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Propagation of Electromagnetic Waves in Plasmas
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Green's function techniques are used to treat the propagation of electromagnetic waves in uniform,

weakly interacting plasmas near equilibrium in the absence of external magnetic fields. The frequency and
the damping of electromagnetic waves in a medium are related to the local complex conductivity tensor,
which is calculated by the diagrammatic techniques of modern field theory. Physical quantities are calcu-
lated in terms of a consistent many-particle perturbation expansion in powers of a (weak) coupling param-
eter. An open-diagram technique is introduced which simplifies the calculation of absorptive parts. For long-

wavelength longitudinal waves (i.e., electron plasma oscillations) it is found that the main absorption
mechanism in the electron-ion plasma is the two-particle collision process appropriately corrected for
collective effects and not the one-particle (or Landau) damping process. Electron-ion collisions produce a
damping effect which remains finite for long wavelengths. The effect of electron-electron collisions vanishes
in this limit. The absorption of transverse radiation is also considered; calculations for the electron-ion
plasma are in essential agreement with the recent work of Dawson and Oberman. The results for the absorp-
tive part of the conductivity tensor for long-wavelength electromagnetic waves in a plasma where the
phase velocity au/k is much greater than the rms particle velocity is for the electron-ion plasma:

O„O,~kgb C, ( )

where Q„s=kre'nm ', kzP =4~e'np, and p= (kT) '. The effects of dynamic screening are entirely contained in

definite integral C (a)) which is numerically evaluated. The calculations are valid for temperatures and
densities which satisfy the inequalities:

(4n-e n/m)'»(A/kT)'(&(47re'n/kT)3' n '(&{4m' n/m)»(A/kT)«1

Reading from left to right these inequalities justify the use of Boltzmann statistics, the Born approximation,
and the neglect of wave mechanical interference effects. The weak-coupling approximation is justified by
(4re n/kT)'»n '«1. These restrictions are satisfied, for example, if T&10s 'K and n(10N particles/cm'.
For these hot plasmas a natural short-wavelength cutoff appears at roughly the thermal de Broglie wave-
length. Electrons and ions are found to produce comparable screening effects. To illustrate the application
of these techniques to degenerate, low-temperature systems, the absorption process in a high-density electron
gas is briefly considered.

I. INTRODUCTION

HIS paper deals mainly with the damping of
electromagnetic waves in uniform, weakly inter-

acting, fully ionized plasmas near equilibrium in the
absence of steady external magnetic 6elds. Ke are
primarily interested in hot, dilute electron-ion plasmas,
although we also briefly consider a cold, dense de-
generate electron gas.

We regard macroscopic electromagnetic plane v aves
of a given frequency and wave number (k,co) as co-
herent superpositions of quantized photons or plasmons
with the same k and co. If the amplitude of the wave is
sufficiently small, nonlinear interactions among these
excitations can be neglected, and the damping rate of
the wave is just the quantum-mechanical rate of ab-
sorption minus the rate of emission of the quantized
excitations. These quantum processes are represented
by Feynman diagrams and the rates are calculated by
propagator techniques.

The rate of damping p and the frequency dispersion
relation for the electromagnetic waves are very simply
related to the real and imaginary parts of the local
tensor conductivity of the system, 0;, (kp&). We present
a complete many-particle perturbation theory for 0;;

* Present address: Hughes Research Laboratories, Nalibu,
California.

which includes longitudinal and transverse collective
efI'ects. We then calculate the exact two-particle colli-
sion contributions to o;;, taking into account the dy-
namic screening of the interaction. For the hot plasmas
considered here, with kT»me'/A', a natural short-
wavelength cutoff appears.

We firid' that for long-wavelength longitudinal waves
the main absorption mechanism in the cases mentioned
above is the two-particle collision process and not the
one-particle, or Landau damping, process. As a conse-
quence, it becomes clear that the self-consistent field
approximation and the equivalent random phase ap-
proximation are both inadequate for computing the
damping rate of plasma oscillations. ' The electron-ion
plasma provides a striking illustration of the importance
of the two-particle collision damping process: In the
limit of infinite wavelength the Landau damping rate
vanishes exponentially but the collision damping rate
remains constant. For the electron gas in both the

' D. F. DuBois, V. Gilinsky, and M. G. Kivelson, Phys. Rev.
Letters 8, 419 (1962).' There are many papers on the application of the self-consistent
field approximation (Vlasov-Landau equation) to plasmons. For
a recent review see V. L. Klimontovich and V. P. Silin, Soviet
Phys. —Uspekhi 3, 84 (1960). The random phase approximation
is applied to the damping of plasmons in a recent paper by D.
Pines and J. R. Schrieffer, Phys. Rev. 125, 804 (1962).
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classical and quantum' cases the collision damping
vanishes like the inverse square of the wavelength in
the long-wavelength limit, but is still considerably
larger than Landau damping for wavelengths much
greater than the Debye wavelength. It is then apparent
that for collision damping, unlike Landau damping, the
presence of discrete ions has an important eRect.

For a wide range of temperatures and densities the
most important role of the Landau damping process for
uniform plasmas in the absence of magnetic Gelds is to
provide an upper limit on the wave numbers for which
the plasma oscillation mode is well dehned. For smaller
wave numbers (longer wavelengths) plasma waves de-

cay primarily through the collision process.
The qualitative importance of collision damping was

pointed out long ago in the well-known work of Bohm
and Gross. 4 They noted that since Landau damping
was so small as k —+ 0, collision effects would dominate
in this limit. However, a complete calculation of this
eRect was not carried out and until recently subsequen-
authors have tended to avoid detailed analysis of colt
lision damping.

Our results for the transverse conductivity of a
classical electron-ion plasma are in agreement with the
results of Perel and Kliashbergs and with the results of
Dawson and Oberman and Dawson, Oberman, and Ron. '

Our methods are based on the recent developments in
quantum-statistical mechanics which employ the power-
ful methods of quantum Geld theory. ' %e have ar-
ranged the paper in such a way that the reader who is
primarily interested in results may go directly to Sec.
III and then to Sec. VI, which can be read independently
provided the rules for calculation given there are
accepted.

In Sec. II we 1.ist the held operator notation for the
problem of a system of several species of charged
particles interacting via the static Coulomb potential
and the transverse radiation Geld. Throughout this
paper we consider only the nonrelativistic hmit, in
which it is convenient to work with a noncovariant
formalism.

' D. F. DuBois, Ann. Phys. (N. Y.) 8, 24 (1959).' D. Bohm and E. P. Gross, Phys. Rev. 72, 1851 (1949).It has
come to our attention that the importance of higher-order terms
has been considered recently for the case of an electron gas by
Ichikawa PV. H. Ichikawa, Progr. Theoret. Phys. (Kyoto) 24,
1083 (1960)j.A similar calculation has recently been reported by
%'illis

t C. R. Willis, Phys. Fluids 5, 219 (1962}j, who obtains a
somewhat different result. These calculations are based on a
truncation approximation in the hierarchy of kinetic equations
and lead to results qualitatively in agreement with our exact
result. Neither of these authors obtains the correct logarithmic
factor in his result.

~ V. I. Perel and G. M. Eliashberg, J. Exptl. Theoret. Phys.
(U.S.S.R.) 41, 886 (1961).

J. Dawson and C. Oberman, Phys. Fluids 5, 517 (1962);
J. Dawson, C. Oberman, and A. Ron, ibid. (to be published).

'A. A. Abrikosov, L. P. Gor'kov, and I. E. Dz aloshinskii,
J. Exptl. Theoret. Phys. (U,S.S.R.}M, 900 (1959) translation:
Soviet Phys. —JETP 9, 636 (1959)j.' P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).

In Sec. III we outline the theory of electromagnetic
waves in a dispersive medium. The frequency and

damping of waves in a medium can be determined
entirely from the local conductivities.

In Sec. IV the calculation of the retarded current
commutator by a diagram expansion plus analytic
continuation method, developed by several authors, ' '
is discussed. The theory of the eRective screened longi-
tudinal interaction propagator and the propagator for
photons in the medium is given. This enables us to
connect the local conductivities to the calculation of
proper polarization parts in the medium. A brief dis-
cussion of the results of the random phase approxima-
tion as obtained in our formalism is also given here.

In Sec. V the general features of the calculation of
absorptive parts of diagrams are discussed. This ap-
proach, ' which leans heavily on the dispersion relations
obeyed by the various functions in the theory, enables
us to use an open-diagram expansion technique for the
calculation of absorptive parts which is simpler and as
general as the closed-diagram techniques discussed in
Sec. IV. The open-diagram approach has an additional
intuitive advantage in that it essentially reduces the
calculation to the form of the "golden rule" for transi-
tion probabilities.

Section VI is concerned with the application of these
rules to the calculation of conductivities in the classical
limit. The results described above are obtained here
and their limits of validity are discussed. The inclusion
of dynamic screening eRects is carried out here and the
results of numerical calculations are presented.

In Sec. VII we consider the absorption processes in a
degenerate electron gas. The work of Tzoar and Klein'0
is discussed here. They considered the absorption of a
photon into a Gnal state of a pair plus a plasmon, but
they neglected to cut oR the possible plasmon momenta
at the upper value k, at which the plasmon energy, in
lowest order, merges with the continuum of pair states.
In the high-density limit for which a perturbation theory
is valid, the introduction of a cutoR reduces the resonant
eRect which they predicted by such a large factor that
it seems probable that the resonance would be lost in
the continuum of two-pair hnal states.

Finally, in Sec. VIII we conclude with some com-
ments about our results and possible extensions of
this work.

II. FUNDAMENTAL EQUATIONS

In the notation of second quantization the Hamil-
tonian operator for a system of several interacting
species of charged fermions with masses M„and charges
eZ„can be written as

H=H, +H„+Hg,

9 J. S. Langer, Phys. Rev. 124, 997 (1961).' N. Tzoar and A. Klein, Phys. Rev. 124, 1297 (1961}.
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Because of the relaxation effects in a many-particle
medium we must know the history of the local Geld in
the medium for values k&0 to solve this initial value

problem. We restrict our considerations to systems in
which the total electric field in the medium E(x,t) (i.e.,
the external field plus the induced fields) is linearly
related to the Geld due to the external sources alone
Z'(x, t). For a uniform system we can write this rela-

tionship as

retarded current commutator

II;,+(x—x', t —t')
= &g(&—t')(LJ;(x,t),J,(x',t') j ),, (3.4)

where p(t —t') is a step function requiring that f)$', and
the current operator J;(x,t) is defined in Eqs. (2.13)
and (2.14). The average implied by the bracket is with
respect to the equilibrium ensemble. The fundamental
equation connecting 0;, to the transform of II;,+ js

ohio,,.o (k,~o) =II;,+(k,cv) —8;,Qr'/4r, (3.5)
g,o(x,f) = d g' dt' e;, (x—x', t —t')E;(x', t'), (3.1)

~,( k~)=1+4 o, (k,~)/~,

er(k, ra) = 1+4'(d'or(kco)/(aP —c'k').
(3.2)

The external conductivity tensor which relates the
average current in the medium to the external electric
Geld is deGned in terms of the above quantities as

o. ,o (P P /P'i)oIo+ (h . . . y. P~/P)oro (3.3)

where ~;; is called the dielectric tensor of the medium.
The requirement of causality" demands that ~,; vanish
if t&t'. Such a nonlocal relationship in space and time
is necessary to take into account that (i) currents and
charges induced at time f relax toward equilibrium with
some characteristic time and thus can aGect the Geld

at some later time and (ii) spatially inhomogeneous
charge and current distributions are removed by trans-
port of charge so that the distribution at x' can a6ect
the Geld at x.

