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Semiclassical methods are used to study the nonlinear interaction of light in vacuum. The study was
motivated by a desire to investigate the possibility of using recently developed light sources (lasers) to
demonstrate the existence of these minute nonlinear eGects. As is well known, Maxwell's equations can be
modified by the addition of certain nonlinear terms so that they correctly describe the interaction of low-
energy photons. Using these equations, an expression is derived for the counting rate for photons produced by
two photons colliding inelastically in the presence of an external, static electric field. A derivation along
these lines is also given for the well-known uttering cross section in the case of two photons colliding
elastically to give two photons.

I. INTRODUCTION

T has been known for some time now that quantum
~ - electrodynamics predicts the existence of a nonlinear
interaction between electromagnetic fields in vacuum. ' '
The development within the past several years of optical
lasers has provided very intense monochromatic light
sources. One might think that such intense sources
could be used to observe the extremely small scattering
of light from light. However, if one estimates the count-
ing rates in a typical experiment in which two laser
beams are directed at one another and in which the
scattered light intensity is measured, one finds (with
available powers) extremely small counting rates. If
one could cause three intense beams of light to intersect,
there might be some hope of observing the small non-
linear interaction. The scattering of three radiative
photons in an initial state to give a single photon in a
final state is forbidden by phase-space considerations.
The process could take place, however, if one of the
initial 6elds were virtual (nil k).

The vacuum is, in fact, a polarizable continuum. The
electrons filling the negative energy Dirac sea can be
virtually excited by the absorption of radiation to form
pairs. The pairs in turn annihilate themselves, giving rise
to a scattering of the absorbed radiation. The cross
section for this process can be calculated within the
framework of quantum electrodynamics. The analytic
expressions for the quantum-mechanical transition am-
plitudes are, in general, algebraically complicated since
they involve fourth-order processes. Although the gen-
eral expressions have been derived, "they have never
been evaluated in their entirety. In fact, it is only in
the case where all the participating photons are real
(rs=k) that the scattering cross section has been ex-
plicitly worked out. v Only in the high- and low-energy
limits are the expressions simple.

The nonlinear interaction between electromagnetic

fields has a structure which rejects the dynamics of the
pair field. The range of the nonlinear interaction must
be of the order of the electron's Compton wavelength.
For suSciently low energies, i.e., energies such that
he%(mes (re= frequency of the incident light), the radia-
tion cannot "see" the structure of the interaction. The
sole eGect of the pair fieM in the low-energy limit is to
produce a nonlinear point interaction of a certain
strength between fields. The earliest papers in this field
(see, for example, reference 5) showed that this inter-
action can be grafted onto the linear classical theory of
light, (Maxwell's equations) by adding to the classical
Maxwell Lagrangian density terms which are quartic
in the fields.

We make this low-energy approximation throughout
this paper. Ke use it to calculate the counting rate for
the scattering of light by light in the presence of classical
static fields. %'e also calculate the cross section for the
scattering of light by light in the absence of external
fields (a result which is well known). The calculations
involved in this paper are simple compared with the
corresponding quantum-mechanical calculations. The
expressions derived are also simple, both mathematically
and physically.

Numerical estimates are made of the kind of fields
and field gradients needed in order to observe these
extremely small nonlinear efI'ects in the laboratory.
The transition rates for the kinds of geometries and
fields considered are still too small to be measured.

II. THE NONLINEAR MAXWELL EQUATIONS

The classical Lagrangian for slowly varying fields,
which incorporates the sects of virtual pairs and is
correct to terms of order e', is'

' 0. Halpern, Phys. Rev. 44, SSS (1933).

