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A lower bound is given for the high-energy limit of the invariant scattering amplitude F(s,t) which implies
that lim~„~ tis, tl

~
&Oit ) for all values of the momentum transfer variable s. The derivation of this bound

is based upon some general notions of dispersion theory. The situation in potential scattering is discussed
brieQy.

ECENT experiments on the diGraction peak in
high-energy p-p scattering' give us information on

the high-energy limits of the scattering amplitude as a,

function of the momentum transfer variable. Therefore,
it is of great interest to obtain theoretical predictions
for the asymptotic behavior of scattering amplitudes on
the basis of the general notions of relativistic dispersion
theory. Using unitarity and double dispersion relations,
Froissart' has derived an upper bound for the physical
amplitude; considering the elastic scattering of spinless
particles he 6nds limr „~F(s,t)~&Ct(lnt)s for s&0,
where F(s,t) is the invariant amplitude, t'" is the total
energy, and —s the square of the momentum transfer
in the center-of-mass system.

It is the purpose of this note to give a corresponding
lmeer bound for the high-energy limit of the amplitude.
We show that

lim ~F(s,t)
~
&O(t ') for s&0.

Our proof is based on the general notions of dispersion
theory. If there exists a leading Regge trajectorys
X=n(s) such that F(s t) ~B(s)t t' fort-+eo, then our
result implies that Rea(s) & —1 for real s&0. If applied
to p-p scattering, our limit is in agreement with present
experiments'which cover the region —5(BeV/o)'&s&0;
however, the experimental errors are still very large and
further experiments are certainly of greatest interest.

In order to have a simple example, we consider
elastic pion-pion scattering and ignore isotopic spin
variables. Then we have one invariant amplitude F(s,t)
which is a real analytic function and which is regular
except for the usual branch points. We assume that
F(s,t) is bounded by a polynominal in t. Then there is
a positive integer E such that the function4
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I " 1 (
F~(s,)t) =— du Qgi 1+ A~(s, s), (1)

4„~ 2q'- 4 2qs

with 4q'=s —4ys, is regular for Reh&$ and dehnes
there a unique interpolation of the partial wave ampli-
tudes Ft(s), t= even/odd. We have

A~(s, e) =A g(s, e)aA „(s,u), (2)

and the asymptotic behavior of the absorptive parts A &

and A determines the singularities of F+(s,X) for
Re)«N. At 6rst, we assume that there are only isolated
singularities so that we do not encounter a natural
boundary; i.e., a line of singularities which completely
prevents the continuation of F+(s,X) to the left half of
the X plane. On the basis of these assumptions, it has
been shown by one of us (R.O.)' that F~(s,h) cannot
have s-independent poles for Re'A&X. Let us now
assume that

iA~(s, e)i &0(s ' '), e&0 for e —+ ~. (3)

Then the representation (1) for F+(s,h) yields an
analytic function for Re) )—1—e. The Legendre func-
tion Q, (z) has, single poles at negative integer values
of ); we have

lim Q, (z) = F„ t(z),

and the function F+(s,X) could have a pole at X= —1,
such that

lim F~ (s,) )= de A~(s,z).
X+1 2zq'

However, according to the results of reference 5, we
know that F~(s,) ) cannot have an s-independent pole
like the one at ) = —1. Hence, either the residue

R~(s) =Et(s)wR„(s) = ds Ag(s, u)

vanishes identically, or the bound (3) is not valid and
we have

IA+(s, e)~ &0(e ') for '~ ~ (7)

The absorptive parts A~(s, t) and A (s,u) are analytic
functions of s which are regular on a cut plane for all

' R. Oehme, Phys. Rev. Letters 9, 3N (1962).
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t,N&4p'. Because of the assumption (3), the residuum

(6) has corresponding analytic properties. It must be
identically zero if it vanishes for all s in some small
neighborhood. But we cannot have E~(s)=0 and/or
E„(s)—=0 if the reaction in the i and/or the e channel is
elastic. Suppose we have elastic scattering in the
t channel. Then the optical theorem is applicable, and
for t&4p, ' we find

.4 (O,t) = (t(i—4u')7'Imo. "'(t)&0,

which implies that E~(s)$0 and, because of (7),
~
A&(s, i)

~
&O(t ') for t -+ ~. Thus, we conclude that

corresponding to Eq. (1):
CO

F(v, X)=- chQ„C1+——A, (,t),
2v 2v

and

1 " p(v', t)
A, (v, l) = p(—i)+ —d v'

lr v v

V(r) = dt p(/) exp( —t'"r).