The electrodynamics of a many-particle medium,
based on the dielectric tensor and the related local
conductivity tensor o,,(x x', t——t') is discussed else-
where, ' "The four-dimensional Fourier transforms of
the longitudinal and transverse parts of these tensors
are related as follows":

where 0„'=4rre'P, Z,in,/M„with n„ the average equi-
librium number density of species v. Similar relations
have been derived in the past by several authors. "
II,,+ then provides complete information concerning the
linear electromagnetic properties of the many-particle
system and provides the connection between the
macroscopic phenomena and the microscopic theory. In
the next section we review the calculation of II;,+ by
means of a diagrammatic many-particle perturbation
theory. First, we must establish the connection of aL,
and crz with the frequency and damping of electro-
magnetic waves in the plasma.

The electromagnetic response of the system is deter-
mined by the zeros of the dielectric constants. The case
of greatest interest for wave propagation is that in
which er. '(k, co) and er '(k,oi) have one or two large
resonances which dominate the spectrum.

When the electric fields are well-behaved functions,
the resonant frequencies are determined by the relations,

Reel. (k,&ur) = 1+4r Reol. (k,o&r)/oir, =0, (3.6)

Re~r(kp&r) =1+4mar Reor(k, cur)/(oiri c'k') =0, (—3.7)

where we have used Kq. (3.2).
We can write in the neighborhood of these resonances

where

OL, =al. el. ,

&r =&r ~r.

This tensor is related to the transform of the averaged

where

ZQ

Ny —Pk
er '(k,co)=

2(dr M —4Dr+ 2'L yr

COI.

er,
—'(k, (u) =-

coL+ 2'$'rL
(3.8)

(3.9)

"Since the external Geld E is the cause which produces the
internal Geld E;, the causality requirement on e;; is not immedi-
ately obvious. However, note that E;0(t) is the difference between
the total Geld at t and the induced Geld. The latter is causally
related to E;(t'). Thus, e;;(t—t') is causal except for a delta func-
tion at t=t'.

'4 A detailed discussion of the electrodynamics of many-particle
systems is contained in D. F. DuBois, V. Gilinsky, and M. G.
Kivelson, RAND Corporation, Report RM-3224-AEC, August,
1962 (unpublished), see especially Appendix A. The reader should
be cautioned that the arguments of the logarithms in the results
for the conductivity presented in Sec. VI of this report are in-
correct because two diagrams have been overlooked. These dia-
grams correspond to the lower diagrams in Fig. 10 of this paper.'6 Note that our deGnition of a;; differs by a factor of i from the
usual one. Thus, Reez, is related to the polarizability awhile Imo q
is the usual electric conductivity. We use tbis convention so that
absorptive parts are always related to the imaginary parts of
quantities in this paper.

and

~c & kr Real(k, co)-
Z —l

2 8(d

yr, (k) =Zr4r Imoc(k, ~op),

(3.10)

8
Zr ' 1+ (@neo R——eo r(k—,co))

808 (3.11)

Yr(k) =Zrkr Imor(k, cor).

The conditions for validity of these formulas are the
smoothness of the Fourier transforms of the electric

' See, for example, reference 7 and P. A. Wolff, Phys. Rev.
116, SM (1959).
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field in the neighborhood of the resonances and the
conditions

is the observable number. In addition, the p, „are re-
lated by the condition of charge neutrality

y j.(k)/(p j.(k)((1 and yr (k)/(pr (k)((1, (3.12) Q„Z„X„=0. (4.4)

which require the resonances to be sharp. If there are
several resonances, then the expressions for El, and K~
have a sum of terms, one for each resonance.

If we examine the time dependence implied by Eqs.
(3.4) and (3.5) we ind'"

Er, (k,j) exp( —2p)Lj —2yjj), (3.13)

Er(k, t) exp( —2p)rj —2yrj). (3.14)

There are no longitudinal waves in the vacuum (i.e.,
orr, =0). In a plasma there may be several longitudinal

waves, the most important of which are the plasma
oscillations. Equations (3.6) and (3.10) give us a
generalized way of determining the frequency and

damping of such oscillations in terms of the conduc-
tivity for which we will develop a power series expan-
sion in the next section. Transverse waves do exist in
vacuum as evidenced by the fact that Eq. (3.7) has the
solution oP=c'k' in the limit as oz ~0. In a medium

Eqs. (3.7) and (3.11) allow us to calculate the fre-

quency shift and damping of transverse waves.
In the next section we present sum-rule criteria for

determining whether these resonances actually domi-
nate the entire spectrum.

IV. MICROSCOPIC THEORY: PROPAGATORS AND
DIAGRAMMATIC PERTURBATION THEORY

Spectral Properties

It is shown elsewhere'" that the external conduc-
tivity tensor rr,jP(k,(p) can be calculated from the
averaged retarded current commutator given in Kq.
(3.4). The equilibrium average denoted there is most
conveniently taken with respect to the grand canonical
distribution:

Our main task in this section is to evaluate the func-
tion II;;+. Perturbation techniques have recently been
developed, particularly by several Russian authors, "
which involve the calculation of certain thermodynamic
Green's functions from which the retarded commutator
functions are calculated by an analytic continuation
procedure. In our formulation of this method, we relate
the retarded commutator functions to imaginary-
temperature t reen's functions or propagators as done,
for instance, by Martin and Schwinger. These imagi-
nary-temperature propagators, which we distinguish
with a tilde, are defined as

Trge "« (' ) TJ—,(1)Jj(2.)]
A;;(1,2) =2

Tr[e ir(H )o. iv)-j— (4.5)

in the interval jj&—
t2~ &r Here . 2 is an imaginary

temperature variable (actually, r must have a small
negative imaginary part to insure convergence) and T
is %ick's well-known, time-ordering operator.

TJ;(1)J, (2)=J,(1)J,(2), t)) j2

= J,(2)J,(1),
(4.6)

The function II;;(1,2) is mathematically convenient
because it obeys periodic boundary conditions in time,

II(j(x),xpj tl j2 T)= II j(X),rX2) $) j2), (4.7)—
as may be demonstrated from the invariance of the
trace under cyclic permutation. ' The time dependence
of II,; can, therefore, be represented by a Fourier series
while the spatial dependence is again represented by a
Fourier integral

~PQe—P(H—Is N)

ePQ —Tr[g j)(H )o ))()j— —

( ")p=»[e "l (4 2)

II;, (1,2) =
d'k 1

(22r)2 r

Xp 11"(k k )K
)o (*i—*o)e—&o(o)—)2) (4 g)

Icp

E„=(1V,)p, (4.3)

~7 The time dependence can be analyzed in an alternate way. ln
computing the transform of the electric 6eld one notes that there
are poles in the lower half cu plane where ei, =Q or ez ——Q, respec-
tively. Since eL, or ez have, in general, a branch discontinuity
along the real ~ axis it follows that these poles lie on the next
Reimann sheets of these functions. If we deform the contour of
integration over ca into the next sheet in such a way as to encircle
the poles then the contributions from the poles are of the form of
Eq. (3.13) or (3.14) while the remaining contributions are of
order pL,/~I, or yz/cop, respectively.

Here P= (kT) ' is the reciprocal of the equilibrium
temperature and we use the notation jo X=+„jo„j))'„.
The chemical potential of species v, p, „, is chosen so that
the average number of particles of species v, which we

denote by

Where kp=orK/r, K iS an eVen integer, and

T

1I;,(k,k,) =— d'(g, —g2) d(t) —t2)
2

/II, ,(I 2)g
—))o (*1—* ) & 2((1(o(2))(4 9—)

Now II;;+ can be calculated from I™I;,by an analytic
continuation procedure which is most easily described
in terms of the spectral representations of their Fourier
coeScients. Using a complete set of states ~)2) which
diagonalizes the operators H, S, and I' (the total
momentum) and the Heisenberg equations of motion,
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it follows by well-known techniques that we may write

((I4()) 1
II;,+(k,(0)= — 2,,(» (k,co'), (4.10)

G7 GJ +'l6 (o) (c)

11;;(k,k,)= A,;('"' (k,(a'),
1l ko 07

where

~'"'(» )= & e-"'( IJ'(0)I

(4.11)

&&(rg~ J,(0) ~n)(1—e t' ) (4.12)

()(co—E„+E )(2s)'l)'(k —P +P.),

(d) (~) (ft

Fro. 1.Basic elements of diagrams. (a) Simple current-measur-
ing vertex; (b) quadratic current-measuring vertex; (c) quadratic
counter term in current-measuring vertex; (d) static Coulomb
interaction; (e) simple transverse photon interaction vertex;
(f) quadratic transverse photon interaction vertex; (g) quadratic
counter term.

and where

p„(P)= ceo e
(4.13)—p() Tr[~ ()($r pN)]—p—

g
—))(Em jl Ãa)

It is apparent then that II;,+ can be obtained from

II;, by continuing the discrete variable ko to continuous
values in the upper half plane ko —+en+i» and simul-

taneously setting ir=P The . mathematical details of
this procedure are given in several references. 's

In addition to making the analytic continuation pro-
cedure very explicit, the spectral representations are a
distinct aid in simplifying calculations as is seen in

Sec. V.

Perturbation Theory: Closed Diagrams

The main advantage of using the imaginary tempera-
ture functions II;,, with their periodic boundary condi-
tions in time, is that they can be calculated in a
systematic power series in the interaction strength
similar to the diagrammatic perturbation theory of
Feynman in vacuum quantum electrodynamics. The
retarded function II;;+ or the real-temperature Green's
functions cannot be so treated except in special cases."

Using well-known methods, "we can write II;,(1,2)
in the form

Tr[e'(i )&~( 0)8'(1)8 (2)]
II;;(1,2) =i, (4.14)

Tr[y'(ir) U(r, 0)]
where

yo(ir) = exp( —irHO)/Tr[exp( —irHO)] (4.15)

is the ensemble density for the interaction free system at
imaginary temperature, U(r, 0)=exp(ir80) exp( —irH),
and $,(1) is the current operator in the interaction
picture. Thus, by going to the interaction picture we
have reduced the statistical averaging to the computa-
tion of averages in the interaction free ensemble. This

"At absolute zero temperature there exists a similar expansion
for the real-temperature Green's function provided the Fermi
surface for the interacting system coincides with that of the non-
interacting system. See, for example, J. M. Luttinger and J. C.
Nard, Phys. Rev. 118, 141'7 (19M).