'W. Heisenberg and H. Euler, Z. Pb sik 98, 714 {1936}. whereci=(5/180)(n/m ),cs= —(14/180)(n /m'), nisthe
~ H. Euler, Ann. Physik 26, 398 (1936). 2 4 2 4

' V. S. Weisskopf, Kgl. Danske pidenskab. Selskab, Mat. -Fys. fine structure constant, and m is the mass of the electron.
Medd 16, No. 6 {1936). We use naturalized Gaussian cgs units (i.e., k =c= 1, so~ A. Achieser, Physik, Z. Sowjetunion 11, 263 (193'). ~ ~

M Neurnan phys Rev 80 3SO (19M) n e ). The quantities f„, are the usual comPonents of
r R. Karplus and M. Neuruan, phys. Rev. 83, 776 (1951}. the Maxwell field tensor f„„=BA„/Ba"—BA „/r}as, where
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A„ is the four-potential. The tensor indices take on the
values p, =0, 1, 2, 3, and a repeated index denotes sum-
mation. Variation of the Lagrangian with respect to
the potentials of the 6eld yields the equations of motion
of the field. In this case, an extended set of Maxwell's
equations results:

their propagation vectors are all parallel. Physically,
this means that no scattering takes place between pho-
tons travelling in the same direction.

In order to discuss the scattering of waves, it seems
necessary to resort to an approximate analysis. Equa-
tions (2)—(5) can be rewritten in the form

where

v XE= —(aS/at),

vXH= aD/at,

v D=O,

v 8=0,

(2)

(3)

(4)

(5)
where

v XE= —(aS/at),

vxS= aE/at+4~~J,

V K=4m)p,

v S=O

(13)

(14)

(15)

(16)

3 3

D,.=P .;,Z, =Z;+X P .; Z;=E&+—I (b&;), (6)
p= —(1/4jr)V bE

J= (I/4s)[(a/at) (bK) —v xbS].
(17)

(18)

H;= P p;;8;=8;+X—P p; 8;=8;+X(bB;—), (7)

e,,= ;b, +X[2(E'—8 )b,,+78;8;]=b;, +X&/~—', (8)

p, =b ~+&L&(~ 8)b'l 7—8'8~]=—4+&PV — (9)

In Eqs. (8) and (9), b;; is the Kronecker delta, and X

is a constant:
X= (1/45~) (8/~4). (10)

Several simple solutions of this system of equations
can be determined by inspection. First, a single plane
wave satisfying the classical linear Maxwell's equations
is a solution. For this plane wave ~E~ = ~8~, and
E S=O, so from Eqs. (6)—(9), D=E, and H=S, and
hence Eqs. (2)—(5) are satisffed. One expects this result,
for quantum electrodynamics predicts that a single
free photon can propagate undisturbed.

The next simplest solution is a superposition of two
plane waves having different frequencies and an arbi-
trary relative pha, se, but propagating in the same direc-
tion. We can write the R and I vectors as

K=K, cos[cog(t —v r)]
+K2 cos[co2(t—v r)+ p], (11)

S=vX Eg cos[cdy(t —v'r)]
+vXE2 cos[M2(t —v'r)+p]=vXE, (12)

where v is the unit vector in the direction of propaga-
tion, y is the arbitrary phase difference, and
v. ml= v E3——0. It is easy to show that E'—8'=—0 and
K S—=0, so that H=S, D=E, and hence Eqs. (2)—(5)
are satis6ed. It is also simple to prove that no other
combination of two plane waves is a solution of the
system of Eqs. (2)—(5). In order that the superposition
of two plane waves be a solution of these equations, it
is necessary that their propagation vectors be parallel
(not antiparallel). It is easy to extend these results and
show tha. t a superposition of e-plane waves having
arbitrary frequencies and arbitrary relative phases is
aga, in a solution of the extended Maxwell equations, if

(V'+(u')Sr(r, (u) = —4n VX Jo(r,a&). (21)

The solutions of (20) and (21) which are de6ned over
all space and correspond to outgoing waves at in6nity
are well known'.