If V(r) has a r ' singularity for r —+ 0, i.e., if

(12)

(13)

limg „~F(s,t) (
& O(t-');

for real s&0, this is the result which we have mentioned
in the introduction. So far we have assumed that there
is no natural boundary which prevents the analytic
continuation into the neighborhood of ) = —1; but
if there should be such a singularity, then our bound (9)
holds trivially.

If the t channel is elastic, we can assume that the
s channel has the quantum numbers of the vacuum so
that F+(s,X) has a pole ) =no(s) corresponding to
the leading vacuum trajectory. We have A+(s,v)
=O(v"«'&) for s-+ ~ and the representation (1) de6nes
a regular function for Rek&Reao(s). Our bound (9)
implies that

Rene(s) & —1.

Especially, it follows that for physical values of the
momentum transfer s we have lim, „ao(s)&—1.'
Once we adopt the notion of a leading vacuum tra-
jectory, our bound (9) has been automatically general-
ized to all reactions for which this Regge pole determines
the asymptotic behavior, whether they are elastic or
not. The inequalities (9) or (10) are mainly of interest
in the physical region of the momentum transfer vari-
able s, but they are also applicable for other points. A
better lower bound for the amplitude is available for
s near a two-particle threshold, like s=4p, ' in our
example. It follows from the representation (1) and
the unitarity condition that for s~ 4p, ' there must be
at least one pole of F+(s,X) for Reh& ——,'.'

%e would like to add a few remarks concerning the
validity of our arguments within the framework of
potential scattering. We consider only such superposi-
tions of Yukawa potentials for which a dispersion rela-
tion is valids so that we can write down a representation
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Khuri, and S. S.Treiman, Ann. Phys. (N. Y.) 10, 67 (1960).
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then the residue E(u) corresponding to Eq. (6) cannot
be identical zero, because we have R(—~) WO, and
hence, there must be at least one Regge pole with
Rea(v) & —1. This is a well-known result for Yukawa
potentials, 9 because there is always a trajectory with
a(—~)= —1 and da(v)/dv&0, for real v (0. But what
happens if V(r) is regular at r =0 so that

dtpt =OP

Then R(—~)=0, and since the amplitude F(v, t)
approaches the Born approximation for v —+ —~, it
can happen that

Since we have no crossed channels in potential scatter-
ing, the residue E(v) of the pole at X= —1 could vanish
identically. However, if it does not vanish, then there
must be a Regge pole with Ren(v)& —1 such that its
residue vanishes for v ~ —~.

cYote added in proof After this pap. er had been sub-
mitted for publication, we saw a Letter by V. N. Gribov
and I. Ya. Pomeranchuk [Phys. Letters 2, 239 (1962)7
in which a result analogous to ours has been obtained.
However, these authors give a complicated proof based
upon a term in the discontinuity of F(s,X) involving the
double spectral function p ~(N, t), which is not present
in most approximation schemes. Our derivation uses
only simple crossing, and it does not even make actual
use of the full double dispersion relation. We believe that
our approach is sufficiently more direct and general
than that of Gribov and Pomeranchuk to warrant its
publication.

In order to avoid any misunderstanding, we would
also like to point out that the leading Regge trajectory
is always the one with the largest value of the real part.
If there is an intersection of two or more trajectories,
then one simply has to follow the leading branch.

' T. Regge, Nuovo Cimento 18, 947 (1960).