'9 S. S. Schweber, Ae Ietrodlctioe to Rercti&stic guuetum Fidd
Theory (Row, Peterson 4 Company, Kvanston, Illinois, 1961).

allows us to make use of the algebraic theorem of Kick
to expand II;,(k,co) in powers of the interaction strength
(i.e., in powers of Hi) and we are subsequently led to a
form of diagrammatic perturbation theory. ~

The prescription for calculating the Fourier coef6-
cient II;,(k,ko) is as follows: We draw all connected
diagrams leading from a current measuring vertex
(denoted by a cross) with incoming momentum k and
energy ko, and ending with another current measuring
vertex with outgoing momentum k and energy ko.
There are two types of current-measuring vertices cor-
responding to the two terms in the expression (2.13)
for the current operator. The first is a simple vertex as
in Fig. 1(a) and the second is a vertex involving the
additional emission or absorption of a photon as in
Fig. 1(b).The order of the diagrams is classified accord-
ing to the number of static Coulomb interactions
(dashed lines) and the number of transverse photon
(wiggly lines) interactions [see Figs. 1(d), (e), and (f)].
Additional quadratic vertices shown in Figs. 1(c) and
(g) arise from the quadratic particle-6eld interaction.
These diagrams represent the interaction of the photons
with the average charge density of the medium (repre-
sented by the closed loop) through the counter term
(A'/(. ")P„e'Z„n„/sM„, which, in turn, is necessary to
maintain gauge invariance.

Diagrams to 6rst order in both longitudinal and
transverse interactions are shown in Fig. 2, higher-order
diagrams in the Coulomb interaction in Fig. 3. The
meaning of these diagrams is clear. A measurement of
the k, ko Fourier component of the current is made
which excites the system from equilibrium producing a
particle-hole pair. (Particles are denoted by upws, rd
solid lines and holes by downward solid lines. ) That is,
a fermion in the equilibrium medium is scattered out of
a state leaving the state underpopulated by one, rela-
tive to the equilibrium distribution, thus creating a hole
in this state. The state into which the fermion is scat-

~ Developments similar to this are carried out in reference 6
and by T. Matsubara, Progr. Theoret. Phys. (Kyoto) 14, 351
(1955). Note that diagrams representing the interaction of par-
ticles with the average charge density of the medium are not
included in our work since we are considering an electrically
neutral system.
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(2) A factor

i—esZ „Z„v(sf) = —iZ „Z„4s,res/q' (4.18)

~ sist

(b)

for each static Coulomb line of momentum q connecting
particle lines of charges Z„and Z, , respectively.

(3) A factor, iD;P,
cs(b„—~,~,/~ )s

D,P(k, ko) =
)P~2

(4.19)

FrG. 2. Diagrams to 6rst order for H;;(k,co). (a} Zero-order
diagram; {b) 6rst-order diagrams in longitudinal Coulomb inter-
action; (c) 6rst-order diagrams in transverse interaction.

tered is now overpopulated by one and is represented
by the particle line. The particle and hole, thus excited,
interact with each other and with the equilibrium
medium (producing additional pairs) until the system
is deexcited by another current measurement. In a
two-component ion-electron plasma we represent the
electrons by thin solid lines and the ions by heavy solid
lines. The additional diagrams which arise in this case
are obtained by replacing electron closed loops in the
diagrams given by ion closed loops in all possible
combinations.

The contribution to 4jriII,, (k,ko) from each diagram
is calculated by writing:

(1) A factor C.o(y,Po) for each fermion line of mass
M„, momentum y, and energy po, where

~.'(f,po) = s!(Po f."), — (4 16)
with

4"= (ls'/2M. ) —~' (4.17)

i (4—sr)"'Z„e (4.21a)

(5) A factor for each double photon-fermion vertex

(e e')i4sresZ s/M„cs (4.21b)

(6) A factor of (—1) for each closed fermion loop.
(7) Delta functions conserving energy and momen-

tum at each vertex

—i(2~)'P&'(p —u'+q)b(po —Po'+qo) (4 22)

where the energy delta function is a Kronecker delta.
(8) All internal momentum and energy variables

are integrated and summed over according to the
prescription

for each transverse photon line of momentum k,
energy ko.

(4a) A current factor for each simple current meas-
uring vertex or single photon-ferrnion vertex

i (4—sr)" (Z„e/2M. c) (p~+ p ), (4.20)

where p, is the momentum of the incoming fermion (of
mass M„) and p,

' is the momentum of the outgoing
fermion.

(4b) A factor for each simple charge density measur-
ing vertex

)For exchange loops such as those in Figs. 2 (c) and 2 (d)
we need an additional convergence factor e'" ~o.j

('/o) 2
vo (2sr)'

where po is summed over all values

po isre/p, ——

(4.23)

(4.24)

(b)

{c)

FIG. 3. Second-order diagrams. (a) Basic equilibrium diagrams
from which diagrams for II;;are obtained by inserting two current-
measuring vertices in all topologically distinct ways; (b) diagrams
for II;; obtained from 6rst of diagram (a); (c) diagrams for II;;
obtained from second of diagram (a).

and ~ is an odd integer for fermions and an even integer
for bosons.

Some comments are in order concerning these rules.
In addition to the wave mechanical effects, the correct
quantum statistics of the fermions and boson photons
are built into the theory. Thus, exchange interactions
between holes and particles and between holes and holes
are included. These give a vanishingly small contribu-
tion in the extreme classical limit of high temperatures
and low densities. This limit is discussed in Sec. VI.

The vertex factor of rule 4 arises from the j.A term
in Eqs. (2.4) and (2.13), while the quadratic factor in
rule 5 arises from the eZ„p„As/M„cs term. It is well
known that if a relativistic Dirac theory for the par-
ticles is used there is only a linear vertex, the e6ect
of the quadratic vertex coming from higher-order
diagrams. The added complication in the present non-
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relativistic treatment is compensated by the fact that
the transverse interactions give rise to contributions of
order (o)/c ((o) is the rms velocity) relative to the
Coulomb contributions and can usually be neglected in
the nonrelativistic region where (v)/c((1.

Note also that in the rules given above, we have
already taken the limit i r ~ P which is part of the con-
tinuation procedure for going from II;; to 0;,+. This is
readily justiied on. closer inspection of the rules. We
must still perform the ana1ytic continuation which
takes us from discrete ko to continuous cv.

Since this theory uses the grand canonical ensemble,
a calculation is not complete unless the chemical po-
tential p, for species v is known to the order in the inter-
actions to which the calculations are performed. In the
present paper, since we are actually calculating the
lowest order effects of the interactions, it turns out that
we will need p, only to zeroth order:

exp'.o= e.(2orP/M )'". (4.25)

Corrections to p, and, in fact, to all thermodynamic
properties of the system can be calculated using the
Green's function formalism. To calculate p for the
electron gas, one uses the condition that the average
number of electrons per unit volume is n, and for the
electron-ion case the added condition of charge neu-
trality. We refer the reader to the references for details
of such calculations. ' "

CoQective EBects
I.omgifuChnul

The most important interaction effects in a plasma
arise from the polarization of the many-particle medium
by both longitudinal and transverse electromagnetic
disturbances. The treatment of these collective effects
insofar as they modify the longitudinal Coulomb inter-
action has been given in many papers" ~ and in various
contexts, so we only sketch the arguments here.

The propagator for the uncorrected Coulomb inter-
action, s(k) =1/k', is, of course, very divergent in the
limit of small momentum transfers. It is well known
that to obtain physically meaningful results o(k) must
be replaced by the screened interaction V(k, ko), where

o(lr)
V(h, ko)=, (4.26)

1+k 'g(lr, ko)

and Q(k, ko) is the proper polarization part. In lowest
order we have

(tw~-
(2w)' ko —$~o+$o

with f(&)= 1/(1+a~&).
"M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364

{1957)."J.Hubbard, Proc. Roy. Soc. {London} A240, 539 (1957);
243, 336 (1958).

& D. F.DuBois, Ann. Phys. (N. Y.) 7, 174 (1959).The notation
used here closely followers this reference.

It is instructive to write Eq. (4.34) as

U(k, ko) =o (k)/ ol.(k,ko),
where

(4.28)

4orcr I, (k,(o) = ((o/k') Q+ (k,oo). (4.30)

This relation and Eqs. (3.6) and (3.10) allow us to
compute the effects of many-particle interactions on
the propagation of longitudinal waves in a plasma.

In our modiied perturbation theory the corrected
interaction lines are emitted or absorbed in quantized
units. In the case where the resonance at the plasma
frequency dominates, the propagator for each line is
that for an elementary boson excitation which we
identify as the plasmon. We may regard the long-
wavelength macroscopic plane plasma waves as a
superposition of plasmons which are in phase and have
the same frequency. The damping of such waves is the
net rate at which plasmons disappear from the wave.
The condition for the dominance of the resonance is
found from the conductivity sum rule.

Transverse

The collective effects on the propagation of trans-
verse photons in the medium can be treated in a com-
pletely parallel way. First, we note that the "bare"
photon propagator D;P in Eq. (4.19), is singular for
values of k, near &c~ k~. For any diagram in which a
factor D,P ( ,irk)ooccurs, there are higher order diagrams
obtained by inserting any number of polarization
bubbles into the photon line as in Fig. 4(a'). We de6ne
a transverse proper polarization part c-'gr(k, ko)
X(8;;—kP;/k'). Then the renormalized photon pro-
pagator is

c'(ho —k;k;/k')
Dg(fry') =

ko' —k'c'+ Jr (lr, ko)
(4.31)

The rules for computing gr (8;;—k;k;/k') are the same
as for g except that the current-measuring vertices
have the factors of rules (4a) and (5). To obtain gr
we take the correct transverse projection by averaging
over polarizations, i.e., by multiplying by s'(8;;—k,k;/k')
and summing over i and j.The lowest order contribu-
tion arising from Fig. 4(c') is then

4jre' d'p 1- (p k)'-
gr'(&, ko) = p-

m' (2or) o 2 k'

f(h +o) f(k )—
n,'. (4.32)—

ko —$o+~+ 5o

oL, (lr, ko) = 1+k g(k, ko) (4.29)

is an eGective dynamic longitudinal dielectric constant.
If we analytically continue oz, (k,ko) to continuous
values of ko=co+io in the upper half-plane, the con-
tinuation is or. (ir,oo) the longitudinal dielectric constant
de6ned in Sec. III."From this it follows that the local
conductivity is related to Q" by
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+ ~ ~ ~

(o)

waves in the approximation in which only the simple
pair bubble diagrams are considered for Qr and Q.