Ef(r,au) = [~Jo(r',~)—vpo(r', ~)] .e*""d'r', (22)
R

Sr(r,~)= v XJo(r', ~)
g1 op Rd3grr (23)

where E= ~r r'~. —

%. K. H. Panofsky and M. Phillips, Ckassica/ Electr&i'ty and
Mageetisec (Addison-Wesley Publishing Company, Inc. , Reading,
Massachusetts, 1955), p. 213.

In this way of writing the extended Maxwell's equa-
tions, the nonlinear terms have been lumped into two
source terms which are proportional to the small
parameter ). We expand the assumed true solution of
Eqs. (13)—(16) in a power series in X,

E=ED+XEf+, S=So+)Sf+, (19)

and attempt to determine this true solution correctly
to order ).

It is readily seen that Ko and 80 are solutions of
(13)—(16) with p=—0 and J=—0, that is, they are solutions
of the sourceless, linear Maxwell's equations. We dis-
cuss the nature of these solutions later. For the moment,
we assume that they are known.

The ffelds Ef and Sf are then solutions of (13)—(16)
when X=1,p= pa= p(EOS, o), and J=Jo:J(Eo So). Since
we are interested in solutions Ko and Bo which are
periodic in time, we expand Ef, Sf, po, and Jo as Fourier
series in the time and denote the respective Fourier
coefficients by Er(r,co), Sf(r,co), po(r, u&), and Jo(r,co)

(the time factor corresponding to the cath term is
e '"'). The Fourier coefficients then satisfy the reduced
wave equations

(V'+aP) Ef (r,co) = —4r [feeJp(r, co)—Vpo(r, (o)], (20)
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FIG. 1. Feynman
diagram for the scat-
tering of two free
photons into taro free
photons.

'For a djscuseon of this pont see L. I. S~h1R' Qturstuss
3feckaeics {Mcoravr-'P~&& Book Company, Inc., New York, 19SS),
2nd ed. , pp. 101-102.See also ¹ M. KroH, Phys. Rev. 127, 1207'
(1962).

III. THE QGTXAL j.OLDS

In order to proceed further we must specify the
initial 6elds, Eo and $0, which produce the source terms.
%e assume that the initial 6eMs are a sum of 6elds, in
one case consisting of two incoming 6elds plus a single
outgoing 6eM, and in another case consisting of two
incoming 6elds plus a static electric 6eld. Our approxi-
mate solution can be interpreted as follows. The initial
Gelds polarize the vacuum and generate a current which
in turn radiates the 6eld E~. The question now is:
Given the strengths, polarizations, spatial and time
dispersion of the initial 6elds, how much power is radi-
ated into the 6nal Geld' In discussing the scattering of
light by light in the absence of an external static Geld,
two of the initial 6elds will be chosen to correspond to
the incoming photons, and the third 6eld will correspond
to a photon in a speci6ed final state. In discussing the
scattering of light by light in the presence of an external
static 6eld. , two of the initial Gelds correspond to in-
coming photons while the third 6eld will be the pre-
scribed static Geld. %'e show that in the 6rst case the
radiated 6eld Ey corresponds to those photons in the
6nal state which have not already been speci6ed, while
in the second ease E~ corresponds to all the photons in
the 6nal state. The power radiated into a given solid
angle determines the observable counting rate. This
type of analysis is analogous to the calculation of the
matrix elements for the scattering of light by light in
quantum electrodynamics. There one considers a set of
diagrams of the form shown in Fig. 1.Three of the pho-
tons (within the encircled area) create the current which
radiates ihe 6nal photon at the fourth vertex.

In writing down the initial 6elds, a certain amount of
care must be taken. It might be assumed that the initial
incoming Gelds should be plane waves in order that they
correspond to single photons. This would lead to mathe-
matical difhculties which reflect the fact that the as-
sumption is not, physical. In any actual scattering ex-
periment, the incoming Gelds would be in the forxn of
collimated beams which interact only over a 6nite
volume. ' %bile the cross sections of such collimated

beams are 6nite, their linear dimensions are very large
compared with the wavelength of the light, and so we
assume that it is reasonable to approximate an incoming
6eld by a plane wave which is 6nite over the volume of
the beam and is zero elsewhere. Furthermore, in the
case where a third wave is completely speci6ed, it is
physically reasonable that the wave should also be a
collimated beam. This is equivalent to letting the initial
Gelds be plane waves and taking the region of integra-
tion of the integrals in (22) and (23) to be a compact
set, the interaction volume Vo.

