terms, it is evident that
the ratio of the pure quadratic term to the periodic
term is

1 d't H

3 E'&H —H„
(36)

where H =neo/rrE' is the field giving the eth minimum
in the periodic variation. Thus, the pure quadratic
term has a coefficient which is only (d'/3R ) that of the
periodic term in (H —H„)'. For the film used in the
Little-Parks experiment, (d'/3R') =10 ', whereas they
found a pure quadratic term down by only about 10 '.
Since A. has cancelled out in the ratio, the theoretical
ratio depends only on geometrical factors. Hence it
should be more reliable than the absolute value of the
periodic effect, computed above, and the discrepancy
is harder to explain,

R

Radius, r

Fxo. 4. Diagram indicating origin of periodic and aperiodic
parabolic depression of T, in parallel held. When H H, the
Bux inside cylinder of radius R is 8»y0. There is then no circulating
current at r =R, but to maintain fluxoid quantization, opposite
currents Bow for r &R and r &R, as indicated by shading. Kinetic
energy of these currents increases as II„I, leading to an aperiodic
depression of T, even at quantized Aux values. When II/II,
this energy is still greater, reaching a maximum when H is mid-
way between two successive H„. The middle curve illustrates a
case where the 6uxoid is 3', with circulating current at all radii
in the 6hn. Evidently the kinetic energy here is much higher than
when H=H» or H3. This excess produces the periodic part of
b,T,.

One way to account for the large observed quadratic
background is to assume that the field is not exactly
axial to the cylindrical shell. ln that case there will

be a field component perpendicular to the axis. This
component will induce supercurrent circulation along
the length of the cylinder, halfway around one end,
then back on the other side, closing on itself. Applying
Eq. (5) to such a path, one finds

J,=HiR/cA,

and hence a kinetic energy density

-'AJ '= (s&H '/2Aoc')R' (37)

This term is (12R'/d')(Hi/H~~) times the effect of the
parallel field due to 6nite wall thickness. To account
for the observed magnitude, this ratio must be 100.
For the given values of E and d, this requires that
(H,/H„)' be about 0.025, corresponding to a 9' mis-
alignment of the 6eld. A physical misalignment of this
magnitude is unlikely, but it is possible that 6eld dis-
tortions due to screening currents arising in the ac
experimental technique used might account for an
e6ect of this magnitude. Also, because of the very
diferent path of the circulating current, sample in-
homogeneities in T, would be expected to produce a
difI'erent sensitivity for this geometry than for the purely
longitudinal held case.

One might wonder why the characteristic first-order
6eld eR'ects from flux quanta threading the sample, as
discussed earlier in this paper, are not observed from
the assumed perpendicular fieM components. The ex-
planation lies in the small radius of the tube, namely
0.7 p, . This is less than the radius of a cirndur Quxoid
vortex for the small normal component of 6eld we are
dealing with. This forces the current into a rectangular
loop of length I. such that I qo/2RH&. As long as
L)&R, the value of L drops out of the size of the ener-
getic eGect, and the energy IP, as observed. The
situation is essentially that shown in Fig. 1(a). For
somewhat larger perpendicular 6eMs, however, the
present viewpoint does suggest that a breakup of the
tube into vortices, with effects linear in H, might be
observable.

The various results of this section may be summar-
ized by collecting Eq. (32) together with results equiv-
alent to Eq. (36) and (37) into a single expression for
the depression of the critical temperature due to a held
H at an angle |t to the axis of a cylindrical supercon-
ducting shell of radius E and thickness d&&E. This
result is

ZT, 1 E
g X'(0)H.a'(0)

1 d'
X (H cos8 H„)'+ Hco—s'8+4H'-sin—'8, (36)

3 R'

where B„is the held which would produce precisely n
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Aux quanta within a circle halfway through the thick-
ness of the wall of the cylinder, if applied directly
along the axis of the cylinder.
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Threshold, for Electron Radiation Damage in ZnSe*
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A threshold for the displacement of an atom from the ZnSe lattice by electron bombardment has been
observed at 240 keV. An electron of 240 keV transfers a maximum energy of 8.2 eV to the selenium atom
and 10eV to the zinc atom. The displacement is observed by the production at 85'K of a broad Quorescence
band which is resolvable into two overlapping bands with peaks at 5460 and 5850 A. The radiation damage
anneals completely at a temperature of 160'K.

INTRODUCTION

IRK CdS and ZnS, ZnSe is a II—VI compound
- ~ semiconductor often grown by vapor-phase deposi-

tion at high temperature under various conditions of
atmospheric control. ' ' This method of growth results
in crystals of questionable stoichiometry and quality.
Many of the Quorescence properties of these compounds
are believed to be a result of crystal defects in conjunc-
tion with or independent of chemical impurities.

Electron bombardment has proven to be a useful
tool to produce defects in silicon which involve vacancy-
impurity ' as well as multiple-vacancy complexes. '
Earlier studies in this laboratory have shown that it is
possible to isolate defects of di8erent atoms in com-
pound semiconductors by measuring the threshold
energies for the production of various Quorescence bands
in these materials. ' This latter technique has been
applied to single-crystal ZnSe and the results of bom-
bardment experiments with electrons in the energy
range 225 to 500 keV are described here.

*Submitted in part to the faculty of the U. S. Air Force
Institute of Technology as partial fulSlment for the requirements
of the degree MSc in Nuclear Engineering by RMD.' R. Frerichs, Phys. Rev. 72, 594 (1947).' D. C. Reynolds and S. J. Czyzak, Phys. Rev. 79, 543 (1950).' F.A. Kroger, H. J.Vink, and J.Van den Boomgaard, Z. Physik.
Chem. (Leipzig) 2M, 1 (1954).' G. D. %atkins and J.W. Corbett, Phys. Rev. 121, 1001 (1961).

~ J. %. Corbett, G. D. Watkins, R. M. Chrenko, and R. S.
McDonald, Phys. Rev. 121, 1015 (1961).

6 J. %'. Corbett and G. D. Watkins, Phys. Rev. Letters 7, 314
(196i).' B.A. Kulp and R. H. Kelley, J. Appl. Phys. 31, 1957 (1960).

S. A. Kulp, Phys. Rev. 125, 1865 (1962).

EXPERIMENTAL

The crystals used in these experiments were grown by
vapor phase deposition by L. C. Greene of this labora-
tory. The electron bombardments were carried out in
vacuum with a Van de Graaf accelerator at a dc level
of irradiation of 4 to 20 pA/cm', at a temperature near
liquid nitrogen temperature. The fluorescence was
measured with a Perkin-Elmer glass prism spectrometer
with a type 6199photomultiplier detector. The infrared
Quorescence was measured with a lead sullde detector.
The spectrum following 500 keV bombardment was
taken with a Cenco j.-m grating spectrometer with
103A-F 61m. During bombardment the crystals were
mounted on a cold 6nger beneath a liquid nitrogen
Dewar in the beam of the accelerator. The Quorescence
was observed through a quartz window. The Quores-
cence was excited by electrons with an energy of 275
keV at an intensity of 4+A/cm'. The energy was so
chosen that the intensity did not change appreciably in
the 6ve minutes required to scan the wavelength region
of interest.

DATA AND RESULTS

A. Electron Bombardment

Figure 1 shows the Quorescence spectrum of a single
crystal of ZnSe before and after bombardment by 10"
electrons/cm' at an energy of 500 keV at 85'K. The
Quorescence following bombardment has been resolved
into two bands with a symmetrical intensity distribu-
tion and peaks at 5460 and 5850 A. The wavelengths