We are interested in the high-frequency mode which
obeys the well-known dispersion formula

0'(k) =Q~'+k'(v')+O(k4). (4.36)

The damping in this case can be calculated from Kq.
(4.2'I). Using Eq. (3.10) we have for the normalization:

+ + + - + + + " + + ~ ~

(c}

&z, '= 1+O(k')

so that the damping is given by

y(k) = [1+O(k')j4n. Imo L, (k,Q).

(4.3'I)

(4.38)

+ ~ ~ ~

(a ')

For our later calculations of the collision absorption
of transverse waves we need the normalization factor
of Eq. (3.11).Using Eqs. (4.32) and (4.35) we 6nd to
lowest order in e'

Zr '=1+0(k') (4.39)

+ + + + 0 ~ ~

(b')

(c')

Thus, to calculate the lowest order damping of trans-
verse photons, we have

yr (k) =4s Li+O(k')$ Imor (k,a)r). (4.40)

FxG. 4. Polarization corrections to interaction propagators. For
the Coulomb interaction: (a) infinite series of corrections; (b)
equivalent integral equation; (c) proper longitudinal polarization
part. For the transverse photon propagator (a'), (b'), and (c')
are the corresponding transverse relations.

Near the points &o=&c~ k~ we again see that the
perturbation expansion of D;; in powers of gr fails,
and we must regard Eq. (4.31)as the correct propagator
in the medium. Ke may also write the expansion for
D;; in terms of a transverse dielectric constant

Dg(k, ko) =8;p(k, ko)/er(k, ko), (4.33)

~r(k, ko) = 1+gr(k, ko)/(ko' c'k') — (4..34)

The analytic continuation of ~r(k, ko) to continuous
ko=~+ie is er(k, cu) dined in Eq. (3.2) and the local
transverse conductivity is related to the coeScient of
the transverse proper polarization part'4

4'&0 r (k,cu) =Qr+ (k,co). (4.35)

This relation and Eqs. (3.7) and (3.11) allow us to
compute the properties of transverse electromagnetic
waves in a plasma of interacting charged particles. The
comments relating the quantized plasmon to the macro-
scopic plasma wave are immediately generalized to
establish the connection between the transverse photons
in the medium and the macroscopic transverse waves. '4

Properties in Simple Pair Approximation

We list here the results, which are all well known, for
the energy and damping of longitudinal and transverse

~ The conditions under which the resonance exhausts the spec-
trum in the transverse case are given in Appendix A of reference 24.

The remainder of this paper is primarily concerned
with the calculation of collision contributions to the
absorptive process, which we have just seen are either
zero or exponentially small in the pair approximation in
the regions of interest for transverse and longitudinal
electromagnetic waves. In the limit k'&(1 we have the
inequality k'(v')/aP«1. Since the absorptive effects are
essentially zero in the simp]e pair approximation, we
expect that even if the interactions are weak, the colli-
sion eHects are the primary contributions. The reactive
parts, i.e. , the energies (or frequencies) of the waves,
were 6nite in the simple pair approximation so that the
collision corrections are relatively small and, therefore,
of less interest.

Higher-Order Polarization Parts

Classical and IVonrelatieistic Lieuts

We now turn to the main task of this paper, which is
the calculation of higher order proper polarization
parts, or what amounts to the same thing )see Eqs.
(4.30 and 4.35)j, higher order contributions to the local
cond uctivities.

In Figs. 3(b), and 3(c) are displayed the primitive
diagrams for the polarization parts to second order in
the longitudinal interaction. Interactions via the trans-
verse photons fsuch as in Fig. 2(c)j are neglected since
we consider only the nonrelativistic limit.

It is convenient to distinguish between "classical"
diagrams which have a 6nite contribution in the limit
of high temperatures and low densities (or as k —+ 0)
and exchange diagrams which vanish in the limit. It is
clear on physical grounds that interactions which in-
volve the exchange of identical particles must vanish
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in the classical limit. It is also clear that all exchange
interactions involve interactions with hole lines, either
annihilation of a hole by an unrelated particle (ex-
change of an excited fermion with a fermion in the
medium) or the scattering of a hole line into another
state (exchange of two fermions in the medium). The
only nonexchange interaction involving holes is the
creation of a particle-hole pair and the subsequent
annihilation of the seme pair. Thus, we are led to the
following rule: Classical diagrams are those rohich possess
at least one time ordering of the interaction vertices in
tchick there is no more than one hole tine per closed loop
All other diagrams are exchange diagrams and vanish
in the classical limit.

A more useful and equivalent rule to determine
which primitive diagrams have this property is the
collapsing rule: In each closed loop of a diagram the
particle and the hole lines are collapsed into each other.
Those interaction lines which disappear in this process
are exchange interactions, and diagrams containing
them are exchange diagrams. Thus, diagrams in Fig.
3(c) are exchange diagrams while those in Fig. 3(b)
are not.

Applying the collapsing rule, we Gnd that there are
no primitive classical diagrams of first order. The com-
plete set of Gve second-order primitive classical dia-
grams are shown in Fig. 3(b) for the one-component
electron gas. For the two-component system we have
the additional 15 diagrams obtained from these by
replacing electron closed loops by ion closed loops in
all possible combinations. As we have noted (and see in
detail) the primitive perturbation expansion does not
converge due to the long range of the Coulomb inter-
action. If we include all polarization efFects in the
Coulomb lines of the diagrams discussed above, we
introduce the efFective interaction V. The calculation
of these diagrams is our major concern.

Examples of the calculation of higher-order diagrams
using the closed diagram rules as discussed above are
given in references 5 and 14. In the next two sections we
present the details of a simpler and more direct open-
diagram calculation method which is entirely equivalent
to the methods illustrated in references 5 and 14.

It should be clear how to generalize these arguments
to obtain the classical diagrams of higher order in the
interaction. A discussion of the size of terms in the
classical limit is given in Sec. VI.

V. CALCULATIONS OF DISSIPATIVE PARTS

The dissipative or absorptive properties of the system
come directly from the spectral function A;;(k,&u),

which was defined in Eq. (4.12). This function plays a
central role in this paper.

As we have seen, the diagrammatic expansion for II;;
consists of a series of closed diagrams, each starting
from a current measuring vertex and ending in another
current measuring vertex. In Fig. 3(a) we show the

VU UU

K7
FIG. 5. Cuts of second-order diagrams leading to two-pair

states. LThese are all the possible two-pair cuts of diagrams 3(b)
and (c).j
basic closed diagrams for the decay of radiation to a
two-particle state. All the diagrams needed for this
calculation are obtained by inserting into these basic
diagrams two current- (or charge-) measuring vertices
in all topologically distinct ways. The important dia-
grams for our work are shown in Figs. 3(b) and 3(c).
(The remaining diagrams contribute small corrections
to the one pair rates, as discussed below. ) To get the
imaginary part of a diagram one can straightforwardly
compute the entire diagram, for example, by the rules
in the previous section, perform the analytic continua-
tion, and then take the imaginary part. In recent
years, however, there have been developed powerful
methods for analyzing the analytic properties of Feyn-
man diagrams and directly obtaining the imaginary
parts for the much more complicated problems of
relativistic Geld theories. "

The spectral function A;;(k,&v), or equivalently—ImII;;+ (k,a&), is essentially the discontinuity in
II,;+(k,co) across a branch line along the real axis in
the ~ plane. In pictorial terms this is described in
terms of certain cuts across closed diagrams. In Fig. 5
we have shown all the cuts across closed diagrams with
a two-pair intermediate state which contribute to the
spectral function. All cuts of diagrams in Fig. 6 lead to
one-pair intermediate states. One can derive a set of
simple rules for obtaining these discontinuities, and
thus ImII;;+, starting from the closed diagrams. "This
approach has also been applied to the many-body
problem at zero temperature. "' The only diQiculty
with this procedure is that in higher order there may be

FIG. 6. Second-order
diagrams which have
cuts only involving one-
pair states. I These dia-
grams are derived from
the third and fourth
diagrams of Fig. 3(a).j

'~ R. E. Cutkosky, J. Math. Phys. j., 429 (1960).
"Langer's work (reference 8) emphasized the concept of the

quasi-particle which is represented by the completely corrected
one-particle propagator. This is useful near T=0 where a sharp
Fermi surface exists and the one-particle spectral function is
nearly a delta function for particles near the surface.
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Fro. '7. Complete set
of Grst-order open dia-
grams for two-pair 6nal
state.
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a very large number of closed diagrams, each of which
can often be cut in several ways to lead to a variety of
intermediate states. For instance in Fig. 5 we have
sixteen cuts leading to a two-pair hnal state.

A more direct method of calculating is suggested by
the form of Eq. (4.12). Let us rewrite it in the form

e;e;A;;(k,a&) = —e;e; ImII,;+(k,~)

=-', g y (el' J(0)lm)(mid J(0)IN)
f4 pW (5.1)

X (2~)&Ss(k—P„+P„)
X2~Lb(co —E +E )—b(s&+E —E )j.

The result is analogous to the familiar expression ob-
tained from the requirement that the scattering matrix
be unitary,

—Im&~ IE(~) I
~)=k &-l(~l&(~) l~) I'

X(2s)'h'(k —P +P„)2s8((a—E„+E ), (5.1a)

and it strongly suggests that the spectral function can
be written directly as a rate of an absorption process
in terms of amplitudes to the various possible 6nal
states, without 6rst considering closed diagrams. ~~ The

"Such a procedure was used in reference 23 to calculate the
collision damping of plasmons at 7=0.

signi6cance of the antisymmetrized energy delta func-
tions is clear: The 6rst term for positive co is propor-
tional to the probability of absorption where the system
is excited from an initial state e to a higher energy
state m, while the second term represents the emission
probability where the 6nal state m has lower energy
than m. Thus, the damping rates or conductivities which
we are computing take into account the competition
between absorption and emission as they should. If we
are to compute the damping of electromagnetic waves
in a medium, we must recognize that photons (or
plasmons) may be absorbed by the medium or emitted
and that we cannot distinguish between photons emitted
by the medium and the original photons. Near equi-
librium the low-energy states are more heavily occupied
than the higher ones, and absorption is greater than
emission. If, however, the energy distribution is in-
verted by some external mechanism such as occurs in a
two-stream problem, it may be possible to have a net
emission and therefore to produce grmvieg waves.

Taking the analogy noted between Eqs. (5.1) and
(5.1a) as a point of departure, we propose to calculate
the absorptive parts of the propagators directly from
open diagrams. %e have not proved this procedure in
general, and all the calculations reported here have been
veri6ed by doing them the usual way, but the analogy
is so suggestive that it would be very surprising if the
direct method were not correct to all orders.