Vie consider for a moment an initial field which is
an arbitrary 6nite sum of linearly polarized plane waves.
Since the initial 6elds appear nonlinearly in the expres-
sions for the scattered Geld, we must use real expressions
for the initial plane waves. VVe write

Ep ——P F;ag cos[(o;t k;.r],— (24)

$0=P F+yX Rq cos[a)gt hy —fj, ' (25)

I E. Schr~inger, Proc. Roy. Soc. Irish Acad. A47, n (1942).

where s; is a unit polarization vector, v, =k;/ar is the
unit propagation vector, v; a,=0, j=1, 2, -, n, , and
Ii; is the real amplitude of the jth wave. If we substitute
(24) and (25) into the expressions (17) and (18) to get
po and Jo, and, in turn, substitute po and Jo into (20)
and (21), several different types of source terms ap-
pear. Schematically, Jo and po are proportional to the
cubes of Eo and $0. In the 6rst place, no terms corre-
sponding to the cube of a single initial 6eld (FP) is
present due to the structure of 5E and 58. If n&2,
there are terms which are quadratic in one initial Geld
and linear in another (FPFI,). These source terms give
a contribution to the scattered 6eld only in the direction
of one of the initial Gelds. '0 If e&3, terms appear which
are the product of three diferent 6elds (F;FqF~) It.
is easy to show that no other types of terms appear.

In the following sections we examine in detail the
scattered 6eld arising from those source terms which
are the product of three diferent fields. It should be
noticed at this point, that had we chosen the initial
6eld as the sum of two plane waves, no scattering other
than forward scattering would have been described.
This forward scattering can be interpreted as causing
a change in the dielectric constant of the vacuum as seen
by each beam. An extensive discussion of this point can
be found in the paper by Schrodinger'o in which he
studied the Born-Infeld nonlinear theory of electro-
magnetism. In order to describe the scattering of two
photons into two photons within the framework of this
classical theory, if is eecessury to prescribe three of the
four 6elds.
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IV. THE SCATTERING OF LIGHT BY LIGHT IN
THE ABSENCE OP AN EXTERNAL FIELD

In this section we calculate the lovr-energy limit of
the cross section for the scattering of light by light in
the absence of an external 6eld. The result has been
known for a long time, e but in this classical theory the
calculations are simple and illustrate the techniques vre

use in the more interesting case of scattering in the
presence of an external field.

For our initial 6elds we choose the sum of three plane
vraves; tvro of these vraves correspond to the two in-

incoming photons, and the third, corresponds to an out-

Eo= Q F~tp cosy~,

and
3

Bo—Z ~jvI Xe'j cosyp') (26)

vrhere p; =k,'r —co,t, it is easy to show that

going photon in a speci6ed 6nal state. As shovrn in Sec.
III, vre need consider only those source terms which are
products of three diGerent fields. If vre write

t'1~
p=l —

I
—.l(~~~&~»(~ ~ ~) exp['(~y~+y2~y~)],

k4P 86
(27)

where

1 —(~~F&3)Z J(+, +, +) exp[~(+ yi~ y~~ y~)1,
4g 8i

p(a, a, a) =Ay (akgak2ak3),

J(a, a, ~)= (a~,+~,a~g)Ag+(~kgak2akg) XA2,

[2(e~ ' ea —
«~ X e~" «AX ea) «+7ej' («AX ea)«&X «],

j„k, l ~1
j&A gl

(29)

(30)

(31)

A;= Q [2(e,"ea —«, X e,"«AX

ea)«AX�

«—7e," («AX ex) ei].
q, k, t-i
j&A, gl

(32)