In general, calculation with open diagrams (as op-
posed to closed diagrams) is much simpler and there are
fewer terms to consider. To use the same example as
above, if we are interested in the two-pair final state,
we have simply the absolute square of the diagrams in
Fig. 7 summed over 6nal states. A computational ad-
vantage of this procedure is that cancellations among
amplitudes can take place within the absolute value
signs. The reader can easily convince himself that
squaring the sum of the amplitudes in Fig. 7, that is,
connecting them up in all possible ways, gives exactly
four times the sum of all the cut closed diagrams in
Fig. 5.

The result is hardly surprising. The rate of absorp-
tion of radiation to a given 6nal state is the sum of all
the processes leading to that 6nal state. For the total
absorption rate one averages over initial states and
sums over all possible 6nal states. So far, the result
appears to be simply the standard quantum-mechanical
rule familiar from time-dependent perturbation theory.
There is, however, a difkrence which becomes apparent
when one considers a more complicated vertex. If there
are internal dummy energy variables, then these are
summed over discrete indices as in the closed diagram
rules in Sec. IV. After the internal sums are carried out,
the resulting expression is analytically continued to
continuous co~~+ie by the procedure described in
Sec. IV. An example of this procedure is given in the
next section.

The new rules for the contribution to 4~ ImfTI, and
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4x Imo 7 from the decay into a particular 6nal state can
be stated in the following simple way28:

(1) Write down all topologically distinct, open dia-
grams leading from the initial state to the 6nal state.

(2) To obtain the amplitude associated with each
diagram, write down the internal parts of the open
diagram using the rules for closed diagrams in Sec. IV.
For each internal line put the appropriate propagator,
for each vertex put the appropiate interaction, etc.

(3) Add all amplitudes to the same final state and
take the absolute square.

(4) Multiply by (2x)s times a momentum conserving
5 function and by 2x times an energy conserving 5

function antisymmetrized in the frequency variable, i.e.,

(2w)sP(k —P +P„)
X2x.[5(cs—E„+E )—5(—a&

—E +E )j.
(5) Multiplying by normalizing factors (1/2a&) for

external bosons (i.e., plasmons or photons). For the
longitudinal conductivity multiply by an additional
factor (to/k)s [see Kq. (4.30)j.For the transverse con-
ductivity multiply by a factor c'.

(6) Integrate over all final states and average over

initial states. We have the usual

(2x)s

but, in addition, Fermi particles get a factor 1 f(—&,)
and holes a factor f(&s), where f($s) = (1+e~&&) ' and
4= (p'/2rrs) —

f .
(7) When dealing with identical particles, some of the

diagrams will be exchange diagrams. The exchange dia-
grams require a factor (—1) and it is then necessary to
divide the rate by a factor (n)! for each type of particle
(or hole) where n is the number of particles (or holes)
of that type in the 6nal state. This allows us to inte-
grate over all phase space for each particle without
counting the same process more than once.

The whole procedure can best be explained by an
example. We give the expression for the two-pair
collision contribution to the absorptive part of the
transverse conductivity of an electron gas, which Kq.
(4.40) shows is essentially the damping rate for trans-
verse radiation. We include here the dynamic screening
of the interaction. This expression is used for calcula-
tions in Sec. VII. From Fig. 7 and the rules given
above, we have (with)'i=1)

4rr Imor(k, (o) =
4rre' d'pi d'ps dsps d'p4

rrrs (2x)s (2w)' (2rr)s (2rr)'

X[1—f(4)]f(b)[1—f(b)]f(b) (2rr)'P (k—p,+ys —p,+p,)

X2w['5(to kl+b 58+b) ~( to $1+4 53+b))
'1 1

X——V(ps —p4, Es—b)
2{'d 4

8' py 8 p2
+

-b—~—k(pt —k) 4+~ f(ps+k—)

V(pl P4 $1 f4)
e p3 8' p2+

-b—~—((ps —k) b+~—$(ps+k)-

&'pj p4—V(ys —ys, fs b) — +
-h —re —8(pt —k) b+~—$(p4+k)-

8' p3 $e p4+V(pi —ps, $i—b) +
-b ~ t(ps —k)—b+—~ k(p4+k)—

(5 2)

V e have used the notation

t(p)= (p'/2rrs) —p, &.=k(p.), (~.3)

and V(po —ys, $o—b) is the analytic continuation of

'8%e give here the rules for the local conductivities which are
related to proper diagrams. The complete expansion for Imn;;
or, equivalently, the external conductivities, which includes all
improper diagrams is found from the relations Ima ss =Imcrs [ sr!~,
Im~r'=Im~r

~
sr )~. In fact, if we apply the rules {2)-{7)to the

complete set of diagrams (including improper ones) these rela-
tions follow immediately; the extra factors (ss(~ and (sr!
arising from the polarization corrections to the incoming lines.

the screened interaction de6ned in Sec. IV. The factor
~~ takes account of the extra exchange terms which arise.
The analytic continuation procedure prescribes that ro

in this equation be understood as co+~&.
In the classical limit some simplification is possible.

Ke can separate the amplitudes into those that come
from an even or odd number of particle (or hole) ex-
changes in the basic diagram. The absolute square of
one set can be obtained from the other by a change of
variables so that we need consider, say, only the even
permutations, and then multiply the result by 2. This
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reduces the calculation in the electron gas case to an

integral over the absolute square of four amplitudes.
However, we shall show in the next section that the
order of a diagram in the classical low density limit is
not given by the number of interaction lines, because
of the dependence of the chemical potential on the
effective coupling constant.

VI. CLASSICAL PLASMAS

This section is devoted to a detailed calculation of the
conductivity in hot, classical plasmas. The calculating
rules of Sec. IV and V are put into a form that is espe-
cially convenient in this limit.

Practica/ Rules and Units

In addition to the external variables k and ~, the

electromagnetic properties of a classical electron gas
can depend only on the parameters, e, m, O, and n,. In
a two-component plasma, such as an electron-ion
plasma, there is one additional parameter a'=m/M.

A perturbation expansion for a physical quantity is
an expansion in powers of one or more dimensionless
parameters. The only dimensionless parameter that can
be formed from e, m, P, and n is e'io'"P which, in fact,
does not depend on the mass m. This parameter is
essentially the ratio of potential to kinetic energy per
particle. Actually, it turns out that the coupling con-
stant which arises naturally is (e'n"p)+' or X=kno/n,
where kn ——(4ire np)'io is the Debye wave number. This
coupling constant is the ratio of the volume per par-
ticle to the cube of the Debye length.

To obtain classical or semiclassical results we must
expand in powers of the quantum constant A. Conse-
quently, we want to choose units in such a way that k
appears explicitly. In any case, at very high tempera-
tures and low densities it is not possible to eliminate h
from all results. Since our unit of energy is P

—' and the
natural unit of frequency is the electron plasma fre-
quency Q„= (4re'nlrb)'", we immediately have (PQ~) '
as the unit of action (and, therefore, of k). Furthermore,
since the same constant relates momentum and wave
number, our choice of k~ as the unit of wave number
fixes the unit of momentum to be the thermal mo-
mentum P~= (no/P)'io. Of course, Pr jkD= (9Q ) '

We now rewrite the rules for computing amplitudes
from diagrams, entirely in terms of the dimensionless
parameters X, h, and n. We then obtain results directly
in terms of the physically significant parameters.

In these units the rules for calculating diagrams take
the following simple form. We let y and po denote
particle momentum and energy; h, and au are wave
number and frequency of the incoming radiation all
measured in our new system of units.

To each element in a diagram corresponds an appro-
priate factor:

(la) For each electron line carrying momentum y and

energy put po the electron propagator

oj(po —oy'+~.) .

(lb) For each ion line carrying momentum y and

energy po put the ion propagator

f/(po ——;~'y'+V;).

(2) For each Coulomb interaction carrying mo-

mentum fig put oX—/q'
(3) For each transverse photon line carrying mo-

mentum k'k and energy her put the photon propagator

co' —c'P k'

where c is the speed of light in units of Qo/kz&.

(4a) For each single photon-electron vertex put
i (X—"/c) e ~(y+ y') where 8 is the photon polarization

and y and y' are the initial and final electron momenta.
(4b) For each single photon-ion vertex put

—ia'(V -"jc)8 -', (y+ y').

(5a) For each double photon-electron vertex put
(e c')o) /c'.

($b) For each double photon-ion vertex put

(e 8')&PAL/c'.

(6) For each closed fermion loop put a factor (—&).

(7) To conserve energy and momentum put dei«
functions at each vertex

—who(2or)obo(y'+ if—y)5(Po'+go —Po).

(g) internal momentum and energy variables are
summed and integrated over

(2orh)'

with po iora, wh——ere ~ runs over odd integers for fermions
and over even integers for bosons.

The open-diagram rules in these units are obvious
by comparison with the form given in Sec. V. In the
classical limit the distribution functions for holes in
the final states become exp( ——',p'+ p,) for electrons and
exp( ——,'a'p'+p;) for ions. To lowest order we have

e" =P(2or)"9 '
co'= 5'(2~)'~'a9

This form is especially convenient for doing classical
and semiclassical problems since it is easy to see the
order of the diagrams, both in X and k. In doing classical
calculations we drop all terms which vanish as fi ~0,
retaining only those 5-dependent terms which are
necessary to obtain a convergent result. We see that in
the case of very high temperatures we are left with a
term proportional to ln(k).
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Although these rules allow us to write down a power-
series expansion for r;, in powers of X, the convergence
of this series for X 1. also depends on the value of the
external frequency ~. As is seen, in the limit as 4 —+ 0
certain energy denominators are proportional to ~ with
the result that the actual expansion parameter is l',/~
where F, is an effective collision frequency which is
proportional to P and is de6ned below. For co&l.,
which is the case for electromagnetic waves in a plasma,
a convergent result is obtained by considering only the
lowest order collision diagrams. ' For cv&&F„an inhnite
subseries of diagrams must be summed to obtain a
convergent result. This limit is discussed elsewhere.
The existence of two limits relative to a collision fre-
quency is well known in the theories of frequency-
dependent conductivity.

Classi6cation of Diagrams

The various modes of absorption can be classified
according to the number of particles in the final state.
Of course, aB amplitudes leading to the same 6nal state
add coherently. Let us examine some of these modes.

(i) One Pair Fi-nal State

A transverse photon cannot decay into one pair be-
cause energy and momentum cannot be conserved but a
longitudinal photon, or plasmon, can decay jn this
manner. The classical limit of the lowest order process
shown in Fig. 8(a) corresponds to the celebrated Landau
damping which is the classical. limit of the result calcu-
lated in Sec. IV. We repeat the classical calculation in

(b)

I IG. 9. Higher order diagrams. (a) One contnbutson to the
three electron collision process; (b) corrections to electron-ion
collision process, which contain an additional one (electron-hole)
pair intermediate state.

this section. The other diagrams shown in Pig. 8 are
typical higher order corrections, both in ) and A, to the
diagram in Fig. 8(a). The diagrams in Figs. 8(e) and
8(f) vanish in the classical limit. Figures 8(b), 8(c), and
8(d) represent vertex corrections to the Landau process.
We later show that though Landau damping is the
lower order decay mode it is not important for long
wavelengths. This is because of its unique exponential
dependence on wave number.

If the calculation is carried beyond the l.owest order
in X, then it is also necessary to correct the chemical
potential which, it should be recalled, is determined
separately from the condition on the density of the
system. However, we see that because of the limited
amount of phase space available for this decay, Landau
damping, with its vertex and p corrections, is not im-
portant for k((kD.

Frc. 8. Open diagrams con-
tributing to one pair or Landau
damping process. (a) Lowest order
Landau damping process; (b), (c),
(d) classical vertex corrections to
(a); (e) and (f) quantum vertex
corrections to (a).

(a}

(e)

(b)

(d)

(ii) Two Pair Final S-tate

The lowest order damping process involving colli-
sions, or collision damping, leads to a two-pair final
state. It is the chief result of this section that collision
damping, though a higher order process, is the dominant
damping mode for all but short wavelengths.

Figures 7 and 10 show the lowest order collision
processes without screening, All polarization correc-
tions must be summed and they yield the familiar
frequency-dependent screened interaction.

The process pictured in Fig. 9(a) is of higher order
in X than the processes of Fig. 7 (in fact, O(X')j, but
not of lower order in k', so that this and other higher
order processes can be neglected when the coupling is
weak. However, Fig. 9(b) while one order higher in X
than Fig. 10 also contributes an extra factor co '. Only
for sufEciently large a& (i.e., &u)I'.) can Fig. 9(b) be
considered a higher order correction. These eBects are
discussed below where we show that for electromagnetic
waves in a plasma or&&1', provided )«(1.
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(e) In examining the electron-ion plasma we also
neglect terms O(n).

(ii) Landau Damping

The lowest order dissipative process is the decay of
a plasmon into an electron hole pair (photons do not
decay in this order).

We immediately have from the rules Lsee Fig. 8(a))

(2n)3)' 1 d3p, d3p2
4g ImtTI. ————h'

k' 2cu X A' (2s)' (2n)'

XA'(2n)'b'(Ak —y,+y, )2n/5(Ao& —-', PP+-', P2')

b( A—a& —,' pp+—,'—pp)$ -exp (——,
' p22). (6.2)

FIG. 10. Open diagrams for decay into a 6nal state of
one ion pair plus one electron pair.

Calculations

(i) A pproximations

It is useful to coll.ect at the outset the various ap-
proximations which we make in the following calculation.

(a) First, we are considering the long-wavelength
limit (k -+ 0). In this limit the plasmon and photon are
well-de6ned excitations. Furthermore, we take the
limit in such a way that k/ru —+0 which is consistent
with the requirement co& F,.

(b) The weak-coupling approximation requires X&(1.
(c) We assume that A«1, and in order that we may

expand the quantum distribution function we also need
A'/X(&1. In ordinary units we require

k&'«n«k&3, (6.1)
where Akr ——pr.

(d) We assume that collisions can be treated by the
Born approximation. This means P '»Ae/A' or, equiva-
lently, e'P«kr '. The first form of the inequality states
that the mean kinetic energy must be large compared
to a rydberg. In a cooler plasma, the Born approxima-
tion is not valid and the situation becomes more
complicated. The classical distance of closest approach
for a repulsive potential is then roughly e'P, the dis-
tance at which the potential energy is P '. Only when
e'P becomes much smaller than kr ', the thermal
de Broglie wavelength, does the Born approximation
apply, for then e'P&&A(P/m)", or (e'/Ay)(&1, where
y= (mp) "'. To go beyond the Born approximation it
is necessary to sum all ladder interactions between the
colliding particles in the final state which is equivalent
to replacing the screened Coulomb interaction by a
suitable scattering matrix. This has the effect of re-
placing kz ' by e'P in the high momentum cuto6 of the
integrals for the electron gas when e'P»kr '. In the
electron-ion case no such classical limit exists due to the
possibility of forming bound states.

In the classical limit we obtain the simple result

—=[1+0(k')](-) e-"*(—) exp —
(
—

) . (6.3)

Higher order diagrams such as Figs. 8(b), 8(c), and
8(d) contribute vertex corrections to Landau damping.
Without going into the details of such calculations we
note that each of these diagrams has the same one-pair
6nal state and therefore the same limited phase space
is available. One hnds that to order X the result of
including these diagrams is to add to 4x Imo. r. a term
of the form

t'"') GO

X~
—

~

(2s.) ' dap C y,— exp( ——,'p')b(~ —y k), (6.4)
k

where C(y,a&/k) is a decreasing function of y and cv/k.
The function C is obtained as the result of summing and
integrating over the internal variables of these diagrams.
'9'e are, therefore, assured that the value of this in-
tegral differs from the right-hand side of Eq. (6.3) by
a factor 4'(co/k), which is a decreasing function of ~/k.
In addition, corrections to p. must be included to order ) .
Writing e»= e»0(1+Phd) we find that the one-pair rate
corrected to order X is of the form

where

I 1+A((s/k) j(7r/2)')'(oP/k ) exp( ——oP/k ) (6.5)

A (co/k) =A'((o/k)+Pbp (6.6)

——exp (6.7)

is proportional to ) and, therefore, small compared to
1 in the weak coupling limit. From here on we neglect
this small term.

Note that the corresponding contribution to 4~ Imor,
from the decay into one ion-hole pair is
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(iii) Collision, Damping

Ke discuss separately the electron-ion plasma and
the electron gas because the situations are somewhat
different. We present, in detail, the calculation for the
absorption of plasmons in an electron-ion plasma and
state the results for other cases of interest. We begin
with a discussion of the form of the screened interaction
in the classical limit. The details of the screening sects
in various frequency limits are treated at the end of
the section.

As we pointed out in Sec. IV, after summing all
polarization sects the Coulomb interaction is replaced
by an energy-dependent interaction V(p, Po), which in
our new units can be written as

V(P,po) =
P'+A'Q(p, Po) e'+Q(Wo)

where p= Aq, and pp=hqp.
To obtain results exact to order X in the two-pair

process it is clear from our practical rules that we need
include only the lowest order polarization process (of
order 1) in Q. Higher order polarization corrections lead
to contributions of order X' and higher. ln an electron
gas Q is the single electron-hole bubble [Fig. 4(c)j.
At zero-frequency transfer Q, in ordinary units, is just
kD . This is the familiar Debye screening factor.

In an electron-ion plasma Q is the sum of an electron
bubble and an ion bubble. Let us compute Q (p,pp, a);
we can then obtain the electron bubble by putting
0.= 1. From our rules we have

~)1/2 p
— 1 p )2-

ImQ'(p, pp, a) = —
~

—exp ———
~

. (6.9)
2l ap 2 ap&

To get Q we use the dispersion relation

dN 1
Qo(p, po,a) = — ImQQ(p, 24,a). (6.10)

Pp —24

Explicitly, we have

Re@(z)=1—z exp( —pz') dt, exp('2t') (6.12)

ImQ'(z) = (pr/2)'"z exp( ——,'z').

Electron-Ion Plasma

(6.13)

The dominant absorption mode for an electron-ion
plasma is shown in Fig. 10. The heavy lines represent
ions. Processes which involve absorption of radiation
by ions vanish as 0.~0. Absorption by an electron
with subsequent scattering by another electron is of
higher order in k' and can be ignored here though it is
the leading decay process in an electron gas with a
smeared out ion background.

From Fig. 10 we can immediately write down the
decay rate for plasmons. [We let $(P)=22P' —tl, for
eleCtrOnS and 22azp —tl; fOr iOnS, and alSO $(p,)= $,.]

Q'(P, po)a) = (22r) '" dl exp( —22242). (6.11)I—Pp/aP

We now see that Qo is only a function of pp/ap. Note
that in the scattering of a light particle from a heavy
particle po is small and the result can be independent
of n.

We give here a form for Q'(z) which is useful for
numerical calculations

(22r)' 1 d'p, dppp d'p, d'p,
4r ImcrL, =—A6

24o ll' A" (22r)' (22r)' (22r)' (22r)'

Xexp( —-'pa'pp') exp( —-', p4')A'(222)'tl'(Ak —Pl+ P2 —pp+ P4)

X22r[tt(A4o $1+52 b—+$4) tl( Aop hi+4 $3+54)g~ V(P1 P2 51 4) ~'

A

A' p4 k' ppX-- +V(pp —P4, $2—$4)T(pl), (6.14)
A —~(p,+Ak)+~, t —~,+g(p, —At) l

where the last term in the absolute value sign arises from the closed loops in the two 6nal diagrams of Fig. '10,
and where

T(4)=
d't 1 1 1 1

(22r)' i lo to—Ako —$(t—Ak) tp —pl tp (po —p4)p —p(t——Pp+P4)

+ (6.15)
tQ Akp $(t—Ak) to $4 tp —(pl —pp)p —$(—t—pl+ P2)

The sum over tp is readily performed by the method of contour integration (remembering that at this point ail
quantities with zero subscript take on discrete values). It is convenient at this point to take the long-wavelength



KI VELSONILI NSKY, ANDDuBOIS, G2392

e change of variables

6.16)

—+0 and to perform the c angelimit (k/or ~ 0) an

a
' '

lar ko —+or+is), thatalues o
'

bles (in particu ar,alues of the various variain to continuous values o eAVe then n, afi d after continumg o
'

alues o e

where

T(or) =
~ P3

S(or), (6.17)

S(or) =
1

r
—8(t—Ps) —kPs P4-

( )-f(~(t-P.))]
(2rr)s Pss, t

(6.18)
s —-' 'Pi. Ps,—g(t+Ps) —-,'a' Pi P.