The sums in (27) and (28) are over the eight possible combinations of + and —signs. In deriving (27)—(32), we
have neglected all terms not involving the product of three diferent 6elds, We can now pick out the Fourier
coeKcients of p and J from (27) and (28) and substitute them into (22) and (23). Since we are interested in calcu-
lating the far Geld, and the region of integration in (22) and (23) is compact, we can make the approximation

(1/R)e'"&a= (1/r) exp(ice,w icy, v r'),—
where v= r/r. Using (33), we get for the Fourier components of Ef and Bf

(33)

~P2F3
Ef(r, wau~a(ama&ag) = [(a(a&+(u2+»)J(a, a, a)—(+kg+k, ak,)p(a, a, a)]

32ir
1.

X e4(klol+~R+~»&$(~ ~ ~) (34)

~x~sF3 1.
B,(r, +»a~,a~,)= [(akiwkmaks) XJ(a, a, a)]X-e'&+"~+.~+"» s(w, w, w),

32Ã r
where

(35)

I(+, w, w)= exp[i(akgwk, ak3) r' —~(+(ugaco2+»)v r'+r'. (36)

Since the dimensions of Vo are very much larger than
2z./co;, the integral (36) is essentially diferent from zero
only vrhen the total vrave vector in the exponent is
equal to zero. Therefore,

I(&, &, &)=Vol(+kl+ks+4, (&»&40s+Gls)v), (37)

where the 8 function in (37) is a Kronecker delta.
Now of the eight possible choices of + or —signs

in the sums in (27) and (28), only two will be of interest

to us. The eight possible combinations correspond to
the diferent ways of choosing*initial and final states.
The use of real cosine expressions for the 6elds precludes
the possibility of distinguishing betvreen incoming and
outgoing states. The two terms with all the signs the
same, ~~+&o~+cos and —co~—a&s—res, correspond to
processes in which three photons produce one photon or
one photon produces three photons. It is readily seen
that this is possible only if v= vt =v2= v3, that is, only
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in the case of forward scattering. However, we have
seen that three plane waves traveling in the same direc-
tion do not scatter, so such processes are excluded. "
The remaining six terms pair up into three groups, each
group corresponding to two waves scattering to give
the third wave plus the scattered 6eld. We consider only
the terms with coi+~2—co3 and —ori —ao2+co3. These
correspond to the processes: photons 1 and 2 in with
momenta ki and k2, and photons 3 and 4 out with rno-

menta ko and ko= (&»i+&so—a&o) v; and photons 1 and 2

out with momenta —ki and —k2 and photons 3 and 4
in with momenta —k3 and —k4. These amplitudes are
indistinguishable experimentally and the two Kronecker
delta functions merely produce a factor of 2 in the
amplitude. At this point it is clear that this classical
theory has yielded the energy and momentum conserva-
tion laws for the processes under consideration.

We now calculate the time average power, dI', radi-
ated into the solid angle dQ by one of the fields (34)—(35).
This is done by calculating the radial component of the
time average Poynting vector and multiplying by r2dQ

to get the average energy per unit time radiated into
dQ. Since the two terms in which we are interested give
identical results, we merely double the result for one of
them. A standard calculation then gives"

1
dP=2v ——Re(XEJXXSr*)r'dQ

kr 2

FjF2F3 '
Vo'dMoo

I
«XJ(++—) I

'.
4x 32~

In (38),oi4= oii+oio —o»o, and we have used the Kronecker
delta in (37) to set ki+ko —ko=o»ov=ko. In order to
get the scattering cross section from (38), we must
divide dI', the average energy per unit time radiated
into dQ, by the average energy Qux in beams 1 and 2.
The latter quantity is just (1/4or)(ioFio+&Foo). There-
fore the differential scattering cross section, do/dQ, is

do. 2' FiF2F3 '
Voodoo I

vX J(++—) I'. (39)
dQ F '+F ' 32m

or F;= (8oroi/ Vo)'i . If these values are substituted into
(39), and use is made of (10), we find

do 1 ' e ' a)
ro' —

I
voX (Ai —voXAo) I', (41)

dQ 90 2x

where n= e' is the fine structure constant and ro= e'/m
is the classical electron radius. By resolving the vectors
I:; into components parallel and perpendicular to
the plane of scattering, it is easily shown that