+Ef(~)-f(~(t+P*))j
terms O(n') we get.Using the energy u

S(or)=1—P(lsor/ s . (6.19)

Eq. (6.14 discarding none

u ——,
' s, —-'P Ps)b(hor —u —a'v)u ,'Ps—P—s) dvb(v ——,

'd'Ps dsP&bs(Pi+Ps) dub(u

ro ortional to 5:ssential terms propKe can now rewrite

4sr Imor, = d'I'i d I'2

P', ' V(P u)$1 —()'( /uP)ji'. 6.20P '
i
V(F„n'v)is 1+V s,u2

n
e rations. (Qe no

2

e angular I'3 integr . o

1 u' 1ae'
dPP' du— dvb(Aor —u —n'v exp —— '

I' (. , (
1 (P'+1)'

nsv/P)+A'P(av/P) rrs r P'+ Pass (M/P) ~'

kr Imol, =
12K (A

v I'=: we havef let E=hq and nvThe I integral is
' ' . etrivial. I we e

2 2+1 1 or ) (q 1)' 1——rrs'q' exp4 ) (, „„m Imor. =
8

out to us by A. Ron) to yielde s i be on
' ' (this was pointed out to us ye s i be done analytically, isThe s integral can be on
'

is

X

(6.22)6s exp

'+'r +r + )j )Xexp L
—xs (asPs a

tions of k. It is now simple to ot ra
' ' ' '

1. One can also average over the directions o
YVe obtain the re

The I'~ integra
'' t ratio is trivial. ne can

integrations an th

where

(6.23)
2 q q

nd
' ' '

alculated in exactlynductivity is ca cu
toexce t that at the star i

o1the transverse poaverage over e

t e screening is unimp ortanthi h frequencies the scrAt very ig r t e scr

(6.24
and

or&)1), )It,= ln(4e /Ilor) (

C=0.58. At frequenciesEuler's constant, C= .

h llision frequency
with t e pasm

we haver with the co is'large compar
'

h
K,=ln(1.06/rrs).

e,e, -+ -', (b;,—k;Is;/ks .

lv if we then aver-'m lifies considera y iThe expression simp i
age over the directions of

11 1 ors) q'+1
E

'r +r l&'+p( /c)l'
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The result is

Imoz = Imo'J. (6.25)

lO'

The conductivity is related to the width for decay y
of the radiation by Eqs. (4.38) and (4.40). The relation
of Eq. (6.25) states that in the limit of long wavelengths
an isotropic system responds in the same way to trans-
verse or longitudinal excitations.

Ke can now express the result of these calculations
in the simple form (in ordinary units):

lO'

l07

lO'
lO-'0 lO-'9 lo-l8

I/n
lo-i7

Qr knm Q~' -C, ((u)
47r Imo, , (k,cv) = ln g;;. (6.26)

6v2W» ~ a pA

FIG. 12. Curves of constant A=kg//e (solid lines) and o =pWp
(dashed lines) as functions of T and e '.

We obtain the contributions to the decay widths due
to collision damping by use of Eqs. (4.38) and (4.40).
The result for the damping of longitudinal oscillations
in an electron-ion plasma, for example, is

Q„ko' -C.(Q„)-
ln

6%M" n PAQ,
(6.27)

0.5

k

k~

O.R

O.l-

Collision

0
so'

I

&04
t

10
I

10 io'

FIG. 11.Values of k/kD for vrhich Landau damping, Eq. (6.3},
and collision damping, Eq. (6.27a}, of electron plasma oscillations
are equal, plotted as a function of A=kg//e for various values of
a =PRO„. In the strongly damped region, Landau damping alone
is greater than 0.30„.In the Landau region Landau damping is
larger than collision damping. In the collision region the reverse
is true.

This is to be compared with the contribution from
Landau damping given in Eq. (6.3). It is clear that for
long wavelengths the contribution from Eq. (6.27) is
far more important.

In Fig. 11 we plot for various values of X =kn'/e and
o =phQp those values of k/kD for which Landau damp-
ing and collision damping are equal. Ke somev'hat
arbitrarily pick k/ho=0. 3 as the maximum value of k

for which plasma oscillations are well de6ned, for when
k is greater than this value, y„, e,„/Q~)0.1, and the
plasma wave decays in a few oscillations. From this
6.gure it can be seen that the region to the right of the
curves, where collision damping dominates covers a sig-
nihcantly larger range of temperatures and densities
than the region to the left of the curves where I.andau
damping dominates. Im Fig. 12 we plot curves of con-

stant 0 and ) as functions of T and n ', which allows
us to relate the regions of Fig. 11 to values of tempera-
ture and density.

For multiply charged ions (Z&1) the results in
Eqs. (6.26) and (6.27) are changed in two ways: There
is an over-all factor of Z and the argument of the loga-
rithms become functions of Z. The argument of the
logarithm is changed because the screened interaction de-
nominator in Eq. (6.20) is changed to

~
q'+1+ZP(z) ~'.

In a previous version of this paper" we overlooked
the fact (which follows directly from the rules of the
original paper) that the lower diagrams of Fig. 10 were
of the same order as the upper diagrams in the classical
low-density limit. %ith this correction we are in agree-
ment with the v ork of Dawson, Oberman, and Ron'
and Perel and Kliashberg. '

&u and k Depeedemee of Higher Order Diagrams

We have considered all diagrams of order ) in our
present calculation. The remaining diagrams are all
higher order in X and A. It is still necessary to show that
the k' and ~ dependence of these higher order diagrams
does not a6ect the convergence of the series in the
limit k ~ 0 for the frequencies of electromagnetic waves
in plasmas.

The isotropy of the system implies that the con-
ductivities and damping rates are functions of k'. In
calculations of higher order diagrams the expansion of
energy denominators in powers of k/ao is again carried
out. It then becomes clear that there is no dependence
on k ' since no inverse powers of k' appear in the
formulas for 0;;.

Thus, it appears that the rates or conductivities be-
have as constant+0(k') in higher order terms. In
the electron-ion case this would lead to a X~ correction
to the constant term we have already calculated. In
the electron gas, since current and momentum are
proportional, one expects that electron-electron inter-
actions which conserve momentum do not eGect the
conductivity in the limit of long wavelengths. It would
then appear that in higher orders the increased sym-
metry of the amplitude leads to additional cancellations
as in the second-order calculation above. This implies
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that the rates are proportional to k' in higher order
contributions to the electron gas conductivity.

Likewise, the co depend. ence of higher order diagrams
causes no difFiculty at the frequencies of electromagnetic
waves in plasmas. Using the well-known conductivity
formula,

4pr Imo;, = (Q,'/pr) I'.(rp) 8;,, (6.28)

we can identify the collision frequency I, in the
electron-ion case as

Q, knP C.(cv)
F,(a)) = ln

6VZpr'" rt Phco
(6.29)

For values of co&F„higher order diagrams such as
those in Fig. 9(b) become important. These diagrams
are characterized by having successively greater num-

bers of one pair intermediate states each of which con-
tributes a factor F./&o to the amplitude. If we are
interested in the static (o&=0) conductivity this sub-
series of diagrams must be summed and would be ex-
pected to yield 4p Imo;;(0,0) b,,IQ~'/F, (0)]. Details
of the cakulation in this limit are reserved for another
paper. However, for the frequencies of electromagnetic
waves in plasmas, rp&Q„ the requirement F./prC(1
reduces to 1))(knp/6V2pr ppp) lnLC, (cp)/pItppf. This in-

equality is satis6ed since we are assuming values of n
and P such that the inequality (6.1) holds. A similar
argument can be made in the electron gas case.

The fact that the two lower diagrams of Fig. 10 con-
tribute to ordex 'A is due to the fact that in the low
density limit each closed loop contributes a factor
exp(8ts) ~X ', which cancels the X arising from the
extra interaction. In the high-density electron gas,
which we discuss in the next section, the coupling enters
only through the interaction line, and these diagrams
are of higher order.

Pr=h/arp, rt '=47rrpP/3, n=[2/9prl'tP,

and eneIgies in terms of the Fermi energy, ~~. The ex-
pansion parameter ) is again a dimensionless ratio of

VII. HIGH DENSITY ELECTRON GAS

Preli mi rory Remarks

In this section we discuss brie6y the application of
the foregoing techniques to the high-density electron
gas. This system is intrinsically quantum mechanical,
and the sects of exchange are important. Ke consider
the limit of zero temperature, which merely restricts
the usefulness of our results to temperatures for which
P ' is small compared with the Fermi energy,
=pr'/2m, where pr is the Fermi momentum.

The natural system of units in this case is the one
which expresses momenta in terms of the Fermi
momentum

the potential to the kinetic energy:

P.E. e'/rp
CX oc r~

2K.E. ftP/mar p'

where r, =rp/ap and ap is the Bohr radius, ap=l'/mp'.
In terms of r, the Fermi energy takes the form e~
= (ar,) ' in rydbergs.

Propagator techniques have been used extensively to
study the behavior of the quantum electron gas,"—"
especially its equilibrium properties. The solutions ob-
tained as modi6ed perturbation expansions in powers
of r, are valid only for small r„say, r, &1, which implies
that they are not valid for a quantitative description
of the electron gas in a metal, for which r,)2.

Classiftcatiort of Diagrams

Diagrams for the construction of II;,. still can be
classi6ed in terms of the number of pairs in the 6nal
state. At zero temperature the particle-hole concept is
well known, and the distribution functions become step
functions,

f(&.) ~q( („)=q(t —p'/2m), —

which restrict particle momenta to values greater than
pr and hole momenta to values less than pr. The
general problem (which does not arise in the present
calculation) of calculating corrections to the chemical
potential p, is simplified in this limit, as has been shown

by Luttinger and Ward. "The correct prescription is to
use p, o, the chemical potential of the noninteracting
system, and to omit certain anomalous self-energy cor-
rections to the Fermion lines.

The lowest order contribution to II,; comes from a
simple pair loop. In the case of transverse photons there
is again no absorption in this order because momentum
and energy cannot be conserved. For longitudinal
plasmons, the absorption is a function of the momen-
tum q. To decay into a pair the plasmon energy Q„(q)
must be less than the maximum pair energy of the same
momentum, prq/m+q /2m. The critical momentum for
decay, q„ is determined from the relation

Q„(q.)= (prq. /m)+ (q,'/2m) .(7.1)

For q q„energy cannot be conserved for plasrnondecay
into a pair and, therefore, the plasmon can be studied
as a unique stable excitation of the system in the pair,
or random phase, approximation. For q&q„on the
other hand, the pair decay process is so strong that the
plasmons are entirely lost in the continuum of pair
states. The details of this argument are given by
FerrelP' and DuBois. ' Vertex corrections to the single-
pair final-state diagrams do not change this result.

As in the classical case, the important absorptive
contributions come from the two-pair final states,
properly corrected for collective sects. The diagrams

~ R. A. Ferrell, Phys. Rev. 10i, 450 (1957).
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are those in Fig. 7, including the exchange diagrams.
The contributions to plasmon decay in this order and
including exchange have been calculated previously by
DuBois' using open diagram methods.

The calculation of the contributions to photon decay
from the two-pair 6nal states is similar to the calcula-
tion of plasmon damping. The calculation naturally
divides itself into two parts, differentiated by the nature
of the 6nal pairs, namely, the two-free-pair 6nal state
and the pair-plus-plasmon (or bound-pair) final state.
The plasmon-pair final-state contribution deserves some
attention since it has recently been proposed' that an

experimental measurement of the photoabsorption cross
section of a metal could yield some information on the
collective modes.

To evaluate~ Imfrp, we start from the diagrams of
Fig. 7 and obtain the analytic expression which is given
in Eq. (5.2). However, to calculate decay into a pair
plus plasmon we need retain in the square of the total
amplitude in Eq. (5.2) only the sum of the squares of
the bracketed terms because the remaining cross terms
contribute only to the two-free-pair decay process. The
symmetry of the integral may now be used to simplify
the expression. %ith 5= 1, we have

4me' d'pt deps d'ps d'p4
4s Imo r(k, ro) = (2~)'~'(k —et+ ps —ps+ p )

rrP (2s.)' (2s)' (2s)s (2s)'

X2%L5(4o fr+$2 $3+&4)—&(—te —gt+6 6+4)]I 1—f(h)]f(6)l 1—f(b)]f(84)

1 %re' 2
pop O' P2X— +

2~ (us —Ii4)'+Qe(ns —p4, 6 $4) -51 & f(pl k) Er+~ $(ps+ k)-
(7.2)

In th dipole approximation (k ~ 0) the propagators in Eq. (7.2) reduce to —(1/to) and (1/to), respectively,
simplifying the second factor to (q 8)'/oP, where q= ys —pt. With a change of variables to q= y&

—pt, p= —', (pt+ ps),
r= s (ps+ y4), s= ys —p4, and the trivial integration over s we have

kr Im(rr(k, c0)=
eA&'(2s )'

yq qr p'0
rPq d'p d'r 8I to+ — —h —to+

m m fS fS

The symmetries of the integral and the properties of the distribution functions can be used to rewrite this integral
in the form

4~ Im(rr(k, ce)=-
ePto'(2s.)'

~'q d'p (e q)' ~N Iq'+Q'(q, g) I 'f(4+.s)L1—f(4-:.)]

q rq q. r
Xg(N)L~(~+8+@ «I&) &(m I —pql—re)]—d'r D f(6+,,)]f(—6 i,) h I—

I

—~ I+, (7.4)
m) m

where g(N) = L1—es"] ' is the boson distribution function. The integral over r in Eq. (7.4) can readily be shown to
reduce to (2a/e') ImQ (q,e) and Imo r is then given by

kr Imor(k, to)= d'P d'q (e q)'f(ps+i, )I 1—f(&~i,)]
eP(o'(2a) '

p. q
X dgg(e) bI u)+ +e

I

—bI &o— ——I
I

ImV(q, l), (7.5)
es i

where we have used the de6nition %e identify the plasmon as the 6-function part of
ImV(q, u) in Eq. (7.5) and we remark that caution
must be exercised in identifying this piece for, as dis-
cussed above, ImQ'(«, N) =0 only if q &q„and only for
small momenta is there a plasmon delta-function con-
tribution to ImV(q, l). %e, therefore, limit the q inte-
gral in Eq. (7.5) to values less than the critical mo-

V(q, l) =
q'+ReQ'(«, N)+i ImQe(«, N)

and the result

(4s.es)' ImQ'(q, u)
+re' ImV(q, l) =—

Lq+ReQ («,I)] +I ImQ (q +)] ~ lt should be clear that at T=O yr=47r Im~r(h~), where
~=he, is just the absorption rate of external photons by the= —ImQ' q,l V q,l (7.7) medium.
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mentum, q, . The part of 07 contributed by momenta
greater than the critical momentum should be grouped
with the remaining two-free-pair terms, which we have
dropped, for a calculation of the free pair contribution
to the absorption of photons.

In the region q&q, the plasmon contribution to
ImV(q, u) is

Im V(q,u)oi„,„=(4»e'/q') l
—sQ„(q)/2]

)((bLu —Qo(q) j—BLu+Qj, (q)1}. (7 8)

At zero temperature the boson distribution function in

Eq. (7.4) restricts u to negative values so only the
second delta function of Eq. (7.8) remains. The fermion
distribution functions limit the integration to regions
in which p q/m &0. This means that only the first of
the delta functions in Eq. (7.5) can contribute. If we

average over polarizations and express momenta in
units of p» and energies in units of e» we obtain the
simple expression

0'p

4s Imar ———d'p d'q b(ai 0„—2p—q—q')
Cd

I pl &1, I p+ql &1, q&q. =Q./2,
where

a o ——e40„p»'/12/m,

and we have expressed q, in terms of Q„using Eq. (7.1)
in the limit of smaH q, . Except for the trivial average
over polarizations this is Kq. (55) of Tzoar and Klein, '
but these authors neglected to cut ofF the plasmon
momentum at q, . For q,((1 integral can be evaluated
to give

so oo(hai)
4n Imo r =— [0„' (dai)'j—if 0&hoo&Q»,

4 ( 3

Imog ——0 if her &0~,

where ~=a)—0„.
The effect of introducing a cuto8 at q, may be seen

by looking at some numerical results. Both calculations
predict a threshold. for this process at the plasma fre-
quency. The cross section then rises to a peak, which
with cutofF comes at ra=$0» and without cutofF comes
at a slightly higher frequency. The values of kr Im(a/o a)
at these maxima are: for »,=1(0»0.6) 16 without
cutoff and 0.31 with cutofF, and for r, =2(0»=0.8) 8
and 0.31. The case presented in Tzoar and Klein's
paper is 0~=2, corresponding to r,= j.0, for which the
perturbation theory does not converge and the results
can have no quantitative signihcance. If we apply our
formula at this value of r„we still find the peak re-
duced by the cuto6. In addition, one would expect
that the plasmon resonance would be greatly broadened
by collision eGects which have not been included here.
Strictly speaking, one must consider all contributions
from the two-pair final states, which include plasmon-

pair states (as mentioned above), to see if the plasmon-

pair peak can be detected.

VIII. SUMMARY AND CONCLUDING REMARKS

Ke have seen that two-particle collision sects,
which are outside the random phase, or simple pair,
approximation, are the principal damping mechanism
for both transverse and longitudinal electromagnetic
waves in weakly interacting plasmas. This is because
the one-particle damping process of the random phase
approximation is zero in the transverse case and ex-

ponentially small for k(&kD in the case of plasmons.
The essential significance of the Landau damping of
plasmons is to provide a short-wavelength cuto6
(k&0.3kii) below which plasmons (and plasma oscilla-
tions) are strongly damped and thus poorly defined.
For longer wavelengths the collision damping is, as we

have seen, the principal mechanism by which plasmons
transfer energy to the single particle motion.

The presence of discrete positive ions has two irn-

portant effects on the collision damping rates (in con-
trast to the weak eiFect on Landau damping). First,
and most important, the electron-ion collisional process
produces a finite damping in the k~0 limit in the
electron-ion plasma while the e6'ect of electron-electron
collisions is proportional to k . Second, the inclusion of
ion dynamics introduces the factor (q'+1)/(q'+2) in

the integrand of Eq. (6.23). If ion screening were neg-
lected this factor would be replaced by 1. Since the
energy (or frequency) transfer in electron-ion scattering
is small the ions have time to respond and contribute
significantly to the total screening. This e8ect was first
correctly calculated by Perel and Eliashberg' who, how-

ever, did not evaluate the integral analogous to the s
integral of our Eq. (6.22).

Our calculations of the damping rate or the equiva-
lent local conductivity are exact in the limit k —+O,
with k/or&&1, in the case of high temperatures (kT&)1
Ry) and low densities. To extend the exact theory be-
yond the Born approximation and therefore to lower
temperatures is relatively straightforward for the elec-
tron gas where one must sum over all ladder diagrams
between the colliding particles. This has the e6ect of
replacing kr ' in Kqs. (6.28) and (6.29) by the classical
distance of closest approach e'I3 in the case e'P)&kr '.
In intermediate regions a detailed calculation must be
carried out and the result will be more complicated. For
ion-electron collisions there is no distance of closest
approach and there is no completely classical limit. To
go beyond the Born approximation in this case one
must take into account the bound states of electrons
and ions in a plasma, a problem which has not yet
received a satisfactory solution.

The field-theoretic approach allows us to give a com-
plete perturbation theory of the quantized wave ex-
citations in a plasma. Macroscopic electromagnetic
waves are coherent superpositions of plasmons or
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photons which are emitted or absorbed in quantized
units. Thus, for example, Landau damping is just a
linear process in which the collective plasmon gives up
its energy to a single electron.

We should point out that our perturbation theory
may be extended to treat quadratic and higher terms
in the amplitude of macroscopic waves, i.e., we also can
develop a perturbation theory in the wave amplitude.
We can include on the right side of Kq. (3.1) terms with
higher powers of E whose coe%cients introduce open
diagrams such as Fig. 13 representing the interaction of
two plasmons ending in a single-pair state. Such a
process may be thought of as a nonlinear Landau damp-
ing and appears to be related to the recent work of
4lontgomery and Gorman, " Again it appears that
nonlinear collisional processes is more important than
the nonlinear Landau damping. These nonlinear effects
may be very important in limiting the growth of waves
in instability problems. As we pointed out in Sec. V
the phenomena of unstable growing waves can be
understood in our approach as the net emission of
quanta in the case of certain nonequilibrium distribu-
tions of states. Thus, the theory given here and the
extension of it to nonlinear terms should be a powerful
tool for studying both the general conditions for growing
waves and the nonlinear processes which limit them.

Several rather straightforward problems remain to
be treated in this theory. One is the calculation of the
frequency shifts due to collisions. This can be easily
carried out starting with our expressions for 4s Imo (1t,ru),

and calculating 4w Reo (lr, a&) from the dispersion relation

co Reo L, (h,(u) = —P des'

which follows from Eqs. (4.10) and (3.3). The fre-
quency shifts are then found using Eq. (3.6). We have
not carried out this calculation since the frequencies in
the simple pair approximation are large (in contrast to
the damping rates) and collision effects will thus give
small corrections in the weak-coupling limit. It would
also be interesting to include the effect of a static mag-
netic 6eld. In the case of weak 6elds where the classical
orbit radius is much greater than k~ ', the magnetic
6eld can be incorporated using a %KB approach. The
effect of collisions on the properties of the acoustic ion
oscillation mode in a two-temperature plasma also re-
mains to be studied.

The return to equilibrium of a plasma is a problem of
considerable current interest. Recently, Pines and
Schrieffer' have proposed a set of coupled equations
for electrons and plasmons which describe the return

O' D. Montgomery and D. Gorman, Phys. Rev. 124, 1309 (1961).

FIG. 13.Nonlinear process involv-
ing absorption of plasmons.

k-q

to equilibrium of an electron gas. yld and Pines"
have shown these equations to be equivalent under
certain restrictions to the equations of Rostoker and
Rosenbluth, ~ Balescu, "and Lenard. "However, in the
work of Pines and SchrieGer the mechanism by which
long-wavelength (k«kn) plasmons give up energy to
electrons is the Landau damping process which, as we
have seen, is less important in this limit than collision
damping. It appears then that their equations must be
rnodi6ed to take the collisional process into account.
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