I
voX (Ai—voXAo)

I
is equivalent to (90/oi') Mi, i,i„i„

where M&„io&„z, is the quantity defined in Eq. (6) in ref-
erence 7 of Karplus and Neuman. It should be noted that
in our case only three polarizations can be specified, and
the fourth one is determined by the other three. Thus,
our formula has only eight possible polarization states,
while in the Karplus and Neuman paper there are sixteen
possible polarization states. However, some of these are
equal to each other, and others are identically zero, and it
canbe shown that (41) yields all the possible polarization
states. If we average over initial states and sum over
final states, (41) yields the well-known formula

d(r 139 r n ' (o»
ro'I — (3+cos'8)'.

dQ (90)'(2or k ori
(42)

2

Eo= Q F; s1. cosy;—~U(r), (43)

V. SCATTERING IN THE PRESENCE OF
AN EXTERNAL FIELD

We now use the techniques of Sec. IV to calculate
the counting rate for the production of photons by the
inelastic scattering of two photons in the presence of a
static, spatially inhomogeneous electric held. The basic
process consists of two photons, 1 and 2, interacting
once with the external 6eld and producing a single
photon (see Fig. 2). The energy of the outgoing photon
is the sum of ~I. and co2, the energies of the incoming
photons. However, the momentum is not conserved;
some momentum is imparted to the static field in the
process.

We choose the initial 6elds as follows:

In order to see that (39) gives the correct low-energy
cross section, we transform to the center-of-mass system
of beams 1 and 2. Then ~j,=~2=~3=~4=~, vy= —v2,
and v= —v3. We normalize each initial wave so that it
corresponds to one photon per volume of interaction,
That is, we set

Vo
2Fio cos'y;d'r- FP, j=1, 2, 3, (40)—

8~

"The authors are indebted to Dr. W. S. Brown for pointing
out to them that this process is also excluded in quantum electro-
dynamics because of lack of phase space."See reference 8, pp. 216-218.

2

~o= Q Fs~jXej cosyi.
j~i

(44)

We assume that the external static 6eld is smoothly
varying and is very small outside Vo. The approximation

In (43) and (44) the two incoming beams are represented
by plane waves over the beam, F;a; cosy;, where
q;=k;-r —w;t. The static 6eld is represented by the
negative gradient of its potential, and we write

U(r) =g U(oo) exp(ooc r), U(oo)'= U( —oo). (45)
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FIG. 2. Feynman
diagram for the scat-
tering of tvvo free
photons in the pres-
ence of an external
field.
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is made that the potential satisfies periodic boundary
conditions at the walls of a cube of volume Vo. This
introduces an error of the order 1/ccVo'" in the Fourier
transform U(«). Since we are interested in the case
where cc))1/ Vo'~', the error is negligibly small.

Using (43) and (44) it is again a simple task to com-
pute the source terms. However, in this case we must
give additional arguments for neglecting certain new

types of source terms. In the first place, there will be
terms which are cubic in U(«). It is easy to see that these
contribute a static term to Ef and make no contribution
to Bf. This part of the 6eld can, therefore, radiate no
energy, and we neglect it. In the second place, source
terms appear which are quadratic in the static field
and linear in one of the incoming 6elds. These terms can-
not be argued away on grounds of energy-momentum
conservation as before. In fact these terms correspond
to an incoming photon interacting twice with the ex-
ternal field and being scattered by it (Delbruck scat-
tering). " The cross section for this process could be
cakulated within this classical theory. The cross section
so obtained would contain terms involving arbitrarily
large momenta, and since this theory is valid only at
low energies, the validity of such results would be doubt-
ful. The elastic process (Delbriick scattering) does not
physically interfere with the inelastic single scattering
process. ' They are experimentally distinct. Therefore,
just as before, we consider only those source terms
which are linear in each of the three initial fields.

It is now easy to show that

1 FJF2
p= —— Q U(«)P p(«, +, a) exp(i«raid, mid, ),

4w 4
(46)

where

1 FiF2
Q U(«)Q J(«, a, a) exp(i«raicpcaiy, ),

kr 4

p(«, a, a) = («+kcako) c,(«),

J(«, W, a) = (W~,a~,)c,(«)+ («~k, ~ko) Xc~(«),

(47)

(48)

(49)

cc(«) = 4[(ec «)so+ (eo «)ec]+4[ac eo—(»X ec) (voX eo)]«+7[«. (v Xec)voX so+«(voX eo) vc X ec], (50)

eo(«)=4[(ec «)voXeo+(eo «)vcXec]—7[ec (voXeo)+so (v&Xez)]«—7[«. (v&Xec)so+«(voXeo)ec]. (51)
The sums in (46) and (47) are over the four possible combinations of + and —signs. In deriving these equations
we have neglected all terms not involving the product of three difI'erent Gelds. Ke can now pick out the Fourier
coeflicients of p and J from (46) and (47) and by calculations similar to those of Sec. IV, we get

'SFiF2

Ef (r, aa»+coo) = — P U(«)[acoc&cdo) J(«, +, +)—(«+k&Wko)p(», a, a)]
16m

1
X- exp[i(&co&acoo)r]Vo&(«&kc&ko, (+coc+ooo)v), (52)

iFIF2 1
8&(r, &co&~coo) = — P U(«) («+kc~ko) XJ(«, ~, ~)X—exp[c(&coc&coo)r]Vo&(«&kc&ko, (&cd c~cdo)v).

16m

(53)

The Kronecker deltas in the sums (52) and (53) pick
out that component of the static 6eld which is needed
to supply the momentum transfer.

There are four possible combinations of + or —signs
in (52) and (53) and only two of these combinations are
of interest to us: ~&+~2 and —~&—~2. These combina-
t.ions correspond to photons 1 and 2 going into photon

3, or photon 3 going into photons 1 and 2. These choices
correspond to «= W[kc+ko —ko], where ko ——(coc+coo)v.

'3 J. M. Jauch and F. Rohrlich, The Theory of Photons and I Iec-
trons (Addison-Wesley Publishing Company, Inc. , Reading,
Massachusetts, 2955), p. 379.

' The relevant amplitudes for Delbruck scattering in a Coulomb
field cannot be computed in this approximation. For a discussion
of this point see N. Kemmer, Helv. Phys. Acta 10, 112 (1937);
¹ Kemmer and G. I.udmig, ibid. 10, 182 (2937).
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To calculate the number of photons radiated per
unit time from the total interaction volume Vo into the
solid angle dO, we compute the radial component of the
time average Poynting vector, multiply by r'dQ, and
divide by (co~+co»). We set »»=k~+k» —k». It is

easily seen that J(»», —,—)=J(—»», +, +), and since

U( —»»}= U(»»)», the two choices ++ and ——make
identical contributions to the counting rate. The dif-
ferential counting rate, dF (the number of photons scs.t-
tered per unit time into the solid angle dQ), is

V»U(»») = exp(»»c. r) U(r)d'r (57)

is Gnite in the limit as Vo —+ ao, so that the transition
rate is proportional to 1/V»». The ratio of the transition
rate to the flux is proportional to 1/V» and not inde-
pendent of Vo as in the case of the two-body processes
discussed in Sec. IV. For a Gxed number, no, of scatterers
in the volume V», (the source of the potential U(r)],
dF/dQ»»~N»(n»/V»)(1/V») The rati.o of dF/dQ to the
6ux will then depend on»»&, e», and I»/V», the density
of scattering centers in V» (the collision of two photons
depends on the existence of a nearby scattering center).

If the potential U(r) is spherically symmetric, the
ratio of the total counting rate for two photons scat-
tering in the presence of an external electric field to the
total counting rate for two photons scattering in a vac-
uum can be written in an interesting way:

F»/F =&(V»E(»»)'/8s~), (58)

dF=—V»'
i U(»c) i'(»»g+a)»)

4r 16I.
X A»X J(»», —,—) i'dQ. (54)

The assumption of a static electric Geld is valid only
for a particular reference frame, since after a general
Lorentz transformation, a static electric Geld. is trans-
formed into a combined static electric and magnetic
Geld. Kith this in mind, we consider the special experi-
ment in which two beams of the same frequency co collide
head-on in the presence of a static electric 6eld (that is,
the center-of-mass frame and the laboratory frame are
the same). Then we have re~=~»=&a and v»= —v&. We
must still normalize the incident beams. %e assume
that each incident beam contains e; photons in an inter-
action volume V». Then from Eq. (40), we see that

F,= (8»r»» /p»V»)'I'

If these values are substituted into (54) and use is made
of (10), we 6nd that

dl' 8 e ' 1 a) ~ tn
~,n, ——)V»U(~)(»

dQ (45)' 2»r V»'

X I.X[e,(.)+.Xe,(.)ll'. (56)

If the total number of photons emitted in an experi-
mental arrangement is I/, then»» = (V/V»)»»;, where V
is the total volume of the beam. The quantity

where h. is a dimensionless angular factor of order unity.
In fact, if we average over initial polarizations and sum

over Goal polarizations in calculating F„„t and F „,
then 4= 1.019. Equation (58) then states that the vac-
uum counting rate is multiplied by a factor which is

the ratio of the energy stored by the electric held in the
interaction volume at the wave number x to the energy
of a single photon. If we assume some typical numbers,
for example, ni=n2=10' ~=1 eV, 3=10 ' cm', and
T=10 ' sec, where n is the number of photons in the
scattering volume produced by a laser which has a
pulse time T and whose beam is focused on an area A,
then the 6ux is n/AT and we 6nd that I' „10"
photon/sec. If we assume V»=10 ' cc, then in order
that I'. &/F „&1, it is necessary that E(~)&2X10 '
V/cm. It appears quite diflicult, however, to produce
Gelds having a Fourier component at this wavelength
(co= 1 eV~ ~ 10' cm ') which is much in excess of

2X10 ' V/cm. For example, consider a charged metal

sphere of radius p such that the value of the field at the
surface of the sphere is E» stat-V/cm. If p(&(v»)'",
then E(~} is given quite accurately by

E(x)= (4p»'rE»/ V»K) (slump/zp)

If p 10 ' cm and E»=»X10» statV/cm, then E(~)
4X10 ' statV/em=1. 2X10 ' V/cm. As p increases,

formula (59) breaks down [U(r) violates the condition
that it be small outside V»J and for order of magnitude
calculations should be replaced by

1
E(»») =— E(r) exp(i»» r)d'r.

~0 V,

It seems that the value 10 ' V/cm cannot be improved

by much more than an order of magnitude. It might be
thought that a high density of atomic nuclei would

provide a more intense Geld. However, at these rela-
tively long wavelengths, the light would not "see" the
charged nuclei, but would "see" only neutral atoms.
Thus, while ratios of the order of magnitude
F &/F 10» are probably obtainable, the nonlinear
effects would still be unobservable.

If the calculation were performed for the static mag-
netic 6eld case, the multiplication factor (just from
dimensional considerations) would be [V»B'(x)/8»rkcu],
where B(»») is the magnitude of the ath Fourier com-

ponent of the Geld. The angular factor and explicit
numerical factors would, of course, be diBerent. Experi-
mentally, the question is how to generate the maximum
energy storage for a given Fourier component of the
field.
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